1
|
Park S, Yoon YJ, Hong Y, Yu J, Cho JM, Jeong YJ, Yu H, Jeong H, Lee H, Hwang S, Koh WG, Yang JY, Hyun KA, Jung HI, Lim JY. CD9-enriched extracellular vesicles from chemically reprogrammed basal progenitors of salivary glands mitigate salivary gland fibrosis. Bioact Mater 2025; 47:229-247. [PMID: 39925710 PMCID: PMC11803853 DOI: 10.1016/j.bioactmat.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/07/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Extracellular vesicles (EVs) derived from stem cells offer promising potential for cell-free therapy. However, refining their cargo for precise disease targeting and delivery remains challenging. This study employed chemical reprogramming via dual inhibition of transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) to expand salivary gland basal progenitor cells (sgBPCs). CD9-enriched (CD9+) EVs were then isolated from the sgBPC secretome concentrate using a dual microfluidic chip. Notably, CD9+ EVs demonstrated superior uptake by salivary epithelial cells compared to CD9-depleted (CD9-) EVs and total EVs. In vivo studies using a salivary gland (SG) obstruction mouse model and ex vivo studies in SG fibrosis organoids revealed that CD9+ EVs significantly enhanced anti-fibrotic effects over CD9- EVs and control treatments. The presence of miR-3162 and miR-1290 in CD9+ EVs supported their anti-fibrotic properties by downregulating ACVR1 expression. The chemical reprogramming culture method effectively expanded sgBPCs, enabling consistent and scalable EV production. Utilizing microfluidic chip-isolated CD9+ EVs and ductal delivery presents a targeted and efficient approach for anti-fibrotic SG regeneration.
Collapse
Affiliation(s)
- Sunyoung Park
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yongpyo Hong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jianning Yu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- Department of Biomedical Laboratory Science, Yonsei University, 1 Yeonsedae-gil, Wonju, Gangwon-do, 26493, Republic of Korea
| | - Jae-Min Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ye Jin Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Haeun Yu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyorim Jeong
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyunjin Lee
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Seungyeon Hwang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Ji Yeong Yang
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Kyung-A Hyun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- Korea Electronics Technology Institute (KETI), Seongnam, Gyeonggi-do, 13509, Republic of Korea
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
2
|
Qian H, Wang S, Chen X, Feng N, Zhang Y, Wang X, Zhou N. Construction of a smart dual-responsive targeted drug nanocarrier for imaging and treatment of breast cancer cells. Bioorg Chem 2025; 157:108284. [PMID: 39978149 DOI: 10.1016/j.bioorg.2025.108284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Breast cancer has become one of the most common cancers worldwide, but the effectiveness of the conventional drug chemotherapy is still restricted. Therefore, precision imaging and targeted therapy against breast cancer cells have become a hot research topic. In this study, a dual-responsive nanocarrier system based on multi-functionalized gold nanoparticles (GNP) was developed for simultaneous diagnosis and treatment of breast cancer cells. The nanoparticles were modified with an aptamer which specifically recognizes MUC-1 protein on the surface of the breast cancer cell MCF-7, achieving precise cellular targeting. Upon entry into the cell, the decrease of pH in the intracellular environment causes the detachment of the i-motif sequence from GNP. Cy5 labeled at the end of i-motif, which is previously quenched by GNP thus restores its fluorescence, achieving the imaging of the cancer cells. Additionally, chemotherapeutic drug gemcitabine (GEM) is covalently attached to GNP through a rationally designed oligopeptide linker CGFLG. Cathepsin B, which is overexpressed in MCF-7 cells, can precisely cleave the CGFLG linker and release GEM to the cells, thereby achieving the targeted drug delivery and treatment. When 4 nM nanocarrier was applied, the inhibition rate of MCF-7 cells was approximately 70 %. This dual-responsive nanocarrier system integrates the targeting, imaging and therapeutic functions in a simple GNP platform. The high targeting efficiency of the nanocarrier reduces the non-specific binding and toxic effects on normal cells, while enhances the toxicity toward cancer cells. Therefore, it may have great prospects in medical applications.
Collapse
Affiliation(s)
- Hongyu Qian
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Sanxia Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xin Chen
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ninghan Feng
- Department of Urology, Jiangnan University Medical Center (Wuxi No. 2 People's Hospital), Wuxi 214000, China.
| | - Yuting Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoli Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Nandi Zhou
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Rafati N, Zarepour A, Bigham A, Khosravi A, Naderi-Manesh H, Iravani S, Zarrabi A. Nanosystems for targeted drug Delivery: Innovations and challenges in overcoming the Blood-Brain barrier for neurodegenerative disease and cancer therapy. Int J Pharm 2024; 666:124800. [PMID: 39374818 DOI: 10.1016/j.ijpharm.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The evolution of sophisticated nanosystems has revolutionized biomedicine, notably in treating neurodegenerative diseases and cancer. These systems show potential in delivering medication precisely to affected tissues, improving treatment effectiveness while minimizing side effects. Nevertheless, a major hurdle in targeted drug delivery is breaching the blood-brain barrier (BBB), a selective shield separating the bloodstream from the brain and spinal cord. The tight junctions between endothelial cells in brain capillaries create a formidable physical barrier, alongside efflux transporters that expel harmful molecules. This presents a notable challenge for brain drug delivery. Nanosystems present distinct advantages in overcoming BBB challenges, offering enhanced drug efficacy, reduced side effects, improved stability, and controlled release. Despite their promise, challenges persist, such as the BBB's regional variability hindering uniform drug distribution. Efflux transporters can also limit therapeutic agent efficacy, while nanosystem toxicity necessitates rigorous safety evaluations. Understanding the long-term impact of nanomaterials on the brain remains crucial. Additionally, addressing nanosystem scalability, cost-effectiveness, and safety profiles is vital for widespread clinical implementation. This review delves into the advancements and obstacles of advanced nanosystems in targeted drug delivery for neurodegenerative diseases and cancer therapy, with a focus on overcoming the BBB.
Collapse
Affiliation(s)
- Nesa Rafati
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran; Departments of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
4
|
Gulati S, Ansari N, Moriya Y, Joshi K, Prasad D, Sajwan G, Shukla S, Kumar S, Varma RS. Nanobiopolymers in cancer therapeutics: advancing targeted drug delivery through sustainable and controlled release mechanisms. J Mater Chem B 2024; 12:11887-11915. [PMID: 39502076 DOI: 10.1039/d4tb00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Nanobiopolymers have emerged as a transformative frontier in cancer treatment, leveraging nanotechnology to transform drug delivery. This review provides a comprehensive exploration of the multifaceted landscape of nano-based biopolymers, emphasizing their diverse sources, synthesis methods, and classifications. Natural, synthetic, and microbial nanobiopolymers are scrutinized, along with elucidation of their underlying mechanisms and impact on cancer drug delivery; the latest findings on their deployment as targeted drug delivery agents for cancer treatment are discussed. A detailed analysis of nanobiopolymer sources, including polysaccharides, peptides, and nucleic acids, highlights critical attributes like biodegradability, renewability, and sustainability essential for therapeutic applications. The classification of nanobiopolymers based on their origin and differentiation among natural, synthetic, and microbial sources are thoroughly examined for inherent advantages, challenges, and suitability for cancer therapeutics. The importance of targeted drug release at tumour sites, crucial for minimizing adverse effects on normal tissues, is discussed, encompassing various mechanisms. The role of polymer membrane coatings as a pivotal barrier for facilitating controlled drug release through diffusion is elucidated, providing further insight into efficient methods for cancer treatment and thus consolidating the current knowledge base for researchers and practitioners in the field of nanobiopolymers and cancer therapeutics.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Nabeela Ansari
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Yamini Moriya
- Department of Life Sciences, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Kumud Joshi
- Department of Life Sciences, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Disha Prasad
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Gargi Sajwan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi, Delhi-110021, India
| | - Shefali Shukla
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi-110021, India.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos - SP, Brazil.
| |
Collapse
|
5
|
Habibizadeh M, Lotfollahzadeh S, Mahdavi P, Mohammadi S, Tavallaei O. Nanoparticle-mediated gene delivery of TRAIL to resistant cancer cells: A review. Heliyon 2024; 10:e36057. [PMID: 39247341 PMCID: PMC11379606 DOI: 10.1016/j.heliyon.2024.e36057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), also known as APO2L, has emerged as a highly potential anticancer agent because of its capacity to effectively trigger apoptosis in tumor cells by specifically binding to either of its death receptors (DR4 or DR5) while having no adverse effects on normal cells. Nevertheless, its practical use has been hindered by its inefficient pharmacokinetics characteristics, the challenges involved in its administration and delivery to targeted cells, and the resistance exhibited by most cancer cells towards TRAIL. Gene therapy, as a promising approach would be able to potentially circumvent TRAIL-based cancer therapy challenges mainly through localized TRAIL expression and generating a bystander impact. Among different strategies, using nanoparticles in TRAIL gene delivery allows for precise targeting, and overcoming TRAIL resistance by combination therapy. In this review, we go over potential mechanisms by which cancer cells achieve resistance to TRAIL and provide an overview of different carriers for delivering of the TRAIL gene to resistant cancer cells, focusing on different types of nanoparticles utilized in this context. We will also explore the challenges, and investigate future perspectives of this nanomedicine approach for cancer therapy.
Collapse
Affiliation(s)
- Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Lotfollahzadeh
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Mohammadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Gao S, Xu B, Sun J, Zhang Z. Nanotechnological advances in cancer: therapy a comprehensive review of carbon nanotube applications. Front Bioeng Biotechnol 2024; 12:1351787. [PMID: 38562672 PMCID: PMC10984352 DOI: 10.3389/fbioe.2024.1351787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
Nanotechnology is revolutionising different areas from manufacturing to therapeutics in the health field. Carbon nanotubes (CNTs), a promising drug candidate in nanomedicine, have attracted attention due to their excellent and unique mechanical, electronic, and physicochemical properties. This emerging nanomaterial has attracted a wide range of scientific interest in the last decade. Carbon nanotubes have many potential applications in cancer therapy, such as imaging, drug delivery, and combination therapy. Carbon nanotubes can be used as carriers for drug delivery systems by carrying anticancer drugs and enabling targeted release to improve therapeutic efficacy and reduce adverse effects on healthy tissues. In addition, carbon nanotubes can be combined with other therapeutic approaches, such as photothermal and photodynamic therapies, to work synergistically to destroy cancer cells. Carbon nanotubes have great potential as promising nanomaterials in the field of nanomedicine, offering new opportunities and properties for future cancer treatments. In this paper, the main focus is on the application of carbon nanotubes in cancer diagnostics, targeted therapies, and toxicity evaluation of carbon nanotubes at the biological level to ensure the safety and real-life and clinical applications of carbon nanotubes.
Collapse
Affiliation(s)
- Siyang Gao
- Jilin University of College of Biological and Agricultural Engineering, Changchun, Jilin, China
- School of Mechatronic Engineering, Chang Chun University of Technology, Changchun, Jilin, China
| | - Binhan Xu
- School of Mechatronic Engineering, Chang Chun University of Technology, Changchun, Jilin, China
| | - Jianwei Sun
- School of Mechatronic Engineering, Chang Chun University of Technology, Changchun, Jilin, China
| | - Zhihui Zhang
- Jilin University of College of Biological and Agricultural Engineering, Changchun, Jilin, China
| |
Collapse
|
7
|
Dutta B, Shelar SB, Nirmalraj A, Gupta S, Barick KC, Gupta J, Hassan PA. Smart Magnetic Nanocarriers for Codelivery of Nitric Oxide and Doxorubicin for Enhanced Apoptosis in Cancer Cells. ACS OMEGA 2023; 8:44545-44557. [PMID: 38046289 PMCID: PMC10688159 DOI: 10.1021/acsomega.3c03734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Extremely short half-life therapeutic molecule nitric oxide (NO) plays significant roles in the functioning of various physiological and pathological processes in the human body, whereas doxorubicin hydrochloride (DOX) is a clinically important anticancer drug widely used in cancer chemotherapy. Thus, the intracellular delivery of these therapeutic molecules is tremendously important to achieve their full potential. Herein, we report a novel approach for the development of highly water-dispersible magnetic nanocarriers for codelivery of NO and DOX. Primarily, bifunctional magnetic nanoparticles enriched with carboxyl and thiol groups were prepared by introducing cysteine onto the surface of citrate-functionalized Fe3O4 nanoparticles. DOX was electrostatically conjugated onto the surface of bifunctional nanoparticles via carboxyl moieties, whereas the thiol group was further nitrosated to provide NO-releasing molecules. The developed magnetic nanocarrier exhibited good aqueous colloidal stability, protein resistance behavior, and high encapsulation efficacy for NO (65.5%) and DOX (85%), as well as sustained release characteristics. Moreover, they showed superior cytotoxicity toward cancer (A549 and MCF-7) cells via apoptosis induction over normal (WI26VA4) cells. Specifically, we have developed magnetic nanocarriers having the capability of dual delivery of NO and DOX, which holds great potential for combinatorial cancer treatment.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sandeep B. Shelar
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
| | - Ananya Nirmalraj
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Department
of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed-to-be University), Vile Parle (W), Mumbai 400056, India
| | - Sonali Gupta
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kanhu C. Barick
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Jagriti Gupta
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
| | - Puthusserickal A. Hassan
- Chemistry
Division, Bhabha Atomic Research Centre,
Trombay, Mumbai 400085, India
- Homi
Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
8
|
Zhang F, Pei G, Huang B, Xu J, Zhang L. Exploring release mechanisms by disrupting π-π stacking regions in stable micelles. J Mater Chem B 2023; 11:9246-9259. [PMID: 37721031 DOI: 10.1039/d3tb01388j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
π-π stacking strategies can enhance the stability performance of delivery platforms but are often restricted by incomplete drug release performance, even with the help of crosslinking strategies. Therefore, there has been considerable interest in enhancing the drug release performance by disrupting the π-π stacking region (structural rearrangements). Herein, we synthesized poly(3-(isobutyloxy)-2-oxopropyl benzoate)-b-poly(2-hydroxybutyl methacrylate)-co-poly((ethylene glycol)methylether methacrylate) [PBOOPMA-b-P(HBMA-co-PEGMA), PHB] and revealed the drug release mechanism of PHB-based micelles. The structural rearrangements derived from the crosslinking strategy were revealed to improve the early release performance by 43-55% using micellar dissolutions. Moreover, the esterase-responsive strategy was elucidated to induce reassembly with 77-79% size variation, intensifying the structural rearrangements, which was also synergistic with the crosslinking strategy. Based on the advantages of improving drug release performance, the esterase-responsive strategy was considered a promising candidate for enhancing late release performance. Meanwhile, it is believed that such responsive modulation (crosslinking, esterase-responsive) in the π-π stacking region will become highly promising for subsequent research. Finally, the biosafety of 95.81% at 400 mg L-1 and drug cytotoxicity of IC50 ≈ 2.5 mg L-1 of PHB-EDE@CPT were also validated, confirming the broad application prospects of PHB-based crosslinked micelles.
Collapse
Affiliation(s)
- Fusheng Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Gongcui Pei
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Baihao Huang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jianchang Xu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lijuan Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Matczuk M, Ruzik L, Keppler BK, Timerbaev AR. Nanoscale Ion-Exchange Materials: From Analytical Chemistry to Industrial and Biomedical Applications. Molecules 2023; 28:6490. [PMID: 37764266 PMCID: PMC10536074 DOI: 10.3390/molecules28186490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Nano-sized ion exchangers (NIEs) combine the properties of common bulk ion-exchange polymers with the unique advantages of downsizing into nanoparticulate matter. In particular, being by nature milti-charged ions exchangers, NIEs possess high reactivity and stability in suspensions. This brief review provides an introduction to the emerging landscape of various NIE materials and summarizes their actual and potential applications. Special attention is paid to the different methods of NIE fabrication and studying their ion-exchange behavior. Critically discussed are different examples of using NIEs in chemical analysis, e.g., as solid-phase extraction materials, ion chromatography separating phases, modifiers for capillary electrophoresis, etc., and in industry (fuel cells, catalysis, water softening). Also brought into focus is the potential of NIEs for controlled drug and contrast agent delivery.
Collapse
Affiliation(s)
- Magdalena Matczuk
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland;
| | - Lena Ruzik
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland;
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Andrei R. Timerbaev
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|