1
|
Ma J, Cai Z, Ahmad F, Xiao Y, Shu T, Zhang X. Confining metal nanoparticles and nanoclusters in covalent organic frameworks for biosensing and biomedicine. Biosens Bioelectron 2025; 281:117461. [PMID: 40250017 DOI: 10.1016/j.bios.2025.117461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Metal nanoscale particles, primarily including metal nanoparticles (MNPs) and nanoclusters (MNCs), have garnered substantial interests owing to their unique electronic configurations and distinct physicochemical properties. However, practical applications are frequently constrained by their limited stability and aggregation tendency. Covalent organic frameworks (COFs), featuring highly ordered periodic architectures, have emerged as ideal porous matrices for hosting metal nanoparticles. The resulting metal-embedded COFs synthesized through adsorption methods (M/COFs) or in-situ reduction (M@COFs) not only mitigate nanoparticle aggregation and enhance stability but also demonstrate synergistic effects that generate enhanced or novel functionalities, significantly broadening their application potential. This review firstly examines adsorption-based synthesis strategies for M/COFs through physical and chemical approaches. Subsequently, we analyze in-situ reduction methods for M@COFs, categorizing them by reduction pathways: deposition, impregnation-pyrolysis, and "one-step" synthesis. Special attention is given to an emerging pore wall engineering strategy within in-situ reduction approach. The biosensing and biomedical applications of metal-embedded COFs are systematically examined, highlighting their comparative advantages over conventional nanomaterials in sensing and antimicrobial applications. While metal-embedded COFs remain in their developmental infancy and face considerable challenges, the controlled synthesis of multifunctional variants promises transformative potential across biomedical domains.
Collapse
Affiliation(s)
- Jianxin Ma
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China; Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhongjie Cai
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Faisal Ahmad
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Yelan Xiao
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Tong Shu
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Pan A, Sun X, Che Y, Wang Y, Du H. Reducing the excition binding energy of covalent-organic frameworks via spatial-confined NiCo-NC as internal nanoreactors for photocatalytic hydrogen evolution. J Colloid Interface Sci 2025; 697:137944. [PMID: 40412120 DOI: 10.1016/j.jcis.2025.137944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/28/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
COFs (covalent-organic frameworks) are regarded as ideal photocatalyst for hydrogen-evolution, due to their structural controllability, but they possess poor electrical conductivity and high exciton binding energy, which limits their photocatalytic activity. Here, the NiCo-ZIF-67 derived NiCo-nitrogen-doped carbon (NiCo-NC) with superior conductivity and high light-absorption capacity was spatially confined in the channels of TP-BD COF (TP: 2, 4, 6-triformylphloroglucino; BD: 4, 4'-biphenylenediamin) by constructing hydrogen bonds to form NiCo-NC@TP-BD COF core@shell heterojunctions and NiCo-NC acts as internal highly active nanoreactor, which could accelerate the photocatalytic efficiency. Specifically, the optimal catalyst NiCo-NC@TP-BD-0.6 (NT-0.6) exhibits the maximum H2 evolution rate of 78.97mmol g-1 h-1 without Pt cocatalyst, which is approximately 395 times higher than that of bare TP-BD COF. Systematic investigations imply that the NiCo-NC as a high active nanoreactor was stably encapsulated in the pore of TP-BD by hydrogen bonds and formed a close interfacial contact, which is revealed by Fourier-transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H NMR). Meanwhile, the charge transfer and Hydrogen Evolution Reaction (HER) are revealed by the density functional theory (DFT) calculation. This work offers a promising strategy to reduce the high excitation binding energy of COFs-based catalysts in photocatalytic H2 evolution.
Collapse
Affiliation(s)
- Ailing Pan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Xiaohui Sun
- Institute of Quality Standards & Testing Technology for Agri-products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yuanyuan Che
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Yu Wang
- Guian New Area School Attached to Beijing Normal University, Guiyang 550029, China.
| | - Hong Du
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China; Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi 830054, China.
| |
Collapse
|
3
|
Gao H, Du L, Wei Y. Nanoclusters Embedded in Phthalocyanine Covalent Organic Polymer Enhance the Cycloaddition Reaction of Carbon Dioxide. Inorg Chem 2025; 64:7508-7520. [PMID: 40196983 DOI: 10.1021/acs.inorgchem.5c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Photocatalytic cycloaddition of carbon dioxide and epoxides under mild conditions is important for green chemistry, while metal clusters loaded on a variety of carriers are widely used in energy and biology. However, under long-term illumination, the light stability of metal clusters at the carrier interface is poor, which usually leads to the loss of catalytic performance. Covalent organic polymers (COPs) with periodic and ultrasmall pore structures are ideal carriers for dispersing and stabilizing metal clusters. Through a simple nitrogen purge process, embedding Mn2Dy2 clusters on a hydroxy-containing COP was successfully achieved, which makes it an effective photocatalyst for CO2 cycloaddition. By introducing adjacent hydroxyl and imine bonds in the COP unit, periodic dispersed adsorption sites of metal clusters were constructed, generating a large number of active photogenerated electrons. The photoelectric measurement results indicate that the catalyst is excellent, with good charge separation efficiency. The Mn2Dy2 clusters widely presented on COP expose large active surfaces, greatly promoting electron transfer. The highest cycloaddition conversion rate at room temperature and normal pressure is 99%, and the TON value is 2352. This is of great significance for the study of novel photocatalytic cycloaddition of carbon dioxide.
Collapse
Affiliation(s)
- Haiyun Gao
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Longchao Du
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| | - Yongwang Wei
- School of Chemistry and Chemical Engineering & the Key Laboratory of Environment-friendly Polymer Materials of Anhui Province, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China
| |
Collapse
|
4
|
Rimi, Kumar R, Uttam B. Porous Pd-Loaded IRMOF-9 as Highly Efficient Recyclable Material Towards the Reduction of Nitroaromatics in Aqueous Media. Chempluschem 2024; 89:e202400111. [PMID: 39187435 DOI: 10.1002/cplu.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Nitroaromatic compounds (NACs) cause severe hazardous impacts on human health as well as on the environment. Therefore, there is dire need to develop a robust material to reduce the toxicity of these organic pollutants. In this regard, our group developed a series of porous MOF materials viz., Pdx@IRMOF-9 (x=2 %, 5 % and 10 %) by loading different concentration of Pd(II) on IRMOF-9 and explored them towards reduction of different nitroaromatic compounds. Pd10%@IRMOF-9showed ~30 % greater efficiency for the reduction of 4-NP as compared to Pd2%@IRMOF-9. Pd10%@IRMOF-9showed excellent reduction ability (>85 %) towards 4-NP, 2-NP, 2-NA, 3-NA and 2,4-DNPH. The kinetic studies indicates that the reduction follows the pseudo-first-order kinetics. Moreover, the rate constant value for reduction of 3-NA was ~9 times higher than that of 2-NP. Based on the kinetic parameters, the t1/2 values for all the nitroaromatics have been calculated. The kinetic parameters, Km and Vmax have been calculated from double reciprocal Lineweaver-Burk plot and found to be 65.984 μM and 116×10-6 Mmin-1 respectively. Pd10%@IRMOF-9showed excellent recyclability towards the reduction of 4-NP for few consecutive cycles without any remarkable loss in its activity. Thus, highly efficient, porous and robust material for the reduction of nitroaromatic compounds in aqueous media have been demonstrated.
Collapse
Affiliation(s)
- Rimi
- Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, India
| | - Ravi Kumar
- Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, India
| | - Bhawna Uttam
- Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, India
| |
Collapse
|
5
|
Shi J, Jiang J. CO 2/N 2 Triggered Aqueous Recyclable Surfactants for Biphasic Catalytic Reactions in the Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20416-20427. [PMID: 39292966 DOI: 10.1021/acs.langmuir.4c01784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The utilization of Pickering emulsions in interfacial catalysis offers a promising environmental platform for biphasic reactions. However, complicated surface coating or chemical grafting methods are always required to prepare the surface-active catalysts for the Pickering emulsions, since most of them are commercially unavailable. Here, we report CO2-switchable Pickering emulsions for biphasic reactions, in which Pd@Al2O3 nanoparticles are in situ modified by a CO2/N2 responsive surfactant. Compared with the chemical grafted methods, the in situ formed Pickering interfacial catalysts avoid complex chemical modification. Furthermore, efficient demulsification and separation of the oil phase and the products without surfactant contaminations can be achieved by CO2 trigger. The Pickering interfacial catalysis system can also be reformed after the aqueous phase containing the catalyst nanoparticles, and the surfactant is recycled and reused. The strategy is universal for nitrobenzene reductions and alcohol oxidations, providing a convenient and green method for the preparation of Pickering catalysts with commercially available nanoparticles, efficient emulsion separation, and recovery of the catalyst nanoparticles and emulsifiers in various two-phase organic reactions.
Collapse
Affiliation(s)
- Jin Shi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
6
|
Gao Y, Tian X, Wang Y, Zhu J, Lou X, Qin M, Lu M, Cai Z. Zr-based multivariate metal-organic framework for rapid extraction of sulfonamide antibiotics from water and food samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135019. [PMID: 38925054 DOI: 10.1016/j.jhazmat.2024.135019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Based on multiple ligands strategy, a series of multivariate metal organic frameworks (MTV-MOFs) named as PCN-224-DCDPSx were prepared using one-pot solvothermal method to extract and remove sulfonamide antibiotics (SAs). The pore structure and adsorption performance can be further regulated by modulating the doping ratios of medium-tetra(4-carboxylphenyl) porphyrin and 4,4'-dicarboxydiphenyl sulfones. The MTV-MOFs of PCN-224-DCDPS1.0 possesses very large specific surface area (1625 m2/g). Using PCN-224-DCDPS1.0 as sorbent, a dispersive solid-phase extraction method was developed to extract and preconcentrate SAs from water, eggs, and milk prior to high performance liquid chromatography analysis. The limits of detection of method were determined between 0.17 and 0.27 ng/mL with enrichment factors ranging 214-327. The adsorption can be finished within 30 s, and the recovery rate remains above 80 % after 10 repeated uses. The adsorption capacities of sorbent were determined from 300 to 621 mg/g for sulfadiazine, sulphapyridine, sulfamethoxydiazine, sulfachlorpyridazine, sulfabenzamide, and sulfadimethoxine. The adsorption mechanisms were investigated and can be attributed to π-π interactions, hydrogen bonds, and electrostatic interactions. This work represents a method for preparation of MTV-MOFs and uses as sorbent for extraction and enrichment of trace pollutants from complex samples.
Collapse
Affiliation(s)
- Yanmei Gao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xiao Tian
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Youmei Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jiawen Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xuejing Lou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Mengjie Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
7
|
Batsukh I, Khishigjargal T, Dembereldorj U, Sambuu M, Ganbold E, Norov E. Comparative Study of Catalytic Activity of Recyclable Au/Fe 3O 4 Microparticles for Reduction Of 2,4-Dinitrophenol and Anionic, Cationic Azo Dyes. ChemistryOpen 2024; 13:e202300297. [PMID: 38624176 PMCID: PMC11633347 DOI: 10.1002/open.202300297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
We synthesized Au/Fe3O4 microparticles. Initially, citrate-capped Fe3O4 micro-sized particles were synthesized by the co-precipitation method with an excess amount of trisodium citrate. Gold ions were reduced on the surface of citrate-capped Fe3O4 and grew as gold sub-microparticles with an average diameter of 210 nm on the surface. The characteristic SPR peak of gold nanoparticles on the surface of Fe3O4 was detected at 584 nm, whereas the absorption in the near-infrared region was increased. SEM images has proved that the synthesized Au/Fe3O4 composite microparticles has an average diameter of 1.7 micrometers. The results of XRD patterns proved the existence of both crystal phases of Fe3O4 and Au particles. To investigate the catalytic activity, the reaction rate constant of reduction of 2,4-dinitrophenol (2,4-DNP) and degradation of Congo red (CR), and methylene blue (MB) with NaBH4 in the presence of Au/Fe3O4 catalyst was monitored by UV-Vis spectroscopy. The initial reaction rate constant calculated from the change in characteristic peak absorptions of 2,4-dinitrophenol was 3.97×10-3 s-1, while the reaction rate constants for the degradation of CR and MB were 9.72×10-3 s-1 and 14.25×10-3 s-1 respectively. After 5 cycles, Au/Fe3O4 microparticles preserved 99 % of the reaction rate constant, exhibiting considerable recycling efficiency in the reduction of nitro groups.
Collapse
Affiliation(s)
- Ikhbayar Batsukh
- Department of Chemical and Biological EngineeringSchool of Engineering and Applied SciencesNational University of Mongolia
- Institute of Physics and TechnologyMongolian Academy of SciencesUlaanbaatar13330Mongolia
| | - Tegshjargal Khishigjargal
- Department of Chemical and Biological EngineeringSchool of Engineering and Applied SciencesNational University of Mongolia
| | | | - Munkhtsetseg Sambuu
- Department of PhysicsSchool of Arts and SciencesNational University of Mongolia
| | | | - Erdene Norov
- Department of Chemical and Biological EngineeringSchool of Engineering and Applied SciencesNational University of Mongolia
| |
Collapse
|
8
|
Lin H, Song X, Chai OJH, Yao Q, Yang H, Xie J. Photoluminescent Characterization of Metal Nanoclusters: Basic Parameters, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401002. [PMID: 38521974 DOI: 10.1002/adma.202401002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Metal nanoclusters (MNCs) can be synthesized with atomically precise structures and molecule formulae due to the rapid development of nanocluster science in recent decades. The ultrasmall size range (normally < 2 nm) endows MNCs with plenty of molecular-like properties, among which photoluminescent properties have aroused extensive attention. Tracing the research and development processes of luminescent nanoclusters, various photoluminescent analysis and characterization methods play a significant role in elucidating luminescent mechanism and analyzing luminescent properties. In this review, it is aimed to systematically summarize the normally used photoluminescent characterizations in MNCs including basic parameters and methods, such as excitation/emission wavelength, quantum yield, and lifetime. For each key parameter, first its definition and meaning is introduced and then the relevant characterization methods including measuring principles and the revelation of luminescent properties from the collected data are discussed. Then, it is discussed in details how to explore the luminescent mechanism of MNCs and construct NC-based applications based on the measured data. By means of these characterization strategies, the luminescent properties of MNCs and NC-based designs can be explained quantitatively and qualitatively. Hence, this review is expected to provide clear guidance for researchers to characterize luminescent MNCs and better understand the luminescent mechanism from the measured results.
Collapse
Affiliation(s)
- Hongbin Lin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Osburg Jin Huang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
9
|
Wang D, Zhang C, Zhang L, Xie X, Lv Y. Integrated Optimization of Crystal Facets and Nanoscale Spatial Confinement toward the Boosted Catalytic Performance of Pd Nanocrystals. Inorg Chem 2024; 63:1247-1257. [PMID: 38154082 DOI: 10.1021/acs.inorgchem.3c03635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Tuning the surface chemical property and the local environment of nanocrystals is crucial for realizing a high catalytic performance in various reactions. Herein, we aim to elucidate the structure sensitivity of Pd facets on the surface catalytic hydrogenation reaction and to identify what role the nanoconfinement effect plays in the catalytic properties of Pd nanocrystal catalysts. By controlling the coating structures of mesoporous silica (mSiO2) on Pd nanocrystals with different exposed facets that include {100}, {111}, and {hk0}, we present a series of Pd@mSiO2 nanoreactors in core-shell and yolk-shell structures and the discovery of a partial-coated structure, which can provide different types of nanoconfinement, and we propose a seed size-dominated growth mechanism. We demonstrate that a superior activity was exhibited in Pd nanocrystals enclosed by the {hk0} facet as compared to the Pd{100} and Pd{111} facets, and substantially enhanced efficiency and stability were achieved in Pd@mSiO2 particles with yolk-shell structures, indicating a crucial superiority of optimizing the configuration of crystal facets and nanoconfinement. Our study provides an efficient strategy to rationally design and optimize nanocatalysts for promoting catalytic performance.
Collapse
Affiliation(s)
- Dongling Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Chengchao Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaobin Xie
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Li L, Deng X, He J, Zhang H, Li L, Zhu L. An interfacial synergism effect of Pd-g-C 3N 4 in Pd/g-C 3N 4 for highly active and selective hydrogenation of 4-nitrophenol. Dalton Trans 2023; 52:17974-17980. [PMID: 37982402 DOI: 10.1039/d3dt03471b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Herein, we report that Pd nanoparticles (NPs) anchored on graphitic nitride carbon (Pd/g-C3N4) catalysts with various Pd contents (1.55 wt%, 0.14 wt%, 0.04 wt%) are successfully prepared via a simple NaBH4 reduction method, exhibiting excellent catalytic activity and selectivity toward 4-aminophenol (4-AP) in 4-nitrophenol (4-NP) selective hydrogenation. 4-NP is completely converted to 4-AP (yield ∼ 100%) under quite moderate reaction conditions (40 °C, 2.0 MPa H2 and 5 min) over the 1.55 wt% Pd/g-C3N4 catalyst, with a high reaction rate r = 134.4 mol4-NP molPd-1 min-1. The excellent catalytic performance can be attributed to the following reasons: (1) a higher ratio of Pd(0)/Pdn+ provides much more exposed active sites for the potential adsorption and activation of the reactants, which is beneficial for increasing the reaction rate and catalytic activity; (2) Pd NPs are highly dispersed on g-C3N4 due to the strong interaction of Pd-N or Pd-C; (3) the interfacial synergism effect between Pd NPs and g-C3N4 enables the effective adsorption and activation of H2 (4-NP) at Pd (g-C3N4), promoting the catalytic hydrogenation of 4-NP and improving their catalytic properties. In addition, this catalyst has superior reusability.
Collapse
Affiliation(s)
- Liqing Li
- College of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Jiang Xi, China.
| | - Xin Deng
- College of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Jiang Xi, China.
| | - Jiani He
- College of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Jiang Xi, China.
| | - Huan Zhang
- College of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Jiang Xi, China.
| | - Li Li
- School of Rare Earth and New Materials Engineering, Gannan University of Science and Technology, Jingxi Ganzhou 341000, China.
| | - Lihua Zhu
- College of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Jiang Xi, China.
| |
Collapse
|
11
|
Mahanitipong U, Tummachote J, Thoopbucha W, Inthanusorn W, Rutnakornpituk M. Anionic polymer-coated magnetic nanocomposites for immobilization with palladium nanoparticles as catalysts for the reduction of 4-nitrophenol. DISCOVER NANO 2023; 18:138. [PMID: 37919554 PMCID: PMC10622386 DOI: 10.1186/s11671-023-03918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
This study focuses on the synthesis of magnetite nanoparticles (MNP) coated with poly(poly(ethylene glycol) methacrylate) (PPEGMA) and/or poly(acrylic acid) (PAA) to anchor palladium nanoparticles (Pd) for their application as recyclable catalysts in the reduction of 4-nitrophenol (4NP). It was hypothesized that the abundance of oxygen atoms in PPEGMA enabled coordination with the Pd and provided good water dispersibility of the nanocomposites, while anionic PAA stabilized Pd and reduced the catalyst aggregation through electrostatic repulsion. Three different polymer coatings on MNP (PAA, PPEGMA, and PAA-co-PPEGMA polymers) were investigated to assess their influence on both the catalytic activity and reusability of the catalysts. Transmission electron microscopy (TEM) analysis indicated the distribution of spherical Pd nanoparticles (3-5 nm in diameter) and MNP (9-12 nm in diameter). Photocorrelation spectroscopy (PCS) revealed an average hydrodynamic size of the catalysts ranging from 540 to 875 nm in diameter, with a negative charge on their surface. The Pd content of the catalysts ranged from 4.30 to 6.33% w/w. The nanocomposites coated with PAA-co-PPEGMA polymers exhibited more favorable catalytic activity in the 4NP reduction than those coated with PAA or PPEGMA homopolymers. Interestingly, those containing PAA (e.g., PAA and PAA-co-PPEGMA polymers) exhibited good reusability for the 4NP reduction with a slight decrease in their catalytic performance after 26 cycles. This indicates the important role of carboxyl groups in PAA in maintaining high tolerance after multiple uses.
Collapse
Affiliation(s)
- Usana Mahanitipong
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jakkrit Tummachote
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Wachirawit Thoopbucha
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Wasawat Inthanusorn
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Metha Rutnakornpituk
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
12
|
Taheri S, Heravi MM, Saljooqi A. Ionothermal synthesis of magnetic N-doped porous carbon to immobilize Pd nanoparticles as an efficient nanocatalyst for the reduction of nitroaromatic compounds. Sci Rep 2023; 13:17566. [PMID: 37845255 PMCID: PMC10579375 DOI: 10.1038/s41598-023-35998-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/27/2023] [Indexed: 10/18/2023] Open
Abstract
Carbon materials play important roles as catalysts or catalyst supports for reduction reactions owing to their high porosity, large specific surface area, great electron conductivity, and excellent chemical stability. In this paper, a mesoporous N-doped carbon substrate (exhibited as N-C) has been synthesized by ionothermal carbonization of glucose in the presence of histidine. The N-C substrate was modified by Fe3O4 nanoparticles (N-C/Fe3O4), and then Pd nanoparticles were stabilized on the magnetic substrate to synthesize an eco-friendly Pd catalyst with high efficiency, magnetic, reusability, recoverability, and great stability. To characterize the Pd/Fe3O4-N-C nanocatalyst, different microscopic and spectroscopic methods such as FT-IR, XRD, SEM/EDX, and TEM were applied. Moreover, Pd/Fe3O4-N-C showed high catalytic activity in reducing nitroaromatic compounds in water at ambient temperatures when NaBH4 was used as a reducing agent. The provided nanocatalyst's great catalytic durability and power can be attributed to the synergetic interaction among well-dispersed Pd nanoparticles and N-doped carbonaceous support.
Collapse
Affiliation(s)
- Sahar Taheri
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran.
| | - Asma Saljooqi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
13
|
Wang S, Liu R, Li X, Guo W, Hao H, Ma X, Zhang L, Zhao X, Yin J, Zhou H, Li X, Kong X, Zhu H, Li Y, Wang S, Zhong D, Dai F. Two-Dimensional Lanthanide Metal-Organic Frameworks as a Platform for Sensing Pollutant and Nitrophenols Reduction. Inorg Chem 2023; 62:13832-13846. [PMID: 37591631 DOI: 10.1021/acs.inorgchem.3c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The discharge of harmful and toxic pollutants in water is destroying the ecosystem balance and human being health at an alarming rate. Therefore, the detection and removal of water pollutants by using stable and efficient materials are significant but challenging. Herein, three novel lanthanide metal-organic frameworks (Ln-MOFs), [La(L)(DMF)2(H2O)2]·H2O (LCUH-104), [Nd(L)(DMF)2(H2O)2]·H2O (LCUH-105), and [Pr(L)(DMF)2(H2O)2]·H2O (LCUH-106) [H3L = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid (H3TZI)] were solvothermally constructed and structurally characterized. In the three Ln-MOFs, dinuclear metallic clusters {Ln2} were connected by deprotonated tetrazol-containing dicarboxylate TZI3- to obtain a 2D layered framework with a point symbol of {42·84}·{46}. Their excellent chemical and thermal stabilities were beneficial to carry out fluorescence sensing and achieve the catalytic nitrophenols (NPs) reduction. Especially, the incorporation of the nitrogen-rich tetrazole ring into their 2D layered frameworks enables the fabrication of Pd nanocatalysts (Pd NPs@LCUH-104/105/106) and have dramatically enhanced catalytic activity by using the unique metal-support interactions between three Ln-MOFs and the encapsulating palladium nanoparticles (Pd NPs). Specifically, the reduction of NPs (2-NP, 3-NP, and 4-NP) in aqueous solution by Pd NPs@LCUH-104 exhibits exceptional conversion efficiency, remarkable rate constants (k), and outstanding cycling stability. The catalytic rate of Pd NPs@LCUH-104 for 4-NP is nearly 8.5 times more than that of Pd/C (wt 5%) and its turnover frequency value is 0.051 s-1, which indicate its excellent catalytic activity. Meanwhile, LCUH-105, as a multifunctional fluorescence sensor, exhibited excellent fluorescence detection of norfloxacin (NFX) (turn on) and Cr2O72- (turn off) with high selectivity and sensitivity at a low concentration, and the corresponding fluorescence enhancement/quenching mechanism has also been systematically investigated through various detection means and theoretical calculations.
Collapse
Affiliation(s)
- Shufang Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Ronghua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Wenxiao Guo
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Xiaoxue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Xin Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Jie Yin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Huawei Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Xiangjin Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Dichang Zhong
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Fangna Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
14
|
Pan M, Li H, Yang J, Wang Y, Wang Y, Han X, Wang S. Review: Synthesis of metal organic framework-based composites for application as immunosensors in food safety. Anal Chim Acta 2023; 1266:341331. [PMID: 37244661 DOI: 10.1016/j.aca.2023.341331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
Ensuring food safety continues to be one of the major global challenges. For effective food safety monitoring, fast, sensitive, portable, and efficient food safety detection strategies must be devised. Metal organic frameworks (MOFs) are porous crystalline materials that have attracted attention for use in high-performance sensors for food safety detection owing to their advantages such as high porosity, large specific surface area, adjustable structure, and easy surface functional modification. Immunoassay strategies based on antigen-antibody specific binding are one of the important means for accurate and rapid detection of trace contaminants in food. Emerging MOFs and their composites with excellent properties are being synthesized, providing new ideas for immunoassays. This article summarizes the synthesis strategies of MOFs and MOF-based composites and their applications in the immunoassays of food contaminants. The challenges and prospects of the preparation and immunoassay applications of MOF-based composites are also presented. The findings of this study will contribute to the development and application of novel MOF-based composites with excellent properties and provide insights into advanced and efficient strategies for developing immunoassays.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yixin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
15
|
Tian X, Dong Y, Zahid M. One‐pot
synthesis of
CuO
/
TiO
2
nanocomposites for improved photocatalytic hydrogenation of
4‐nitrophenol
to
4‐aminophenol
under direct sunlight. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Xiqiang Tian
- Heilongjiang Province Key Laboratory of Environmental Catalysis and Energy Storage Materials, Department of Food and Pharmaceutical Engineering Suihua University Suihua China
| | - Yanping Dong
- Heilongjiang Province Key Laboratory of Environmental Catalysis and Energy Storage Materials, Department of Food and Pharmaceutical Engineering Suihua University Suihua China
| | - Muhammad Zahid
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People's Republic of China, Heilongjiang University Harbin China
| |
Collapse
|
16
|
Reusable palladium–quinolyl benzimidazole complex immobilized on a polymer for the hydrogenation of organic substrates. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
17
|
Ozay H, Tercan M, Ozay O, Ilgin P. Highly effective palladium nanocatalyst supported in polymeric networks for the catalytic hydrogen generation from borane‐morpholine complex. ChemistrySelect 2022. [DOI: 10.1002/slct.202203874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hava Ozay
- Laboratory of Inorganic Materials Department of Chemistry Faculty of Science Çanakkale Onsekiz Mart University Çanakkale Türkiye
| | - Melek Tercan
- Laboratory of Inorganic Materials Department of Chemistry Faculty of Science Çanakkale Onsekiz Mart University Çanakkale Türkiye
| | - Ozgur Ozay
- Department of Bioengineering Faculty of Engineering Çanakkale Onsekiz Mart University Çanakkale Türkiye
| | - Pinar Ilgin
- Department of Chemistry and Chemical Processing Technologies Lapseki Vocational School Çanakkale Onsekiz Mart University Çanakkale/Lapseki Türkiye
| |
Collapse
|
18
|
Shinde SK, Jalak MB, Karade SS, Majumder S, Tamboli MS, Truong NTN, Maile NC, Kim DY, Jagadale AD, Yadav HM. A Novel Synthesized 1D Nanobelt-like Cobalt Phosphate Electrode Material for Excellent Supercapacitor Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15228235. [PMID: 36431719 PMCID: PMC9698180 DOI: 10.3390/ma15228235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 05/27/2023]
Abstract
In the present report, we synthesized highly porous 1D nanobelt-like cobalt phosphate (Co2P2O7) materials using a hydrothermal method for supercapacitor (SC) applications. The physicochemical and electrochemical properties of the synthesized 1D nanobelt-like Co2P2O7 were investigated using X-ray diffraction (XRD), X-ray photoelectron (XPS) spectroscopy, and scanning electron microscopy (SEM). The surface morphology results indicated that the deposition temperatures affected the growth of the 1D nanobelts. The SEM revealed a significant change in morphological results of Co2P2O7 material prepared at 150 °C deposition temperature. The 1D Co2P2O7 nanobelt-like nanostructures provided higher electrochemical properties, because the resulting empty space promotes faster ion transfer and improves cycling stability. Moreover, the electrochemical performance indicates that the 1D nanobelt-like Co2P2O7 electrode deposited at 150 °C deposition temperature shows the maximum specific capacitance (Cs). The Co2P2O7 electrode prepared at a deposition temperature 150 °C provided maximum Cs of 1766 F g-1 at a lower scan rate of 5 mV s-1 in a 1 M KOH electrolyte. In addition, an asymmetric hybrid Co2P2O7//AC supercapacitor device exhibited the highest Cs of 266 F g-1, with an excellent energy density of 83.16 Wh kg-1, and a power density of 9.35 kW kg-1. Additionally, cycling stability results indicate that the 1D nanobelt-like Co2P2O7 material is a better option for the electrochemical energy storage application.
Collapse
Affiliation(s)
- S. K. Shinde
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University, Biomedical Campus, 32 Dongguk-ro, Ilsandong-gu, Siksa-dong, Goyang-si 10326, Republic of Korea
| | - Monali B. Jalak
- Department of Physics, Shivaji University, Kolhapur 416004, India
| | - Swapnil S. Karade
- Department of Green Technology, University of Southern Denma.+8/rk, Campusvej 55, DK-5230 Odense, Denmark
| | - Sutripto Majumder
- Department of Physics, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mohaseen S. Tamboli
- Korea Institute of Energy Technology (KENTECH), 200 Hyeokshin-ro, Naju 58330, Republic of Korea
| | - Nguyen Tam Nguyen Truong
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Nagesh C. Maile
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dae-Young Kim
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University, Biomedical Campus, 32 Dongguk-ro, Ilsandong-gu, Siksa-dong, Goyang-si 10326, Republic of Korea
| | - Ajay D. Jagadale
- Center for Energy Storage and Conversion, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, India
| | - H. M. Yadav
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416004, India
| |
Collapse
|
19
|
Surface imprinted polymer on dual emitting MOF functionalized with blue copper nanoclusters and yellow carbon dots as a highly specific ratiometric fluorescence probe for ascorbic acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Patel JR, Patel AU. Pd single-atom-site stabilized by supported phosphomolybdic acid: design, characterizations and tandem Suzuki-Miyaura cross coupling/nitro hydrogenation reaction. NANOSCALE ADVANCES 2022; 4:4321-4334. [PMID: 36321158 PMCID: PMC9552875 DOI: 10.1039/d2na00559j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Herein, a single-metal (Pd) site with high surface energy was stabilized and dispersed on a support (zirconia) via a stabilizing agent (phosphomolybdic acid) using a wet chemistry method. HRTEM and HAADF-STEM showed a highly uniform dispersion of Pd SASc on PMA/ZrO2. The Pd SASc showed superior catalytic activity (>99% conversion) for the Suzuki-Miyaura cross-coupling reaction, which was further feasible for catalyzing mechanistically different nitro hydrogenation reactions in tandem fusion under mild reaction conditions. This catalyst showed outstanding activity (100% conversion and 99% selectivity) with a substrate/catalyst ratio of 927 and TON of 918 using a very low amount of Pd (0.94 × 10-3 mmol) for the tandem Suzuki-Miyaura cross-coupling/nitro hydrogenation reaction. It also exhibited superior stability and reusability for up to three cycles without any change in its activity.
Collapse
Affiliation(s)
- Jay R Patel
- Polyoxometalates and Catalysis Laboratory, Department of Chemistry, Faculty of Science. The Maharaja Sayajirao University of Baroda Vadodara Gujarat India
| | - Anjali U Patel
- Polyoxometalates and Catalysis Laboratory, Department of Chemistry, Faculty of Science. The Maharaja Sayajirao University of Baroda Vadodara Gujarat India
| |
Collapse
|
21
|
Keskin S, Çıtlakoğlu M, Akbayrak S, Kaya S. Magnetically separable nickel ferrite supported palladium nanoparticles: Highly reusable catalyst in Sonogashira cross-coupling reaction. J Colloid Interface Sci 2022; 623:574-583. [PMID: 35598486 DOI: 10.1016/j.jcis.2022.05.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/17/2023]
Abstract
There is an increasing attention in developing highly efficient and reusable palladium-based catalysts used for the coupling reactions due to the high cost of palladium metal salts. Magnetically separable palladium nanoparticles have a high potential to be used as catalysts in numerous organic reactions due to their facile separation from the reaction medium by an external magnet. Herein, NiFe2O4 supported palladium nanoparticles (Pd/NiFe2O4) were successfully prepared by impregnation and reduction method in water and used as catalysts for Sonogashira cross-coupling reactions. Magnetically separable Pd/NiFe2O4 catalysts were found to be highly active and reusable in this reaction. Pd/NiFe2O4 provided an outstanding turnover frequency value (106.4 h-1) in the reaction between phenylacetylene and iodobenzene in ethanol at 70 °C and it was also found to be highly active in the water. Magnetically separable Pd/NiFe2O4 exhibited high catalytic performance even after the tenth use in this reaction.
Collapse
Affiliation(s)
- Selbi Keskin
- Department of Chemistry, Faculty of Arts and Science, Giresun University, 28200 Giresun, Turkey.
| | - Meryem Çıtlakoğlu
- Department of Chemistry, Faculty of Arts and Science, Giresun University, 28200 Giresun, Turkey
| | - Serdar Akbayrak
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey; BITAM-Science and Technology Research and Application Center, Necmettin Erbakan University, 42090 Konya, Turkey.
| | - Serdal Kaya
- Department of Aeronautical Engineering, Faculty of Aviation and Space Sciences, Necmettin Erbakan University, 42090 Konya, Turkey; BITAM-Science and Technology Research and Application Center, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|
22
|
Kubo M, Matsumoto T, Shimada M. Spray synthesis of Pd nanoparticle incorporated HKUST-1, and its catalytic activity for 4-nitrophenol reduction. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
23
|
Zareh F, Gholinejad M, Mostafavi A, Sheibani H. Pd Nanoparticles Decorated on Ionic Liquid Modified Magnetite Nanoparticles as a Recyclable and Active Nanocatalyst for Reduction of Nitro Compounds and Degradation of Organic Dyes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fatemeh Zareh
- Department of Chemistry Shahid Bahonar University of Kerman Kerman 76169 Iran
| | - Mohammad Gholinejad
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195–1159, Gavazang Zanjan 45137–66731 Iran
- Research Center for Basic Sciences & Modern Technologies (RBST) Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Ali Mostafavi
- Department of Chemistry Shahid Bahonar University of Kerman Kerman 76169 Iran
| | - Hassan Sheibani
- Department of Chemistry Shahid Bahonar University of Kerman Kerman 76169 Iran
| |
Collapse
|
24
|
One-pot synthesis of pompon-like magnetic hollow SiO2-supported Ag nanoparticles for catalytic application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Krishnaveni V, DMello ME, Basavaiah K, Samsonu D, Rambhia DA, Kalidindi SB. Hybridization of Palladium Nanoparticles with Aromatic‐rich SU‐101 Metal‐Organic Framework for Effective Transfer Hydrogenation. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | - Suresh Babu Kalidindi
- Andhra University Department of Inorganic and Analytical Chemistry 530003 VISAKHAPATNAM INDIA
| |
Collapse
|
26
|
Yang Q, Zhang Y, Ding N, Hu Q, Yan X, Liu J, Zhang P, Fu S, Wang Q, Wu L, Wu S. A stable MOF@COF‐Pd catalyst for C‐C coupling reaction of pyrimidine sulfonate and arylboronic acid. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Quanlu Yang
- College of Chemical Engineering Lanzhou University of Arts and Science Lanzhou China
- Lanzhou Huibang Biotechnology Co. LTD Lanzhou China
| | - Ying Zhang
- College of Chemical Engineering Lanzhou University of Arts and Science Lanzhou China
- Key Laboratory of Environment‐Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental‐Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering Northwest Minzu University Lanzhou China
| | - Ning Ding
- Key Laboratory of Environment‐Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental‐Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering Northwest Minzu University Lanzhou China
| | - Qiang Hu
- Key Laboratory of Environment‐Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental‐Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering Northwest Minzu University Lanzhou China
| | - Xiangtao Yan
- Key Laboratory of Environment‐Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental‐Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering Northwest Minzu University Lanzhou China
| | - Jutao Liu
- Key Laboratory of Environment‐Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental‐Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering Northwest Minzu University Lanzhou China
| | - Penghui Zhang
- Key Laboratory of Environment‐Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental‐Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering Northwest Minzu University Lanzhou China
| | - Shuaishuai Fu
- Key Laboratory of Environment‐Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental‐Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering Northwest Minzu University Lanzhou China
| | | | - Lan Wu
- Key Laboratory of Environment‐Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental‐Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering Northwest Minzu University Lanzhou China
| | - Shang Wu
- Key Laboratory of Environment‐Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key laboratory for Utility of Environmental‐Friendly Composite and Biomass in University of Gansu Province, College of Chemical Engineering Northwest Minzu University Lanzhou China
- Lanzhou Huibang Biotechnology Co. LTD Lanzhou China
| |
Collapse
|
27
|
Feng D, Wei Z, Wang Q, Feng A, Zhang H. Controllable Synthesis of Cobalt-Containing Nanosheet Array-Like Ternary CuCoAl-LDH/rGO Hybrids To Boost the Catalytic Efficiency for 4-Nitrophenol Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24265-24280. [PMID: 35604135 DOI: 10.1021/acsami.2c01637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of Co-doped ternary CuxCo3-xAl-layered double hydroxide (LDH)/rGO nanosheet array hybrids (x = 0.5, 1.0, 1.5, and 2.0) were successfully prepared using the preconditioned pH value aqueous-phase coprecipitation strategy. The CuxCo3-xAl-LDH/rGO hybrids are featured as hexagonal CuCoAl-LDH nanosheets in situ anchoring onto both sides of the rGO surface in an ab-plane vertically interlaced growth pattern. The CuxCo3-xAl-LDH/rGO hybrids show excellent activity for the complete conversion of 4-nitrophenol to 4-aminophenol, especially Cu1.5Co1.5Al-LDH/rGO with the highest kapp value of 49.2 × 10-3 s-1 and TOF of 232.8 h-1, clearly higher than most copper-containing samples in the literature and even some precious ones. Thermodynamic analysis was carried out, and the values of Ea, ΔH#, ΔS#, and ΔG# were estimated. The best activity of Cu1.5Co1.5Al-LDH/rGO can be mainly ascribed to the in situ-formed ultrafine Cu2O NPs (∼4.3 nm) along with a small amount of Cu0 species, the electron transfer effect induced by atomically dispersed Co2+ species leading to the formation of electron-rich Cu species along with the Co2+/Co3+ redox couple, the strong Cu2O-CuCoAl-LDH-rGO synergy upon the nanosheet array morphology with a high surface area and pore volume, and enhanced adsorption of reactants upon π-π stacking via an rGO layer. Meanwhile, the Cu1.5Co1.5Al-LDH/rGO exhibits an excellent universality and good cycling stability for 10 continuous runs. The Cu1.5Co1.5Al-LDH/rGO also shows superior efficiency in the catalytic reduction of 4-NP solution with a high concentration (20 mM) and displays excellent reduction performance in the fixed-bed test, implying the potential applications of the current Co-doped hierarchical ternary Cu-based LDH/rGO hybrids in the continuous treatment of practical wastewater.
Collapse
Affiliation(s)
- Danyang Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuojun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qinglin Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - An Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
28
|
Photochemical Freeze Synthesis of Ultrafine Platinum Nanocatalysts. Catal Letters 2022. [DOI: 10.1007/s10562-022-03976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
29
|
Deng L, Fang N, Wu S, Shu S, Chu Y, Guo J, Cen W. Uniform H-CdS@NiCoP core-shell nanosphere for highly efficient visible-light-driven photocatalytic H 2 evolution. J Colloid Interface Sci 2022; 608:2730-2739. [PMID: 34799046 DOI: 10.1016/j.jcis.2021.10.190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 01/12/2023]
Abstract
Constructing highly efficient and cost-effective photocatalyst system has been a big challenge for photocatalysis. Herein, CdS nanosphere (N-CdS), hollow CdS (H-CdS) and a series of H-CdS@NiCoP core-shell nanospheres have been successfully prepared via a facile hydrothermal method. The activity test showed that H-CdS exhibited higher photocatalytic activity (3.34 mmol g-1h-1) compared with N-CdS (0.99 mmol g-1h-1) under visible light irradiation (λ ≥ 420 nm), suggesting that hollow structure could effectively improve photocatalytic activity. Moreover, the H-CdS@NiCoP-7 wt% displayed a maximum photocatalytic H2 evolution rate of 13.47 mmol g-1h-1, which was about 4 times and 2.5 times higher than that of pristine H-CdS and H-CdS@Pt-3 wt%, respectively. Furthermore, H-CdS@NiCoP-7 wt% exhibited a good stability during 20 h test. The physicochemical properties were characterized by XRD, SEM, TEM, XPS, UV-vis DRS, PL and photoelectrochemical technique. The results showed that NiCoP addition can construct p-n junction with H-CdS and effectively promote the charge transfer from CdS to NiCoP, which improved the photocatalytic hydrogen evolution activity. This work revealed that NiCoP could react as an excellent co-catalyst for enhancing H-CdS photocatalytic activity.
Collapse
Affiliation(s)
- Lili Deng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ningjie Fang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Shilin Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Song Shu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yinghao Chu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Jiaxiu Guo
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wanglai Cen
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
30
|
Liu Y, Wang Y, Yan H, Liu H, Guo W, Wang S, Gao Z, Li X, Zhu H, Hao H, Zhang D, Dai F. Series of Stable Anionic Lanthanide Metal-Organic Frameworks as a Platform for Pollutant Separation and Efficient Nanoparticle Catalysis. Inorg Chem 2022; 61:3472-3483. [PMID: 35148086 DOI: 10.1021/acs.inorgchem.1c03400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Eight new stable porous lanthanide metal-organic frameworks (Ln-OFs), namely, [Ln2(BPTC)2][(CH3)2NH2]2 [Ln = Ho (1), Eu (2), Gd (3), Dy (4), Er (5), Tm (6), Yb (7), Lu (8)], were prepared by 3,3',5,5'-biphenyltetracarboxylic acid (H4BPTC) and lanthanide ions by solvothermal reactions. Complexes 1-8 show a three-dimensional (3D) 6,6-connected network {412·63}·{48·66·8} topology based on binuclear (Ln2) clusters and feature a one-dimensional curving porous channel occupied by exchangeable dimethylamine cations ([(CH3)2NH2]+) in the 3D anionic frameworks. The occupied [(CH3)2NH2]+ in the anionic channels exhibited excellent ion-exchange ability, which is favorable to Pd2+ and cationic dye adsorption. Consequently, 1-8 were used to load Pd nanoparticles to catalyze the reduction of nitrophenols and adsorb and desorb methyl blue (MB). The catalytic reaction efficiencies of Pd@1-8 were higher than that of Pd/C (5 wt %) in the hydrogenation reaction of p-nitrophenol (p-NP). Moreover, Pd@1 exhibited good cycle stability and achieved nearly 100% p-NP conversion after eight cycles. Meanwhile, compound 1 also exhibited a high adsorption ability of MB, possessing an adsorption capacity of 1.41 g·g-1 (second only to 1.49 g·g-1 reported in the literature) selectively over rhodamine B (RhB) and methyl orange (MO) in aqueous solutions. Remarkably, the skeleton of 1 remained stable after four adsorption-desorption cycles of MB in aqueous solution.
Collapse
Affiliation(s)
- Yang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Yuchen Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Hongyan Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Wenxiao Guo
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Shufang Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Zhen Gao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Daopeng Zhang
- College of Chemical and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Fangna Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
31
|
Rafiee F, Rezaee M. Catalytic reduction of nitroarenes and degradation of dyes at room temperature by an efficient NNN pincer palladium catalyst based on the magnetic amino-triazole-modified chitosan. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Wang W, Dai G, Yang H, Liu X, Chen X, Meng Z, He Q. Highly efficient catalytic reduction of 4-nitrophenol and organic dyes by ultrafine palladium nanoparticles anchored on CeO 2 nanorods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8242-8252. [PMID: 34482459 DOI: 10.1007/s11356-021-16276-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Uniformly dispersed Pd nanoparticles on certain supports exhibit exceptional catalytic performance toward various environmental applications. In this work, ultrafine Pd nanoparticles anchored on CeO2 nanorods were synthesized via an absorption-in situ reduction method. The activity of the CeO2/Pd nanocomposites was systematically investigated toward reduction of 4-nitrophenol (4-NP) and organic dyes including methyl blue, rhodamine B, methyl orange, and Congo red. The results indicated that the CeO2/Pd nanocomposites with different weight ratios of Pd nanoparticles (10.23 wt%, 11.01 wt%, and 14.27 wt%) can almost completely reduce 4-NP with a rate constant of 3.31×10-1, 3.22×10-1, and 2.23×10-1 min-1. Besides, the 10.23 wt% CeO2/Pd nanocomposites exhibit remarkable enhanced catalytic activity toward reduction of organic dyes. The catalysts display ideal stability after being used for three times for the reduction of 4-NP. We believe that our strategy demonstrated here offers insights into the design and fabrication of novel Pd-based nanocomposites for various heterogeneous catalysis applications.
Collapse
Affiliation(s)
- Wenxia Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guodong Dai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haibin Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaofeng Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xi Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenbang Meng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qi He
- School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
33
|
Mahanitipong U, Rutnakornpituk M. Palladium‐immobilized polymer‐coated magnetic nanocomposites as reusable catalysts for the reduction of 4‐nitrophenol. POLYM INT 2022. [DOI: 10.1002/pi.6375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Usana Mahanitipong
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science Naresuan University Phitsanulok 65000 Thailand
| | - Metha Rutnakornpituk
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science Naresuan University Phitsanulok 65000 Thailand
| |
Collapse
|
34
|
Bhowmik T, Sadhukhan M, Kempasiddaiah M, Barman S. Highly Dispersed Palladium Nanoparticles Supported on Graphitic Carbon Nitride for Selective Hydrogenation of Nitro Compounds and Ullmann Coupling Reaction. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tanmay Bhowmik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Odisha
| | - Mriganka Sadhukhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Odisha
| | - Manjunatha Kempasiddaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Odisha
| | - Sudip Barman
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Odisha
| |
Collapse
|
35
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
36
|
Can H, Can S, Ebiri R, Metin Ö. A facile synthesis of monodisperse cobalt–ruthenium alloy nanoparticles as catalysts for the dehydrogenation of morpholine borane and the hydrogenation of various organic compounds. NEW J CHEM 2022. [DOI: 10.1039/d2nj01761j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel method for the synthesis of CoRu alloy nanoparticles is developed and their catalysis was studied in the hydrolysis of morpholine-borane (MB) and the transfer hydrogenation of unsaturated organic compounds using MB as a new hydrogen donor.
Collapse
Affiliation(s)
- Hasan Can
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Atatürk University, 25240 Erzurum, Turkey
| | - Sümeyra Can
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Rüstem Ebiri
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| | - Önder Metin
- Department of Chemistry, College of Sciences, Koç University, 34450 Sarıyer, Istanbul, Turkey
| |
Collapse
|
37
|
Ye Y, Ge B, Meng X, Liu Y, Wang S, Song X, Liang Z. An yttrium-organic framework based on a hexagonal prism second building unit for luminescent sensing of antibiotics and highly effective CO2 fixation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01352a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An yttrium-organic framework based on a hexagonal prism second building unit was constructed from nonanuclear yttrium(iii) and 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine for the luminescent sensing of antibiotics and highly effective CO2 fixation.
Collapse
Affiliation(s)
- Yu Ye
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bangdi Ge
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xianyu Meng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuchuan Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaowei Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhiqiang Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
38
|
Wang R, Kuwahara Y, Mori K, Yamashita H. Semiconductor‐based Photoanodes Modified with Metal‐Organic Frameworks and Molecular Catalysts as Cocatalysts for Enhanced Photoelectrochemical Water Oxidation Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruiling Wang
- Division of Material and Manufacturing Science Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yasutaka Kuwahara
- Division of Material and Manufacturing Science Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (OTRI) Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB) Kyoto University Katsura Kyoto 615-8520 Japan
- Japan Science and Technology Agency (JST) PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Kohsuke Mori
- Division of Material and Manufacturing Science Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (OTRI) Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB) Kyoto University Katsura Kyoto 615-8520 Japan
| | - Hiromi Yamashita
- Division of Material and Manufacturing Science Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (OTRI) Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB) Kyoto University Katsura Kyoto 615-8520 Japan
| |
Collapse
|
39
|
Wang Y, Liu L, Sang K, Wang Y, Zhang C, Dong H, Bai J. An efficient chiral porous catalyst support – Hypercrosslinked amino acid polymer. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Patel A, Patel J. Fe Exchanged Supported Phosphomolybdic Acid: Synthesis, Characterization and Low Temperature Water Mediated Hydrogenation of Cyclohexene. Catal Letters 2021. [DOI: 10.1007/s10562-021-03838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Binary CuO/TiO2 nanocomposites as high-performance catalysts for tandem hydrogenation of nitroaromatics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Azizi N, Heidarzadeh F, Farzaneh F. Facile fabrication of porous magnetic covalent organic frameworks as robust platform for multicomponent reaction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Najmedin Azizi
- Department of Green Chemistry Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| | - Fatemeh Heidarzadeh
- Department of Green Chemistry Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| | - Fezeh Farzaneh
- Department of Green Chemistry Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| |
Collapse
|
43
|
Zhang X, Li P, Xu B, Wang J, Fan G, Zhang X, Liu X, Zhang K, Jiang W. In Situ Hydrogen Activation Inspiring Efficient One-Pot Hydrogenation of Halogenated Nitrobenzenes over Ni–Co-Based Composites. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xianwen Zhang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, P. R. China
| | - Ping Li
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, P. R. China
| | - Bin Xu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, P. R. China
| | - Jingxia Wang
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Sichuan, Chengdu 610101, P. R. China
| | - Guangyin Fan
- School of Chemistry and Chemical Engineering, Sichuan Normal University, Sichuan, Chengdu 610000, P. R. China
| | - Xiaobin Zhang
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Sichuan, Chengdu 610101, P. R. China
| | - Xiaoqiang Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, P. R. China
| | - Kaiming Zhang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, P. R. China
| | - Weidong Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, P. R. China
| |
Collapse
|
44
|
Patel A, Patel A. Designing of Stabilized Palladium Nanoclusters: Characterization, Effect of Support and Acidity on C–C cross coupling. Catal Letters 2021. [DOI: 10.1007/s10562-021-03658-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Wang J, Sun Z, Jiang X, Yuan Q, Dong D, Zhang P, Zhang Z. Uniform decoration of UiO-66-NH 2 nanooctahedra on TiO 2 electrospun nanofibers for enhancing photocatalytic H 2 production based on multi-step interfacial charge transfer. Dalton Trans 2021; 50:6152-6160. [PMID: 33885683 DOI: 10.1039/d1dt00743b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metal-organic framework (MOF) materials have been extensively incorporated with inorganic semiconductor photocatalysts to improve their photocatalytic activity through an efficient charge transfer process across their heterointerface. In this work, octahedral UiO-66-NH2 MOFs with edge-lengths of 110-330 nm are uniformly decorated on the surface of TiO2 electrospun nanofibers by a traditional solvothermal method combined with activation pretreatment. Before the solvothermal growth of UiO-66-NH2, the TiO2 electrospun nanofibers were activated in NaOH solution to etch the TiO2 surface for allowing the exposure of lattice oxygen. The exposed lattice oxygen on the TiO2 surface could interact with the MOF precursor of Zr4+ ions, thus enabling octahedral UiO-66-NH2 to grow uniformly on the surface of TiO2 nanofibers with an intimate Ti-O-Zr hetero-interface. Such an intimate hetero-interface provides an effective channel for boosting the electron transfer between UiO-66-NH2 and TiO2 in their heterostructure. Thus, the UiO-66-NH2/TiO2(anatase) heterostructures exhibited enhanced photocatalytic activity for H2 production as compared to either TiO2(anatase) nanofibers or UiO-66-NH2 nanooctahedra in the presence of Rhodamine B (RhB) as a sensitizer under visible light irradiation. In particular, the decoration of UiO-66-NH2 nanooctahedra on anatase/rutile mixed TiO2 nanofibers could induce further enhancement of the photocatalytic H2 production. The enhanced photocatalytic activity is attributed to the multi-step continuous interfacial transfer of photoinduced electrons with the way of RhB → UiO-66-NH2 → TiO2(anatase) → TiO2(rutile).
Collapse
Affiliation(s)
- Jie Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China. and Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Nationalities University, 18 Liaohe West Road, Dalian 116600, P. R. China..
| | - Zhengang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Xiaoyi Jiang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Nationalities University, 18 Liaohe West Road, Dalian 116600, P. R. China..
| | - Qing Yuan
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Nationalities University, 18 Liaohe West Road, Dalian 116600, P. R. China..
| | - Dapeng Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Nationalities University, 18 Liaohe West Road, Dalian 116600, P. R. China..
| | - Peng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhenyi Zhang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Nationalities University, 18 Liaohe West Road, Dalian 116600, P. R. China..
| |
Collapse
|
46
|
Jiang Y, Li Q, Li X, Wang X, Dong S, Li J, Hou L, Jiao T, Wang Y, Gao F. Three-Dimensional Network Pd-Ni/γ-Al 2O 3 Catalysts for Highly Active Catalytic Hydrogenation of Nitrobenzene to Aniline under Mild Conditions. ACS OMEGA 2021; 6:9780-9790. [PMID: 33869958 PMCID: PMC8047756 DOI: 10.1021/acsomega.1c00441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 05/25/2023]
Abstract
In view of the current situation of high cost and low catalytic efficiency of the commercial Pd-based catalysts, adding transition metals (Ni, Co, etc.) to form the Pd-M bimetallic catalyst not only reduces the consumption of Pd but also greatly improves the catalytic activity and stability, which has attracted increasing attention. In this work, the three-dimensional network Pd-Ni bimetallic catalysts were prepared successfully by a liquid-phase in situ reduction method with the hydroxylated γ-Al2O3 as the support. Through investigating the effects of the precursor salt amount, reducing agent concentration, stabilizer concentration, and reducing stirring time on the synthesis of the Pd-Ni nanocatalyst, the three-dimensional network Pd-Ni bimetallic nanostructures with four different atomic ratios were prepared under an optimal condition. The obtained wire-like Pd-Ni catalysts have a uniform diameter size of about 5 nm and length up to several microns. After closely combining with the hydroxylated γ-Al2O3, the supported Pd-Ni/γ-Al2O3 catalysts exhibit nearly 100% conversion rate and selectivity for the hydrogenation of nitrobenzene to aniline at low temperature and normal pressure. The stability testing of the supported Pd-Ni/γ-Al2O3 catalysts shows that the conversion rate still remained above 99% after 10 cycles. There is no doubt that the supported catalysts show significant catalytic efficiency and recyclability, which provides important theoretical basis and technical support for the preparation of low-cost, highly efficient catalysts for the hydrogenation of nitrobenzene to aniline.
Collapse
Affiliation(s)
- Yang Jiang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| | - Qian Li
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| | - Xi Li
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| | - Xinyi Wang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| | - Sen Dong
- Coal
Chemical R&D Center of Kailuan Group, Tangshan 063611, China
- Hebei
Provincial Technology Innovation Centre of Coal-based Materials and
Chemicals, Tangshan 063018, China
| | - Jianhua Li
- Coal
Chemical R&D Center of Kailuan Group, Tangshan 063611, China
- Hebei
Provincial Technology Innovation Centre of Coal-based Materials and
Chemicals, Tangshan 063018, China
| | - Li Hou
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| | - Tifeng Jiao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| | - Yatao Wang
- Coal
Chemical R&D Center of Kailuan Group, Tangshan 063611, China
- Hebei
Provincial Technology Innovation Centre of Coal-based Materials and
Chemicals, Tangshan 063018, China
| | - Faming Gao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438West Hebei Street, Qinhuangdao 066004, China
| |
Collapse
|
47
|
Patel A, Patel A. Synthesis and characterization of supported stabilized palladium nanoparticles for selective hydrogenation in water at low temperature. RSC Adv 2021; 11:8218-8227. [PMID: 35423350 PMCID: PMC8695083 DOI: 10.1039/d1ra00239b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Zirconia supported vacant phosphotungstate stabilized Pd nanoparticles (Pd-PW11/ZrO2) were prepared using a simple impregnation and post reduction method, characterized and their efficiency for selective C[double bond, length as m-dash]C hydrogenation of unsaturated compounds explored. The establishment of a hydrogenation strategy at low temperature using water as solvent under mild conditions makes the present system environmentally benign and green. The catalyst shows outstanding activity (96% conversion) with just a small amount of Pd(0) (0.0034 mol%) with high substrate/catalyst ratio (29 177/1), TON (28 010) and TOF (14 005 h-1) for cyclohexene (as a model substrate) hydrogenation. The catalyst was recovered by simple centrifugation and reused for up to five catalytic cycles without alteration in its activity. The present catalyst was found to be viable towards different substrates with excellent activity and TON (18 000 to 28 800). A study on the effect of addenda atom shows that the efficiency of the catalyst can be enhanced greatly by increasing the number of counter protons. This challenging strategy would greatly benefit sustainable development in chemistry as it diminishes the use of organic solvents and offers economic and environmental benefits as water is cheap and non-toxic.
Collapse
Affiliation(s)
- Anish Patel
- Polyoxometalates and Catalysis Laboratory, Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara-390002 Gujarat India
| | - Anjali Patel
- Polyoxometalates and Catalysis Laboratory, Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara-390002 Gujarat India
| |
Collapse
|
48
|
Affiliation(s)
- Michael R. Buchmeiser
- Institute of Polymer Chemistry Universität Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| |
Collapse
|
49
|
Yan X, Chen L, Song H, Gao Z, Wei H, Ren W, Wang W. Metal–organic framework (MOF)-derived catalysts for chemoselective hydrogenation of nitroarenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj03227e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The MOFs derived catalysts conducted in the chemoselective hydrogenation of substituted nitroarenes, including pyrolysis and confined catalyst, are reviewed.
Collapse
Affiliation(s)
- Xiaorui Yan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Lele Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Huaxing Song
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Zhaohua Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Haisheng Wei
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
- Collaborative Innovation Center of Comprehensive Utilization of Light Hydrocarbon Resource, Yantai University, Yantai 264005, Shandong, China
| | - Wanzhong Ren
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
- Collaborative Innovation Center of Comprehensive Utilization of Light Hydrocarbon Resource, Yantai University, Yantai 264005, Shandong, China
| | - Wenhua Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
- Collaborative Innovation Center of Comprehensive Utilization of Light Hydrocarbon Resource, Yantai University, Yantai 264005, Shandong, China
| |
Collapse
|
50
|
Mallakpour S, Azadi E, Hussain CM. Emerging new-generation hybrids based on covalent organic frameworks for industrial applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj00609f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights the advancement of COF hybrid-based materials for diverse industrial applications.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|