1
|
Li L, He X, Zhang Y, Qi D, Li M, Zhang H, Shen Q, Fan Q. Near-Infrared Light-Activated DNA Nanodevice for Spatiotemporal In Vivo Fluorescence Imaging of Messenger RNA. Anal Chem 2025; 97:768-774. [PMID: 39707606 DOI: 10.1021/acs.analchem.4c05292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Real-time visualization of messenger RNA (mRNA) is essential for tumor classification, grading, and staging. However, the low signal-to-background ratios and nonspatiotemporal specific signal amplification restricted the in vivo imaging of mRNA. In this study, a near-infrared (NIR) light-activated DNA nanodevice (DND) was developed for spatiotemporal in vivo fluorescence imaging of mRNA. The DND was fabricated by encapsulating indocyanine green (ICG) and DNA fluorescent probes within thermosensitive liposomes and subsequently functionalizing the liposomes with aptamers. The ICG offers the "always-on" fluorescence signal, offering a feasible strategy for monitoring DND distribution. The fluorescence signal of DNA probes remains inactive ("off" state) during the delivery process. Upon targeted delivery of the DNDs to tumor cells via aptamer recognition, the thermosensitive liposomes could be dissociated by the photothermal effect induced by ICG under near-infrared irradiation, thereby facilitating the release of DNA probes. The DNA probes were activated ("turn on") by tumor-specific thymidine kinase 1 (TK1) mRNA through toehold-mediated strand displacement cascades, enabling the signal-amplified fluorescence imaging of mRNA. This study reveals the distinctive light-activated merit and remarkable fluorescence imaging of DNDs, highlighting their great potential to promote progress in spatiotemporal resolution imaging of other disease-relevant RNAs in vivo.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaotong He
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yang Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Dashan Qi
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Meixing Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries, National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qingming Shen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
2
|
HassanAbadi FK, Reshadinezhad MR, Beiki Z, Dehghanian F. Cascadable-Controllable Self-Assembly DNA Tiles for Large-Scale DNA Logic Circuits. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:478-497. [PMID: 38090859 DOI: 10.1109/tbcas.2023.3342704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In the last few decades, DNA-based self-assembly tiles has become a hot field in research due to its special applications and advantages. The regularity and strong design methods comprise other DNA-based digital circuit design methods. In addition to the obvious advantages of this method, there are challenges in performing computations based on self-assembly tiles, which have hindered the development and construction of large computing circuits with this method. The first challenge is the creation of crystals from DNA molecules in the output, which has led to the impossibility of cascading. The second challenge of this method is the uncontrollability of the reactions of the tiles, which increases the percentage of computing errors. In this article, these two challenges have been solved by changing the structure of leading tiles so that without the activator strand, tiles remain inactive and cannot be connected to other tiles. Also, when the tiles are activated, single-strand DNA will be released after connecting to other tiles, which will be used as the output of the circuit. This output gives the possibility of cascading to self-assembly designed circuits. The method introduced in this article can be a beginning for the re-development of DNA-based circuit design with the self-assembly tile method.
Collapse
|
3
|
Liao Y, Liu Y, Liu H, Liu X, Li L, Xiao X. Controllable and reusable seesaw circuit based on nicking endonucleases. J Nanobiotechnology 2024; 22:142. [PMID: 38561751 PMCID: PMC10983715 DOI: 10.1186/s12951-024-02388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Seesaw circuits are essential for molecular computing and biosensing. However, a notable limitation of seesaw circuits lies in the irreversible depletion of components, precluding the attainment of system recovery and rendering nucleic acid circuits non-reusable. We developed a brand-new method for creating controllable and reusable seesaw circuits. By using the nicking endonucleases Nt.BbvCI and Nt.Alwi, we removed "functional components" while keeping the "skeletal components" for recurrent usage. T-inputs were introduced, increasing the signal-to-noise ratio of AND logic from 2.68 to 11.33 and demonstrating compatibility. We identified the logic switching feature and verified that it does not impair circuit performance. We also built intricate logic circuits, such as OR-AND gate, to demonstrate the versatility of our methodology. This controllable reusability extends the applications of nanotechnology and bioengineering, enhancing the practicality and efficiency of these circuits across various domains.
Collapse
Affiliation(s)
- Yuheng Liao
- Insititute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yizhou Liu
- Insititute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Huan Liu
- Insititute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiao Liu
- Insititute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Longjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China.
| | - Xianjin Xiao
- Insititute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
4
|
Zhang X, Liu Y, Wang B, Zhou S, Shi P, Cao B, Zheng Y, Zhang Q, Kirilov Kasabov N. Biomolecule-Driven Two-Factor Authentication Strategy for Access Control of Molecular Devices. ACS NANO 2023; 17:18178-18189. [PMID: 37703447 DOI: 10.1021/acsnano.3c05070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The rise of DNA nanotechnology is promoting the development of molecular security devices and marking an essential change in information security technology, to one that can resist the threats resulting from the increase in computing power, brute force attempts, and quantum computing. However, developing a secure and reliable access control strategy to guarantee the confidentiality of molecular security devices is still a challenge. Here, a biomolecule-driven two-factor authentication strategy for access control of molecular devices is developed. Importantly, the two-factor is realized by applying the specificity and nicking properties of the nicking enzyme and the programmable design of the DNA sequence, endowing it with the characteristic of a one-time password. To demonstrate the feasibility of this strategy, an access control module is designed and integrated to further construct a role-based molecular access control device. By constructing a command library composed of three commands (Ca, Cb, Ca and Cb), the authorized access of three roles in the molecular device is realized, in which the command Ca corresponds to the authorization of role A, Cb corresponds to the authorization of role B, and Ca and Cb corresponds to the authorization of role C. In this way, when users access the device, they not only need the correct factor but also need to apply for role authorization in advance to obtain secret information. This strategy provides a highly robust method for the research on access control of molecular devices and lays the foundation for research on the next generation of information security.
Collapse
Affiliation(s)
- Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Shihua Zhou
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yanfen Zheng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Nikola Kirilov Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland 1010, New Zealand
- Intelligent Systems Research Center, Ulster University, Londonderry BT48, United Kingdom
- IICT, Bulgarian Academy of Sciences, Sofia 1040, Bulgaria
| |
Collapse
|
5
|
Liu Y, Zhang X, Zhang X, Liu X, Wang B, Zhang Q, Wei X. Temporal logic circuits implementation using a dual cross-inhibition mechanism based on DNA strand displacement. RSC Adv 2023; 13:27125-27134. [PMID: 37701285 PMCID: PMC10493850 DOI: 10.1039/d3ra03995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Molecular circuits crafted from DNA molecules harness the inherent programmability and biocompatibility of DNA to intelligently steer molecular machines in the execution of microscopic tasks. In comparison to combinational circuits, DNA-based temporal circuits boast supplementary capabilities, allowing them to proficiently handle the omnipresent temporal information within biochemical systems and life sciences. However, the lack of temporal mechanisms and components proficient in comprehending and processing temporal information presents challenges in advancing DNA circuits that excel in complex tasks requiring temporal control and time perception. In this study, we engineered temporal logic circuits through the design and implementation of a dual cross-inhibition mechanism, which enables the acceptance and processing of temporal information, serving as a fundamental building block for constructing temporal circuits. By incorporating the dual cross-inhibition mechanism, the temporal logic gates are endowed with cascading capabilities, significantly enhancing the inhibitory effect compared to a cross-inhibitor. Furthermore, we have introduced the annihilation mechanism into the circuit to further augment the inhibition effect. As a result, the circuit demonstrates sensitive time response characteristics, leading to a fundamental improvement in circuit performance. This architecture provides a means to efficiently process temporal signals in DNA strand displacement circuits. We anticipate that our findings will contribute to the design of complex temporal logic circuits and the advancement of molecular programming.
Collapse
Affiliation(s)
- Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
6
|
Ji H, Zhu Q. Application of intelligent responsive DNA self-assembling nanomaterials in drug delivery. J Control Release 2023; 361:803-818. [PMID: 37597810 DOI: 10.1016/j.jconrel.2023.08.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Smart nanomaterials are nano-scaled materials that respond in a controllable and reversible way to external physical or chemical stimuli. DNA self-assembly is an effective way to construct smart nanomaterials with precise structure, diverse functions and wide applications. Among them, static structures such as DNA polyhedron, DNA nanocages and DNA hydrogels, as well as dynamic reactions such as catalytic hairpin reaction, hybridization chain reaction and rolling circle amplification, can serve as the basis for building smart nanomaterials. Due to the advantages of DNA, such as good biocompatibility, simple synthesis, rational design, and good stability, these materials have attracted increasing attention in the fields of pharmaceuticals and biology. Based on their specific response design, DNA self-assembled smart nanomaterials can deliver a variety of drugs, including small molecules, nucleic acids, proteins and other drugs; and they play important roles in enhancing cellular uptake, resisting enzymatic degradation, controlling drug release, and so on. This review focuses on different assembly methods of DNA self-assembled smart nanomaterials, therapeutic strategies based on various intelligent responses, and their applications in drug delivery. Finally, the opportunities and challenges of smart nanomaterials based on DNA self-assembly are summarized.
Collapse
Affiliation(s)
- Haofei Ji
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
7
|
Shi J, Zhang B, Zheng T, Zhou T, Guo M, Wang Y, Dong Y. DNA Materials Assembled from One DNA Strand. Int J Mol Sci 2023; 24:ijms24098177. [PMID: 37175884 PMCID: PMC10179628 DOI: 10.3390/ijms24098177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Due to the specific base-pairing recognition, clear nanostructure, programmable sequence and responsiveness of the DNA molecule, DNA materials have attracted extensive attention and been widely used in controlled release, drug delivery and tissue engineering. Generally, the strategies for preparing DNA materials are based on the assembly of multiple DNA strands. The construction of DNA materials using only one DNA strand can not only save time and cost, but also avoid defects in final assemblies generated by the inaccuracy of DNA ratios, which potentially promote the large-scale production and practical application of DNA materials. In order to use one DNA strand to form assemblies, the sequences have to be palindromes with lengths that need to be controlled carefully. In this review, we introduced the development of DNA assembly and mainly summarized current reported materials formed by one DNA strand. We also discussed the principle for the construction of DNA materials using one DNA strand.
Collapse
Affiliation(s)
- Jiezhong Shi
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Ben Zhang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Tianyi Zheng
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Tong Zhou
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Min Guo
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Ying Wang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Liu Y, Wang J, Sun L, Wang B, Zhang Q, Zhang X, Cao B. Active Self-Assembly of Ladder-Shaped DNA Carrier for Drug Delivery. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020797. [PMID: 36677855 PMCID: PMC9862081 DOI: 10.3390/molecules28020797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
With the advent of nanotechnology, DNA molecules have been transformed from solely genetic information carriers to multifunctional materials, showing a tremendous potential for drug delivery and disease diagnosis. In drug delivery systems, DNA is used as a building material to construct drug carriers through a variety of DNA self-assembly methods, which can integrate multiple functions to complete in vivo and in situ tasks. In this study, ladder-shaped drug carriers are developed for drug delivery on the basis of a DNA nanoladder. We first demonstrate the overall structure of the nanoladder, in which a nick is added into each rung of the nanoladder to endow the nanoladder with the ability to incorporate a drug loading site. The structure is designed to counteract the decrement of stability caused by the nick and investigated in different conditions to gain insight into the properties of the nicked DNA nanoladders. As a proof of concept, we fix the biotin in every other nick as a loading site and assemble the protein (streptavidin) on the loading site to demonstrate the feasibility of the drug-carrying function. The protein can be fixed stably and can be extended to different biological and chemical drugs by altering the drug loading site. We believe this design approach will be a novel addition to the toolbox of DNA nanotechnology, and it will be useful for versatile applications such as in bioimaging, biosensing, and targeted therapy.
Collapse
Affiliation(s)
- Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiaxin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Lijun Sun
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
- Correspondence:
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Liu LS, Leung HM, Morville C, Chu HC, Tee JY, Specht A, Bolze F, Lo PK. Wavelength-Dependent, Orthogonal Photoregulation of DNA Liberation for Logic Operations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1944-1957. [PMID: 36573551 DOI: 10.1021/acsami.2c20757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, we synthesized two phosphoramidites based on 2,7-bis-{4-nitro-8-[3-(2-propyl)-styryl]}-9,9-bis-[1-(3,6-dioxaheptyl)]-fluorene (BNSF) and 4,4'-bis-{8-[4-nitro-3-(2-propyl)-styryl]}-3,3'-di-methoxybiphenyl (BNSMB) structures as visible light-cleavable linkers for oligonucleotide conjugation. In addition to the commercial ultraviolet (UV) photocleavable (PC) linker, the BNSMB linker was further applied as a building component to construct photoregulated DNA devices as duplex structures, which are functionalized with fluorophores and quenchers. Selective cleavage of PC and BNSMB is achieved in response to ultraviolet (UV) and visible light irradiations as two inputs, respectively. This leads to controllable dissociation of pieces of DNA fragments, which is followed by changes of fluorescence emission as signal outputs of the system. By tuning the number and position of the photocleavable molecules, fluorophores, and quenchers, various DNA devices were developed, which mimic the functions of Boolean logic gates and achieve logic operations in AND, OR, NOR, and NAND gates in response to two different wavelengths of light inputs. By sequence design, the photolysis products can be precisely programmed in DNA devices and triggered to release in a selective and/or sequential manner. Thus, this photoregulated DNA device shows potential as a wavelength-dependent drug delivery system for selective control over the release of multiple individual therapeutic oligonucleotide-based drugs. We believe that our work not only enriches the library of photocleavable phosphoramidites available for bioconjugation but also paves the way for developing spatiotemporal-controlled, orthogonal-regulated DNA-based logic devices for a range of applications in materials science, polymers, chemistry, and biology.
Collapse
Affiliation(s)
- Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Hoi Man Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Clément Morville
- Conception et Applications des Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch 67401, France
| | - Hoi Ching Chu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jing Yi Tee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Alexandre Specht
- Conception et Applications des Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch 67401, France
| | - Frédéric Bolze
- Conception et Applications des Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch 67401, France
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
10
|
Liao Y, Hu H, Tang X, Qin Y, Zhang W, Dong K, Yan B, Mu Y, Li L, Ming Z, Xiao X. A versatile and convenient tool for regulation of DNA strand displacement and post-modification on pre-fabricated DNA nanodevices. Nucleic Acids Res 2023; 51:29-40. [PMID: 36537218 PMCID: PMC9841412 DOI: 10.1093/nar/gkac1193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Toehold-mediated strand displacement and its regulatory tools are fundamental for DNA nanotechnology. However, current regulatory tools all need to change the original sequence of reactants, making the regulation inconvenient and cumbersome. More importantly, the booming development of DNA nanotechnology will soon promote the production of packaged and batched devices or circuits with specified functions. Regarding standardized, packaged DNA nanodevices, access to personalized post-modification will greatly help users, whereas none of the current regulatory tools can provide such access, which has greatly constrained DNA nanodevices from becoming more powerful and practical. Herein, we developed a novel regulation tool named Cap which has two basic functions of subtle regulation of the reaction rate and erasability. Based on these functions, we further developed three advanced functions. Through integration of all functions of Cap and its distinct advantage of working independently, we finally realized personalized tailor-made post-modification on pre-fabricated DNA circuits. A pre-fabricated dual-output DNA circuit was successfully transformed into an equal-output circuit, a signal-antagonist circuit and a covariant circuit according to our requirements. Taken together, Cap is easy to design and generalizable for all strand displacement-based DNA nanodevices. We believe the Cap tool will be widely used in regulating reaction networks and personalized tailor-made post-modification of DNA nanodevices.
Collapse
Affiliation(s)
- Yangwei Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Hao Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaofeng Tang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yang Qin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kejun Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bei Yan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaoqin Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Longjie Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhihao Ming
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Laboratory Medicine, Tongji hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
11
|
Qi M, Shi P, Zhang X, Cui S, Liu Y, Zhou S, Zhang Q. Reconfigurable DNA triplex structure for pH responsive logic gates †. RSC Adv 2023; 13:9864-9870. [PMID: 36998523 PMCID: PMC10043996 DOI: 10.1039/d3ra00536d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The DNA triplex is a special DNA structure often used as a logic gate substrate due to its high stability, programmability, and pH responsiveness. However, multiple triplex structures with different C−G−C+ proportions must be introduced into existing triplex logic gates due to the numerous logic calculations involved. This requirement complicates circuit design and results in many reaction by-products, greatly restricting the construction of large-scale logic circuits. Thus, we designed a new reconfigurable DNA triplex structure (RDTS) and constructed the pH-responsive logic gates through its conformational change that uses two types of logic calculations, ‘AND’ and ‘OR’. The use of these logic calculations necessitates fewer substrates, further enhancing the extensibility of the logic circuit. This result is expected to promote the development of the triplex in molecular computing and facilitate the completion of large-scale computing networks. We constructed pH-responsive logic gates through substrate conformational change that uses two types of logic calculations, ‘AND’ and ‘OR’. Our logic gates necessitate fewer substrates when two types of logic calculations are needed.![]()
Collapse
Affiliation(s)
- Mingxuan Qi
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian UniversityDalian 116622China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of TechnologyDalian 116024China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of TechnologyDalian 116024China
| | - Shuang Cui
- School of Computer Science and Technology, Dalian University of TechnologyDalian 116024China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of TechnologyDalian 116024China
| | - Shihua Zhou
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian UniversityDalian 116622China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian UniversityDalian 116622China
| |
Collapse
|
12
|
Wang L, Cui J, Tanner JA, Shiu SCC. Self-Assembly of DNA Tiles with G-Quadruplex DNAzyme Catalytic Activity for Sensing Applications. ACS APPLIED BIO MATERIALS 2022; 5:3788-3794. [PMID: 35916910 DOI: 10.1021/acsabm.2c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA tiles form through self-assembly of a small number of DNA strands that interact through basic repeated interactions, allowing the growth of nanoscale structures seeded by molecular inputs. If an approach for catalytic signal amplification can be integrated into the resultant nanostructure, then one can anticipate biosensing or diagnostic applications mediated by DNA tile self-assembly. Here, two-dimensional DNA tiles with split quadruplexes were designed as diagnostic tools for nucleic acid sensing without the use of protein enzymes. The presence of a target sequence leads to formation of extended microscale structures with arrayed multiple G-quadruplexes across the tile plane, with catalytic activity coupled to a colorimetric reporter. Such a mechanism has potential for low-cost signal amplification using unmodified DNA without the use of protein enzymes for biosensing.
Collapse
Affiliation(s)
- Lin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Jingyu Cui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Hong Kong, China.,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Hong Kong, China
| |
Collapse
|
13
|
Yu S, Shang J, He S, Wang Q, Li R, Chen Y, Liu X, Wang F. Multiply Guaranteed and Successively Amplified Activation of a Catalytic DNA Machine for Highly Efficient Intracellular Imaging of MicroRNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203341. [PMID: 35843889 DOI: 10.1002/smll.202203341] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
DNA amplification machines show great promise for intracellular imaging, yet are always constrained by off-site machinery activation or signal leakage, originating from the inherent thermodynamically driven hybridization between machinery substrates. Herein, an entropy-driven catalytic DNA amplification machine is integrated with the on-site amplified substrate exposure procedure to realize the high-contrast in vivo imaging of microRNA (miRNA). The key machinery substrate (fuel strands) is initially split into substrate subunits that are respectively grafted into an auxiliary DNA polymerization amplification accessory for eliminating the undesired signal leakage. Meanwhile, in target cells, the auxiliary polymerization accessory can be motivated by cell-specific mRNA for successively restoring their intact machine-propelling functions for guaranteeing the on-site amplified imaging of miRNA with high specificity. This intelligent on-site multiply guaranteed machinery can improve the specificity of catalytic DNA machines for discriminating different cell types and, thus, can provide a remarkable prospect in biomedical diagnosis.
Collapse
Affiliation(s)
- Shanshan Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China
| |
Collapse
|
14
|
Zhong W, Wu J, Huang Y, Xing C, Lu C. Target-Activated, Light-Actuated Three-Dimensional DNA Walker Nanomachine for Amplified miRNA Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1151-1157. [PMID: 35001620 DOI: 10.1021/acs.langmuir.1c02834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate analysis of microRNA (miRNA) is promising for elucidation of cancer processes and therapeutic effects. In this study, we reported a new target-activated, light-actuated three-dimensional (3D) DNA walker on gold nanoparticles for sensitive detection of miRNA using pyrene-incorporated DNAzyme analogues. In this design, the target miRNA activated the 3D DNA walker system to releases the walking arm. Then, under ultraviolet light irradiation, the pyrene DNAzyme on the walking arm would consecutively cleave the disulfide bonds of substrate strands and recover the fluorescence signal, thus achieving the amplified miRNA detection. The sophisticated design of the light-actuated 3D DNA walker was systematically investigated. Furthermore, this strategy could also be employed for miRNA analysis in serum samples with satisfactory reproducibility. Notably, the proposed light-actuated 3D DNA walker-based technique eliminated the need of enzymes, cofactors, and RNA backbones, thereby significantly improving the stability and efficiency. Overall, the light-actuated 3D DNA walker-based strategy enabled facile, sensitive, and specific detection of miRNA and provided new perspectives in diagnostics.
Collapse
Affiliation(s)
- Wukun Zhong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People's Republic of China
| | - Junye Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People's Republic of China
| | - Yuqing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People's Republic of China
| | - Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, People's Republic of China
| |
Collapse
|
15
|
Mei L, Chen B, Fan R, Wu M, Weng C, Tong A, Zou B, Yang H, Nie C, Guo G. Magic of Architecting Oligo‐DNAs: 3D Structure‐Dependent Stability and Programmable Specificity to Tumor Cells. ADVANCED FUNCTIONAL MATERIALS 2022. [DOI: 10.1002/adfm.202112544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lan Mei
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Bo Chen
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Min Wu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Chengxin Weng
- Department of Vascular Surgery West China Hospital Sichuan University Chengdu 610041 China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Hui Yang
- Department of Otorhiolaryngology Head and Neck Surgery West China Hospital Sichuan University Chengdu 610041 China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| |
Collapse
|
16
|
Cui X, Liu Y, Zhang Q. DNA tile self-assembly driven by antibody-mediated four-way branch migration. Analyst 2022; 147:2223-2230. [DOI: 10.1039/d1an02273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antibody-mediated four-way branch migration mechanism provides a novel idea for realizing the assembly of nanostructures, simply by attaching structures such as tiles, proteins, quantum dots, etc. to the ends of the four-way branches.
Collapse
Affiliation(s)
- Xingdi Cui
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
17
|
Gao S, Wu R, Zhang Q. A novel strategy for programmable DNA tile self-assembly with a DNAzyme-mediated DNA cross circuit. NEW J CHEM 2022. [DOI: 10.1039/d1nj06012k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proposed strategy promotes the controllability and modularization of trigger elements, realizes programmable molecular self-assembly, and has broad applications for the construction of DNA nanodevices.
Collapse
Affiliation(s)
- Siqi Gao
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
He Q, Liu Y, Li K, Wu Y, Wang T, Tan Y, Jiang T, Liu X, Liu Z. Deoxyribonucleic acid anchored on cell membranes for biomedical application. Biomater Sci 2021; 9:6691-6717. [PMID: 34494042 DOI: 10.1039/d1bm01057c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineering cellular membranes with functional molecules provides an attractive strategy to manipulate cellular behaviors and functionalities. Currently, synthetic deoxyribonucleic acid (DNA) has emerged as a promising molecular tool to engineer cellular membranes for biomedical applications due to its molecular recognition and programmable properties. In this review, we summarized the recent advances in anchoring DNA on the cellular membranes and their applications. The strategies for anchoring DNA on cell membranes were summarized. Then their applications, such as immune response activation, receptor oligomerization regulation, membrane structure mimicking, cell-surface biosensing, and construction of cell clusters, were listed. The DNA-enabled intelligent systems which were able to sense stimuli such as DNA strands, light, and metal ions were highlighted. Finally, insights regarding the remaining challenges and possible future directions were provided.
Collapse
Affiliation(s)
- Qunye He
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China. .,Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, P. R. China
| |
Collapse
|
19
|
Chen D, Yang S, Han H, Song L, Huang D, Lin X, Xu X, Yang Q. The Construction of DNA Logic Gates Restricted to Certain Live Cells Based on the Structure Programmability and Aptamer-Cell Affinity of G-Quadruplexes. Chemistry 2021; 27:11627-11632. [PMID: 34046964 DOI: 10.1002/chem.202100913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 11/09/2022]
Abstract
DNA computation is considered a fascinating alternative to silicon-based computers; it has evoked substantial attention and made rapid advances. Besides realizing versatile functions, implementing spatiotemporal control of logic operations, especially at the cellular level, is also of great significance to the development of DNA computation. However, developing simple and efficient methods to restrict DNA logic gates performing in live cells is still a challenge. In this work, a series of DNA logic gates was designed by taking full advantage of the diversity and programmability of the G-quadruplex (G4) structure. More importantly, by further using the high affinity and specific endocytosis of cells to aptamer G4, an INHIBIT logic gate has been realized whose operational site is precisely restricted to specific live cells. The design strategy might have great potential in the field of molecular computation and smart bio-applications.
Collapse
Affiliation(s)
- Die Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P.R. China
| | - Shu Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P.R. China
| | - Huayi Han
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P.R. China
| | - Lingbo Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P.R. China
| | - Dan Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Xiao Lin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Xiaoping Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P.R. China
| | - Qianfan Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| |
Collapse
|
20
|
Wang DX, Wang J, Wang YX, Du YC, Huang Y, Tang AN, Cui YX, Kong DM. DNA nanostructure-based nucleic acid probes: construction and biological applications. Chem Sci 2021; 12:7602-7622. [PMID: 34168817 PMCID: PMC8188511 DOI: 10.1039/d1sc00587a] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed.
Collapse
Affiliation(s)
- Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Jing Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Ya-Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yan Huang
- College of Life Sciences, Nankai University Tianjin 300071 P. R. China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- College of Life Sciences, Nankai University Tianjin 300071 P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
21
|
Chen C, Wu R, Wang B. Development of a neuron model based on DNAzyme regulation. RSC Adv 2021; 11:9985-9994. [PMID: 35423534 PMCID: PMC8695483 DOI: 10.1039/d0ra10515e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
Neural networks based on DNA molecular circuits play an important role in molecular information processing and artificial intelligence systems. In fact, some DNA molecular systems can become dynamic units with the assistance of DNAzymes. The complex DNA circuits can spontaneously induce corresponding feedback behaviors when their inputs changed. However, most of the reported DNA neural networks have been implemented by the toehold-mediated strand displacement (TMSD) method. Therefore, it was important to develop a method to build a neural network utilizing the TMSD mechanism and adding a mechanism to account for modulation by DNAzymes. In this study, we designed a model of a DNA neuron controlled by DNAzymes. We proposed an approach based on the DNAzyme modulation of neuronal function, combing two reaction mechanisms: DNAzyme digestion and TMSD. Using the DNAzyme adjustment, each component simulating the characteristics of neurons was constructed. By altering the input and weight of the neuron model, we verified the correctness of the computational function of the neurons. Furthermore, in order to verify the application potential of the neurons in specific functions, a voting machine was successfully implemented. The proposed neuron model regulated by DNAzymes was simple to construct and possesses strong scalability, having great potential for use in the construction of large neural networks.
Collapse
Affiliation(s)
- Cong Chen
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| |
Collapse
|