1
|
Zhang A, Sun B, Nan C, Cong L, Zhao Z, Liu L. Effects of 3D-printed exosome-functionalized brain acellular matrix hydrogel on neuroinflammation in rats following cerebral hemorrhage. Stem Cell Res Ther 2025; 16:196. [PMID: 40254565 PMCID: PMC12010578 DOI: 10.1186/s13287-025-04332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Exosome-based therapeutics have garnered significant attention for intracerebral hemorrhage (ICH) treatment due to their capacity to regulate metabolic dysregulation, restore cellular homeostasis, and modulate the injury microenvironment via bioactive cargoes such as microRNAs and proteins. However, rapid systemic clearance and enzymatic degradation critically limit their therapeutic efficacy. To address this challenge, we engineered a three-dimensional (3D) bioprinted scaffold capable of encapsulating and sustaining the release of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-exos). METHODS Based on previous research [1-3], the scaffold was composed of a decellularized brain matrix (dECM), gelatin-methacryloyl (GelMA), and silk fibroin (SF) crosslinked with a photoinitiator. hUCMSC-exos were precisely incorporated via extrusion-based 3D bioprinting. Release kinetics were assessed via in vitro elution and in vivo imaging. An ICH rat model received stereotaxic implantation of the exosome-laden scaffold (dECM@exo). Neuroinflammatory markers (IL-6, TNF-α, IL-10) and apoptotic activity (JC-1, Annexin V/PI, TUNEL) were quantified. Neurological outcomes were longitudinally evaluated using the modified Longa scale, Bederson scoring, and sensorimotor tests (rotarod, forelimb placement) at 1, 4, 7 and 14 days post-ICH. RESULTS dECM@exo demonstrated sustained exosome release over 14 days, significantly promoting neural tissue regeneration while attenuating perihematomal edema. Mechanistically, the scaffold modulated pathological MMP activity and inflammatory cytokine expression, thereby restoring extracellular matrix homeostasis and reducing neuronal apoptosis. CONCLUSIONS The findings demonstrate that the 3D biological scaffold dECM@exo effectively maintains microenvironmental homeostasis in the early stages of ICH and improves outcomes associated with the condition. dECM@exo is poised to serve as a robust platform for drug delivery and biotherapy in ICH treatment, offering a viable alternative for managing this condition.
Collapse
Affiliation(s)
- Aobo Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| | - Boyu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Chengrui Nan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lulu Cong
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Liqiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
2
|
Simińska-Stanny J, Podstawczyk D, Delporte C, Nie L, Shavandi A. Hyaluronic Acid Role in Biomaterials Prevascularization. Adv Healthc Mater 2024; 13:e2402045. [PMID: 39254277 DOI: 10.1002/adhm.202402045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 09/11/2024]
Abstract
Tissue vascularization is a major bottleneck in tissue engineering. In this review, the state of the art on the intricate role of hyaluronic acid (HA) in angiogenesis is explored. HA plays a twofold role in angiogenesis. First, when released as a free polymer in the extracellular matrix (ECM), HA acts as a signaling molecule triggering multiple cascades that foster smooth muscle cell differentiation, migration, and proliferation thereby contributing to vessel wall thickening. Simultaneously, HA bound to the plasma membrane in the pericellular space functions as a polymer block, participating in vessel formation. Starting with the HA origins in native vascular tissues, the approaches aimed at achieving vascularization in vivo are reviewed. The significance of HA molecular weight (MW) in angiogenesis and the challenges associated with utilizing HA in vascular tissue engineering (VTE) are conscientiously addressed. The review finally focuses on a thorough examination and comparison of the diverse strategies adopted to harness the benefits of HA in the vascularization of bioengineered materials. By providing a nuanced perspective on the multifaceted role of HA in angiogenesis, this review contributes to the ongoing discourse in tissue engineering and advances the collective understanding of optimizing vascularization processes assisted by functional biomaterials.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, Wroclaw, 50-373, Poland
| | - Christine Delporte
- Laboratoire de Biochimie physiopathologique et nutritionnelle (LBNP), Faculté de Médecine, Université libre de Bruxelles (ULB), Campus Erasme - CP 611, Route de Lennik 808, Bruxelles, 1070, Belgium
| | - Lei Nie
- College of Life Science, Xinyang Normal University, Xinyang, 464031, China
| | - Armin Shavandi
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
3
|
Mohanty S, Roy S. Bioactive Hydrogels Inspired by Laminin: An Emerging Biomaterial for Tissue Engineering Applications. Macromol Biosci 2024; 24:e2400207. [PMID: 39172212 DOI: 10.1002/mabi.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Tissue or organ damage due to severe injuries or chronic diseases can adversely affect the quality of life. Current treatments rely on organ or tissue transplantation which has limitations including unavailability of donors, ethical issues, or immune rejection after transplantations. These limitations can be addressed by tissue regeneration which involves the development of bioactive scaffolds closely mimicking the extracellular matrix (ECM). One of the major components of ECM is the laminin protein which supports several tissues associated with important organs. In this direction, peptide-based hydrogels can effectively mimic the essential characteristics of laminin. While several reports have discussed the structure of laminin, the potential of laminin-derived peptide hydrogels as effective biomaterial for tissue engineering applications is yet to be discussed. In this context, the current review focuses on the structure of laminin and its role as an essential ECM protein. Further, the potential of short peptide hydrogels in mimicking the crucial properties of laminin is proposed. The review further highlights the significance of bioactive hydrogels inspired by laminin - in addressing numerous tissue engineering applications including angiogenesis, neural, skeletal muscle, liver, and adipose tissue regeneration along with a brief outlook on the future applications of these laminin-based hydrogels.
Collapse
Affiliation(s)
- Sweta Mohanty
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| |
Collapse
|
4
|
Dedeloudi A, Martinez-Marcos L, Quinten T, Andersen S, Lamprou DA. Biopolymeric 3D printed implantable scaffolds as a potential adjuvant treatment for acute post-operative pain management. Expert Opin Drug Deliv 2024; 21:1651-1663. [PMID: 38555481 DOI: 10.1080/17425247.2024.2336492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/09/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Pain is characterized as a major symptom induced by tissue damage occurring from surgical procedures, whose potency is being experienced subjectively, while current pain relief strategies are not always efficient in providing individualized treatment. 3D printed implantable devices hold the potential to offer a precise and customized medicinal approach, targeting both tissue engineering and drug delivery. RESEARCH DESIGN AND METHODS Polycaprolactone (PCL) and PCL - chitosan (CS) composite scaffolds loaded with procaine (PRC) were fabricated by bioprinting. Geometrical features including dimensions, pattern, and infill of the scaffolds were mathematically optimized and digitally determined, aiming at developing structurally uniform 3D printed models. Printability studies based on thermal imaging of the bioprinting system were performed, and physicochemical, surface, and mechanical attributes of the extruded scaffolds were evaluated. The release rate of PRC was examined at different time intervals up to 1 week. RESULTS Physicochemical stability and mechanical integrity of the scaffolds were studied, while in vitro drug release studies revealed that CS contributes to the sustained release dynamic of PRC. CONCLUSIONS The printing extrusion process was capable of developing implantable devices for a local and sustained delivery of PRC as a 7-day adjuvant regimen in post-operative pain management.
Collapse
Affiliation(s)
| | - Laura Martinez-Marcos
- Janssen Pharmaceutica, Oral Solids Development (OSD) Research & Development Department, Beerse, Belgium
| | - Thomas Quinten
- Janssen Pharmaceutica, Oral Solids Development (OSD) Research & Development Department, Beerse, Belgium
| | - Sune Andersen
- Janssen Pharmaceutica, Oral Solids Development (OSD) Research & Development Department, Beerse, Belgium
| | | |
Collapse
|
5
|
Zhang A, Cong L, Nan C, Zhao Z, Liu L. 3D biological scaffold delivers Bergenin to reduce neuroinflammation in rats with cerebral hemorrhage. J Transl Med 2024; 22:946. [PMID: 39420402 PMCID: PMC11484212 DOI: 10.1186/s12967-024-05735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a severe form of stroke characterized by high incidence and mortality rates. Currently, there is a significant lack of effective treatments aimed at improving clinical outcomes. Our research team has developed a three-dimensional (3D) biological scaffold that incorporates Bergenin, allowing for the sustained release of the compound. METHODS This 3D biological scaffold was fabricated using a combination of photoinitiator, GEMA, silk fibroin, and decellularized brain matrix (dECM) to encapsulate Bergenin through advanced 3D bioprinting techniques. The kinetics of drug release were evaluated through both in vivo and in vitro studies. A cerebral hemorrhage model was established, and a 3D biological scaffold containing Bergenin was transplanted in situ. Levels of inflammatory response, oxidative stress, and apoptosis were quantified. The neurological function of rats with cerebral hemorrhage was assessed on days 1, 3, and 5 using the turning test, forelimb placement test, Longa score, and Bederson score. RESULTS The 3D biological scaffold incorporating Bergenin significantly enhances the maintenance of drug concentration in the bloodstream, leading to a marked reduction in inflammatory markers such as IL-6, iNOS, and COX-2 levels in a cerebral hemorrhage model, primarily through the inhibition of the NF-κB pathway. Additionally, the scaffold effectively reduces the expression of hypoxia-inducible factor 1-alpha (HIF-1α) in primary cultured astrocytes, which in turn decreases the production of reactive oxygen species (ROS) and inhibits IL-6 production induced by hemin. Subsequent experiments reveal that the 3D biological scaffold containing Bergenin promotes the activation of the Nrf-2/HO-1 signaling pathway, both in vivo and in vitro, thereby preventing cell death. Moreover, the application of this 3D biological scaffold has been demonstrated to improve drug retention in the bloodstream. CONCLUSION This strategy effectively mitigates inflammation, oxidative stress, and cell death in rats with cerebral hemorrhage by inhibiting the NF-κB pathway while concurrently activating the Nrf-2/HO-1 pathway.
Collapse
Affiliation(s)
- Aobo Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Lulu Cong
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Chengrui Nan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Liqiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
6
|
Sasikumar SC, Goswami U, Raichur AM. 3D Bioprinting with Visible Light Cross-Linkable Mucin-Hyaluronic Acid Composite Bioink for Lung Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5411-5422. [PMID: 38996006 DOI: 10.1021/acsabm.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
3D printing can revolutionize personalized medicine by allowing cost-effective, customized tissue-engineering constructs. However, the limited availability and diversity of biopolymeric hydrogels restrict the variety and applications of bioinks. In this study, we introduce a composite bioink for 3D bioprinting, combining a photo-cross-linkable derivative of Mucin (Mu) called Methacrylated Mucin (MuMA) and Hyaluronic acid (HA). The less explored Mucin is responsible for the hydrogel nature of mucus and holds the potential to be used as a bioink material because of its plethora of features. HA, a crucial extracellular matrix component, is mucoadhesive and enhances ink viscosity and printability. Photo-cross-linking with 405 nm light stabilizes the printed scaffolds without damaging cells. Rheological tests reveal shear-thinning behavior, aiding cell protection during printing and improved MuMA bioink viscosity by adding HA. The printed structures exhibited porous behavior conducive to nutrient transport and cell migration. After 4 weeks in phosphate-buffered saline, the scaffolds retain 70% of their mass, highlighting stability. Biocompatibility tests with lung epithelial cells (L-132) confirm cell attachment and growth, suggesting suitability for lung tissue engineering. It is envisioned that the versatility of bioink could lead to significant advancements in lung tissue engineering and various other biomedical applications.
Collapse
Affiliation(s)
- Sruthi C Sasikumar
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
| | - Upashi Goswami
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
- Institute for Nanoscience and Water Sustainability, University of South Africa, the Science Campus, Florida Park, 1710 Roodepoort, Johannesburg 1735, South Africa
| |
Collapse
|
7
|
Choi C, Yun E, Song M, Kim J, Son JS, Cha C. Multiscale Control of Nanofiber-Composite Hydrogel for Complex 3D Cell Culture by Extracellular Matrix Composition and Nanofiber Alignment. Biomater Res 2024; 28:0032. [PMID: 38812742 PMCID: PMC11136538 DOI: 10.34133/bmr.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
In order to manipulate the complex behavior of cells in a 3-dimensional (3D) environment, it is important to provide the microenvironment that can accurately portray the complexity of highly anisotropic tissue structures. However, it is technically challenging to generate a complex microenvironment using conventional biomaterials that are mostly isotropic with limited bioactivity. In this study, the gelatin-hyaluronic acid hydrogel incorporated with aqueous-dispersible, short nanofibers capable of in situ alignment is developed to emulate the native heterogeneous extracellular matrix consisting of fibrous and non-fibrous components. The gelatin nanofibers containing magnetic nanoparticles, which could be aligned by external magnetic field, are dispersed and embedded in gelatin-hyaluronic acid hydrogel encapsulated with dermal fibroblasts. The aligned nanofibers via magnetic field could be safely integrated into the hydrogel, and the process could be repeated to generate larger 3D hydrogels with variable nanofiber alignments. The aligned nanofibers in the hydrogel can more effectively guide the anisotropic morphology (e.g., elongation) of dermal fibroblasts than random nanofibers, whereas myofibroblastic differentiation is more prominent in random nanofibers. At a given nanofiber configuration, the hydrogel composition having intermediate hyaluronic acid content induces myofibroblastic differentiation. These results indicate that modulating the degree of nanofiber alignment and the hyaluronic acid content of the hydrogel are crucial factors that critically influence the fibroblast phenotypes. The nanofiber-composite hydrogel capable of directional nanofiber alignment and tunable material composition can effectively induce a wide array of phenotypic plasticity in 3D cell culture.
Collapse
Affiliation(s)
- Cholong Choi
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunhye Yun
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minju Song
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jiyun Kim
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sung Son
- Department of Chemical Engineering,
Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering,
Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
8
|
Lee SY, Phuc HD, Um SH, Mongrain R, Yoon JK, Bhang SH. Photocuring 3D printing technology as an advanced tool for promoting angiogenesis in hypoxia-related diseases. J Tissue Eng 2024; 15:20417314241282476. [PMID: 39345255 PMCID: PMC11437565 DOI: 10.1177/20417314241282476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Three-dimensional (3D) bioprinting has emerged as a promising strategy for fabricating complex tissue analogs with intricate architectures, such as vascular networks. Achieving this necessitates bioink formulations that possess highly printable properties and provide a cell-friendly microenvironment mimicking the native extracellular matrix. Rapid advancements in printing techniques continue to expand the capabilities of researchers, enabling them to overcome existing biological barriers. This review offers a comprehensive examination of ultraviolet-based 3D bioprinting, renowned for its exceptional precision compared to other techniques, and explores its applications in inducing angiogenesis across diverse tissue models related to hypoxia. The high-precision and rapid photocuring capabilities of 3D bioprinting are essential for accurately replicating the intricate complexity of vascular networks and extending the diffusion limits for nutrients and gases. Addressing the lack of vascular structure is crucial in hypoxia-related diseases, as it can significantly improve oxygen delivery and overall tissue health. Consequently, high-resolution 3D bioprinting facilitates the creation of vascular structures within three-dimensional engineered tissues, offering a potential solution for addressing hypoxia-related diseases. Emphasis is placed on fundamental components essential for successful 3D bioprinting, including cell types, bioink compositions, and growth factors highlighted in recent studies. The insights provided in this review underscore the promising prospects of leveraging 3D printing technologies for addressing hypoxia-related diseases through the stimulation of angiogenesis, complementing the therapeutic efficacy of cell therapy.
Collapse
Affiliation(s)
- Sang Yoon Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Huynh Dai Phuc
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Rosaire Mongrain
- Mechanical Engineering Department, McGill University, Montréal, QC, Canada
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Chien MH, Chen CY, Yeh CL, Huang HY, Chou HY, Chen YW, Lin CP. Biofabricated poly (γ-glutamic acid) bio-ink reinforced with calcium silicate exhibiting superior mechanical properties and biocompatibility for bone regeneration. J Dent Sci 2024; 19:479-491. [PMID: 38303841 PMCID: PMC10829714 DOI: 10.1016/j.jds.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/04/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose The modification in 3D hydrogels, tissue engineering, and biomaterials science has enabled us to fabricate novel substitutes for bone regeneration. This study aimed to combine different biomaterials by 3D technique to fabricate a promising all-rounded hydrogel for bone regeneration. Materials and methods In this study, glycidyl methacrylate (GMA)-modified poly γ-glutamic acid (γ-PGA-GMA) hydrogels with calcium silicate (CS) hydrogel of different concentrations were fabricated by a 3D printing technique, and their biocompatibility and capability in bone regeneration were also evaluated. Results The results showed that CS γ-PGA-GMA could be successfully fabricated, and the presence of CS enhanced the rheological and mechanical properties of γ-PGA-GMA hydrogels, thus making them more adept at 3D printing and implantations. SEM images of the surface structure showed that higher CS concentrations (5% and 10%) contributed to denser surface architectures, thus achieving improved cellular adhesion and stem cell proliferation. Furthermore, higher concentrations of CS resulted in elevated expressions of osteogenic-related markers such as alkaline phosphatase (ALP) and osteocalcin (OC), as well as enhanced calcium deposition represented by the increased Alizarin Red S staining. In vivo studies referring to critical defects of rabbit femur further showed that the existence of hydrogels alone was able to induce partial bone regeneration, demonstrated by the results from quantitative and qualitative analysis of micro-CT scans. However, CS alterations caused significant increases in bone regeneration, as indicated by micro-CT and histological staining. Conclusion These results robustly suggest combining different biomaterials is crucial to producing a well-rounded hydrogel for tissue regeneration. We hope this study could be applied as a platform for others to brainstorm potential out-of-the-box solutions, contributing to developing high-potential biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Ming-Hui Chien
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yu Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Liang Yeh
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Huang
- Graduate Institute of Dental Science and Oral Health Industries, China Medical University, Taichung, Taiwan
| | - Han-Yi Chou
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Aadinath W, Muthuvijayan V. Antibacterial and angiogenic potential of iron oxide nanoparticles-stabilized acrylate-based scaffolds for bone tissue engineering applications. Colloids Surf B Biointerfaces 2023; 231:113572. [PMID: 37797467 DOI: 10.1016/j.colsurfb.2023.113572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
Pickering emulsion polymerization, stabilized by inorganic nanoparticles such as iron oxide nanoparticles (IONPs), can be used to fabricate scaffolds with the desired porosity and pore size. These nanoparticles create stable emulsions that can be processed under harsh polymerization conditions. IONPs, apart from serving as an emulsifier, impart beneficial bioactivities such as antibacterial and pro-angiogenic activity. Here, we coated IONPs with three different weights of oleic acid (5.0 g, 7.5 g, and 10.0 g) to synthesize oleic acid-IONPs (OA-IONPs) that possess the desired hydrophobicity (contact angle > 100°). Next, glycidyl methacrylate and trimethylolpropane triacrylate were polymerized using the Pickering emulsion polymerization technique stabilized by the OA-IONPs. The physicochemical properties of the resulting porous scaffolds were thoroughly characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), and a universal testing machine (UTM). The SEM images confirmed the formation of a porous scaffold. The IONPs content, measured using inductively coupled plasma mass spectrometry (ICP-MS), was in the range of 22-26 µg/mg of the scaffold. The mechanical strengths of the scaffolds were in the range of cancellous bone. The degradation profile of the scaffolds varied between 29% and 41% degradation over 30 days. In vitro cytotoxicity studies conducted using the fibroblast (L929) and osteosarcoma (MG-63) cell lines proved that these scaffolds were non-toxic. SEM images showed that the MG-63 cells adhered firmly to the scaffolds and exhibited a well-spread morphology. The antibacterial activity was confirmed by percentage inhibition studies, SEM analysis of bacterial membrane distortion, and reactive oxygen species (ROS) generation in the bacteria. Chick chorioallantoic membrane assay showed that the total vessel length and branch points were significantly increased in the presence of the scaffolds. These results confirm the pro-angiogenic potential of the fabricated scaffolds. The physicochemical, mechanical, and biological properties of the material suggest that the developed scaffolds would be suitable for bone tissue engineering applications.
Collapse
Affiliation(s)
- W Aadinath
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vignesh Muthuvijayan
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
11
|
Khvorostina M, Mironov A, Nedorubova I, Bukharova T, Vasilyev A, Goldshtein D, Komlev V, Popov V. Osteogenesis Enhancement with 3D Printed Gene-Activated Sodium Alginate Scaffolds. Gels 2023; 9:gels9040315. [PMID: 37102926 PMCID: PMC10137500 DOI: 10.3390/gels9040315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Natural and synthetic hydrogel scaffolds containing bioactive components are increasingly used in solving various tissue engineering problems. The encapsulation of DNA-encoding osteogenic growth factors with transfecting agents (e.g., polyplexes) into such scaffold structures is one of the promising approaches to delivering the corresponding genes to the area of the bone defect to be replaced, providing the prolonged expression of the required proteins. Herein, a comparative assessment of both in vitro and in vivo osteogenic properties of 3D printed sodium alginate (SA) hydrogel scaffolds impregnated with model EGFP and therapeutic BMP-2 plasmids was demonstrated for the first time. The expression levels of mesenchymal stem cell (MSC) osteogenic differentiation markers Runx2, Alpl, and Bglap were evaluated by real-time PCR. Osteogenesis in vivo was studied on a model of a critical-sized cranial defect in Wistar rats using micro-CT and histomorphology. The incorporation of polyplexes comprising pEGFP and pBMP-2 plasmids into the SA solution followed by 3D cryoprinting does not affect their transfecting ability compared to the initial compounds. Histomorphometry and micro-CT analysis 8 weeks after scaffold implantation manifested a significant (up to 46%) increase in new bone volume formation for the SA/pBMP-2 scaffolds compared to the SA/pEGFP ones.
Collapse
Affiliation(s)
- Maria Khvorostina
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow 108840, Russia
- Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Anton Mironov
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow 108840, Russia
| | | | | | - Andrey Vasilyev
- Research Centre for Medical Genetics, Moscow 115478, Russia
- Central Research Institute of Dental and Maxillofacial Surgery, Moscow 119021, Russia
| | | | - Vladimir Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir Popov
- Institute of Photon Technologies of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow 108840, Russia
| |
Collapse
|
12
|
Rao KM, Kim E, Kim HJ, Uthappa UT, Han SS. Hyaluronic acid-quercetin pendant drug conjugate for wound healing applications. Int J Biol Macromol 2023; 240:124336. [PMID: 37030466 DOI: 10.1016/j.ijbiomac.2023.124336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/11/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
In this study, a simple approach was used for the synthesis of a water-soluble hyaluronic acid-quercetin (HA-Q) pendant drug conjugate to evaluate its potential wound-healing properties. The HA-Q conjugation was confirmed by Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible spectrophotometry (UV-Vis), and nuclear magnetic resonance (NMR) spectroscopy techniques. To produce the HA-Q, quercetin was conjugated on the HA backbone to the extent of 44.7 %. The HA-Q conjugate was soluble in water and a solution with a concentration of 20 mg/ml was prepared. The conjugate exhibited good biocompatibility and supported the growth and cell migration of skin fibroblast cells. HA-Q presented improved radical scavenging capacity compared to quercetin (Q) alone. The overall results confirmed the potential role of HA-Q in wound healing applications.
Collapse
Affiliation(s)
- Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of cell culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Eunbi Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hyeon Jin Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Uluvangada Thammaiah Uthappa
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of cell culture, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
13
|
Trifanova EM, Babayeva G, Khvorostina MA, Atanova AV, Nikolaeva ME, Sochilina AV, Khaydukov EV, Popov VK. Photoluminescent Scaffolds Based on Natural and Synthetic Biodegradable Polymers for Bioimaging and Tissue Engineering. Life (Basel) 2023; 13:life13040870. [PMID: 37109400 PMCID: PMC10141962 DOI: 10.3390/life13040870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Non-invasive visualization and monitoring of tissue-engineered structures in a living organism is a challenge. One possible solution to this problem is to use upconversion nanoparticles (UCNPs) as photoluminescent nanomarkers in scaffolds. We synthesized and studied scaffolds based on natural (collagen-COL and hyaluronic acid-HA) and synthetic (polylactic-co-glycolic acids-PLGA) polymers loaded with β-NaYF4:Yb3+, Er3+ nanocrystals (21 ± 6 nm). Histomorphological analysis of tissue response to subcutaneous implantation of the polymer scaffolds in BALB/c mice was performed. The inflammatory response of the surrounding tissues was found to be weak for scaffolds based on HA and PLGA and moderate for COL scaffolds. An epi-luminescent imaging system with 975 nm laser excitation was used for in vivo visualization and photoluminescent analysis of implanted scaffolds. We demonstrated that the UCNPs' photoluminescent signal monotonously decreased in all the examined scaffolds, indicating their gradual biodegradation followed by the release of photoluminescent nanoparticles into the surrounding tissues. In general, the data obtained from the photoluminescent analysis correlated satisfactorily with the histomorphological analysis.
Collapse
Affiliation(s)
- Ekaterina M Trifanova
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
| | - Gulalek Babayeva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, 115478 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia
| | - Maria A Khvorostina
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
- Research Centre for Medical Genetics, 115478 Moscow, Russia
| | - Aleksandra V Atanova
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
| | - Maria E Nikolaeva
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119991 Moscow, Russia
| | - Anastasia V Sochilina
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119991 Moscow, Russia
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | - Evgeny V Khaydukov
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
- Institute of Physics, Technology, and Informational Systems, Moscow State Pedagogical University, 119991 Moscow, Russia
| | - Vladimir K Popov
- Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
| |
Collapse
|
14
|
Li X, He L, Li N, He D. Curcumin loaded hydrogel with anti-inflammatory activity to promote cartilage regeneration in immunocompetent animals. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:200-216. [PMID: 35971659 DOI: 10.1080/09205063.2022.2113290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stable cartilage regeneration in immunocompetent animals remains a huge challenge, mainly ascribing to the in vivo implantation of tissue-engineered cartilage inevitably arousing inflammatory reactions, resulting in cartilage-specific extracellular matrix erosion, chondrogenic niche destruction, and chondrocyte deterioration. Herein, we developed an anti-inflammatory platform, namely, Cur/GelMA hydrogel, by loading a potent anti-inflammatory drug of curcumin (Cur) into gelatin methacryloyl (GelMA) hydrogel. The Cur/GelMA hydrogel exhibited satisfactory Cur release kinetics in vitro and exerted favorable anti-inflammatory effects when cocultured with lipopolysaccharide-induced RAW264.7 macrophages in vitro. Furthermore, the Cur/GelMA hydrogel showed gratifying biocompatibility and supported cartilage regeneration in vitro when colonized with rabbit- and goat-derived chondrocytes. In addition, the in vitro engineered cartilages in the Cur/GelMA hydrogel were able to maintain a cartilaginous phenotype and achieved stable cartilage regeneration when subcutaneously implanted in autologous rabbits and goats for 2 and 4 weeks compared to the GelMA hydrogel. Furthermore, our data revealed that the in vivo-generated cartilage in the Cur/GelMA group apparently alleviated the inflammatory reaction compared to its GelMA counterpart, suggesting that the locally released Cur endowed the Cur/GelMA hydrogel with potent anti-inflammatory capacity. This study provides a reliable anti-inflammatory platform for stable cartilage regeneration in immunocompetent animals, significantly advancing the clinical application of tissue-engineered cartilage.
Collapse
Affiliation(s)
- Xiaodan Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science & Technology, Baotou, China
| | - Lihong He
- Department of Rehabilitation, The First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science & Technology, Baotou, China
| | - Na Li
- Department of Trauma II, The First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science & Technology, Baotou, China
| | - Donghuang He
- Department of Trauma Orthopedics, The First Affiliated Hospital of Baotou Medical Collage, Inner Mongolia University of Science & Technology, Baotou, China
| |
Collapse
|
15
|
Farasati Far B, Naimi-Jamal MR, Safaei M, Zarei K, Moradi M, Yazdani Nezhad H. A Review on Biomedical Application of Polysaccharide-Based Hydrogels with a Focus on Drug Delivery Systems. Polymers (Basel) 2022; 14:5432. [PMID: 36559799 PMCID: PMC9784417 DOI: 10.3390/polym14245432] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Over the last years of research on drug delivery systems (DDSs), natural polymer-based hydrogels have shown many scientific advances due to their intrinsic properties and a wide variety of potential applications. While drug efficacy and cytotoxicity play a key role, adopting a proper DDS is crucial to preserve the drug along the route of administration and possess desired therapeutic effect at the targeted site. Thus, drug delivery technology can be used to overcome the difficulties of maintaining drugs at a physiologically related serum concentration for prolonged periods. Due to their outstanding biocompatibility, polysaccharides have been thoroughly researched as a biological material for DDS advancement. To formulate a modified DDS, polysaccharides can cross-link with different molecules, resulting in hydrogels. According to our recent findings, targeted drug delivery at a certain spot occurs due to external stimulation such as temperature, pH, glucose, or light. As an adjustable biomedical device, the hydrogel has tremendous potential for nanotech applications in involved health areas such as pharmaceutical and biomedical engineering. An overview of hydrogel characteristics and functionalities is provided in this review. We focus on discussing the various kinds of hydrogel-based systems on their potential for effectively delivering drugs that are made of polysaccharides.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta 99628, Turkey
| | - Kimia Zarei
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Marzieh Moradi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hamed Yazdani Nezhad
- Department of Mechanical Engineering & Aeronautics, City University of London, London EC1V 0HB, UK
| |
Collapse
|
16
|
Hyaluronic Acid in Biomedical Fields: New Trends from Chemistry to Biomaterial Applications. Int J Mol Sci 2022; 23:ijms232214372. [PMID: 36430855 PMCID: PMC9695447 DOI: 10.3390/ijms232214372] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this review is to give an updated perspective about the methods for chemical modifications of hyaluronic acid (HA) toward the development of new applications in medical devices and material engineering. After a brief introduction on chemical, structural and biological features of this important natural polysaccharide, the most important methods for chemical and physical modifications are disclosed, discussing both on the formation of new covalent bonds and the interaction with other natural polysaccharides. These strategies are of paramount importance in the production of new medical devices and materials with improved properties. In particular, the use of HA in the development of new materials by means of additive manufacturing techniques as electro fluid dynamics, i.e., electrospinning for micro to nanofibres, and three-dimensional bioprinting is also discussed.
Collapse
|
17
|
Trifanova EM, Khvorostina MA, Mariyanats AO, Sochilina AV, Nikolaeva ME, Khaydukov EV, Akasov RA, Popov VK. Natural and Synthetic Polymer Scaffolds Comprising Upconversion Nanoparticles as a Bioimaging Platform for Tissue Engineering. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196547. [PMID: 36235084 PMCID: PMC9573624 DOI: 10.3390/molecules27196547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
Abstract
Modern biocompatible materials of both natural and synthetic origin, in combination with advanced techniques for their processing and functionalization, provide the basis for tissue engineering constructs (TECs) for the effective replacement of specific body defects and guided tissue regeneration. Here we describe TECs fabricated using electrospinning and 3D printing techniques on a base of synthetic (polylactic-co-glycolic acids, PLGA) and natural (collagen, COL, and hyaluronic acid, HA) polymers impregnated with core/shell β-NaYF4:Yb3+,Er3+/NaYF4 upconversion nanoparticles (UCNPs) for in vitro control of the tissue/scaffold interaction. Polymeric structures impregnated with core/shell β-NaYF4:Yb3+,Er3+/NaYF4 nanoparticles were visualized with high optical contrast using laser irradiation at 976 nm. We found that the photoluminescence spectra of impregnated scaffolds differ from the spectrum of free UCNPs that could be used to control the scaffold microenvironment, polymer biodegradation, and cargo release. We proved the absence of UCNP-impregnated scaffold cytotoxicity and demonstrated their high efficiency for cell attachment, proliferation, and colonization. We also modified the COL-based scaffold fabrication technology to increase their tensile strength and structural stability within the living body. The proposed approach is a technological platform for "smart scaffold" development and fabrication based on bioresorbable polymer structures impregnated with UCNPs, providing the desired photoluminescent, biochemical, and mechanical properties for intravital visualization and monitoring of their behavior and tissue/scaffold interaction in real time.
Collapse
Affiliation(s)
- Ekaterina M. Trifanova
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Maria A. Khvorostina
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Aleksandra O. Mariyanats
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Anastasia V. Sochilina
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | | | - Evgeny V. Khaydukov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
- Correspondence: (E.V.K.); (R.A.A.); (V.K.P.)
| | - Roman A. Akasov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
- Correspondence: (E.V.K.); (R.A.A.); (V.K.P.)
| | - Vladimir K. Popov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
- Correspondence: (E.V.K.); (R.A.A.); (V.K.P.)
| |
Collapse
|
18
|
[Effect of xanthohumol-loaded anti-inflammatory scaffolds on cartilage regeneration in goats]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1296-1304. [PMID: 36310469 PMCID: PMC9626270 DOI: 10.7507/1002-1892.202204044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To develop an anti-inflammatory poly (lactic-co-glycolic acid) (PLGA) scaffold by loading xanthohumol, and investigate its anti-inflammatory and cartilage regeneration effects in goats. METHODS The PLGA porous scaffolds were prepared by pore-causing agent leaching method, and then placed in xanthohumol solution for 24 hours to prepare xanthohumol-PLGA scaffolds (hereinafter referred to as drug-loaded scaffolds). The PLGA scaffolds and drug-loaded scaffolds were taken for general observation, the pore diameter of the scaffolds was measured by scanning electron microscope, the porosity was calculated by the drainage method, and the loading of xanthohumol on the scaffolds was verified by Fourier transform infrared (FTIR) spectrometer. Then the two scaffolds were co-cultured with RAW264.7 macrophages induced by lipopolysaccharide for 24 hours, and the expressions of inflammatory factors [interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α)] were detected by RT-PCR and Western blot to evaluate the anti-inflammatory properties in vitro of two scaffolds. Bone marrow mesenchymal stem cells (BMSCs) was obtained from bone marrow of a 6-month-old female healthy goat, cultured by adherent method, and passaged in vitro. The second passage cells were seeded on two scaffolds to construct BMSCs-scaffolds, and the cytocompatibility of scaffolds was observed by live/dead cell staining and cell counting kit 8 (CCK-8) assay. The BMSCs-scaffolds were cultured in vitro for 6 weeks, aiming to verify its feasibility of generating cartilage in vitro by gross observation, histological staining, collagen type Ⅱ immunohistochemical staining, and biochemical analysis. Finally, the two kinds of BMSCs-scaffolds cultured in vitro for 6 weeks were implanted into the goat subcutaneously, respectively. After 4 weeks, gross observation, histological staining, collagen type Ⅱ immunohistochemical staining, biochemical analysis, and RT-PCR were performed to comprehensively evaluate the anti-inflammatory effect in vivo and promotion of cartilage regeneration of the drug-loaded scaffolds. RESULTS The prepared drug-loaded scaffold had a white porous structure with abundant, continuous, and uniform pore structures. Compared with the PLGA scaffold, there was no significant difference in pore size and porosity ( P>0.05). FTIR spectrometer analysis showed that xanthohumol was successfully loaded to PLGA scaffolds. The in vitro results demonstrated that the gene and protein expressions of inflammatory cytokines (IL-1β and TNF-α) in drug-loaded scaffold significantly decreased than those in PLGA scaffold ( P<0.05). With the prolongation of culture, the number of live cells increased significantly, and there was no significant difference between the two scaffolds ( P>0.05). The in vitro cartilage regeneration test indicated that the BMSCs-drug-loaded scaffolds displayed smooth and translucent appearance with yellow color after 6 weeks in vitro culture, and could basically maintained its original shape. The histological and immunohistochemical stainings revealed that the scaffolds displayed typical lacunar structure and cartilage-specific extracellular matrix. In addition, quantitative data revealed that the contents of glycosaminoglycan (GAG) and collagen type Ⅱ were not significantly different from BMSCs-PLGA scaffolds ( P>0.05). The evaluation of cartilage regeneration in vivo showed that the BMSCs-drug-loaded scaffolds basically maintained their pre-implantation shape and size at 4 weeks after implantation in goat, while the BMSCs-PLGA scaffolds were severely deformed. The BMSCs-drug-loaded scaffolds had typical cartilage lacuna structure and cartilage specific extracellular matrix, and no obvious inflammatory cells infiltration; while the BMSCs-PLGA scaffolds had a messy fibrous structure, showing obvious inflammatory response. The contents of cartilage-specific GAG and collagen type Ⅱ in BMSCs-drug-loaded scaffolds were significantly higher than those in BMSCs-PLGA scaffolds ( P<0.05); the relative gene expressions of IL-1β and TNF-α were significantly lower than those in BMSCs-PLGA scaffolds ( P<0.05). CONCLUSION The drug-loaded scaffolds have suitable pore size, porosity, cytocompatibility, and good anti-inflammatory properties, and can promote cartilage regeneration after implantation with BMSCs in goats.
Collapse
|
19
|
Mishchenko TA, Klimenko MO, Kuznetsova AI, Yarkov RS, Savelyev AG, Sochilina AV, Mariyanats AO, Popov VK, Khaydukov EV, Zvyagin AV, Vedunova MV. 3D-printed hyaluronic acid hydrogel scaffolds impregnated with neurotrophic factors (BDNF, GDNF) for post-traumatic brain tissue reconstruction. Front Bioeng Biotechnol 2022; 10:895406. [PMID: 36091441 PMCID: PMC9453866 DOI: 10.3389/fbioe.2022.895406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young’s moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values (p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs. sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations (p < 0.05, vs. sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria O. Klimenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alisa I. Kuznetsova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Roman S. Yarkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexander G. Savelyev
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anastasia V. Sochilina
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Alexandra O. Mariyanats
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
| | - Vladimir K. Popov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
| | - Evgeny V. Khaydukov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk-Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Andrei V. Zvyagin
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- MQ Photonics Centre, Macquarie University, Sydney, NSW, Australia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- *Correspondence: Maria V. Vedunova,
| |
Collapse
|
20
|
Wan T, Fan P, Zhang M, Shi K, Chen X, Yang H, Liu X, Xu W, Zhou Y. Multiple Crosslinking Hyaluronic Acid Hydrogels with Improved Strength and 3D Printability. ACS APPLIED BIO MATERIALS 2022; 5:334-343. [PMID: 35014821 DOI: 10.1021/acsabm.1c01141] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hyaluronic acid (HA) hydrogel is preferred for biomedicine applications, as it possesses biodegradability, biocompatibility, and cell-regulated capacity as well as high hydration nature similar to the native extracellular matrix. However, HA hydrogel fabricated via a 3D printing technique often faces poor printing properties. In this study, maleiated sodium hyaluronate (MHA) with a high substituted degree of the acrylate group (i.e., 2.27) and thiolated sodium hyaluronate (SHHA) were synthesized. By blending these modified HAs, the MHA/SHHA hydrogels were prepared via pre-crosslinking through thiol-acrylate Michael addition and subsequently covalent crosslinking using thiol-acrylate and acrylate-acrylate photopolymerization mechanisms. Rheological properties, swelling behaviors, and mechanical properties can be modulated by altering the molar ratio of the thiol group and acrylate group. The results showed that the MHA/SHHA hydrogel precursors have rapidly gelling capacity and improved compressive strength. Based on these results, high-resolution hydrogel scaffolds with good structural stability were prepared by extrusion-based 3D printing. This HA hydrogel is cytocompatible and capable of supporting adherence of L929 cells, indicating its great potential for tissue engineering scaffolds.
Collapse
Affiliation(s)
- Tingting Wan
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Penghui Fan
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Mengfan Zhang
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Kai Shi
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Xiao Chen
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Xin Liu
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Yingshan Zhou
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China.,College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China.,Humanwell Healthcare Group Medical Supplies Company Ltd., Wuhan 430073, People's Republic of China
| |
Collapse
|
21
|
Lu D, Zeng Z, Geng Z, Guo C, Pei D, Zhang J, Yu S. Macroporous methacrylated hyaluronic acid hydrogel with different pore sizes for in vitro and in vivo evaluation of vascularization. Biomed Mater 2022; 17. [PMID: 34996058 DOI: 10.1088/1748-605x/ac494b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Abstract
Vascularization of thick hydrogel scaffolds is still a big challenge, because the submicron- or nano-sized pores seriously restrict endothelial cells adhesion, proliferation and migration. Therefore, porous hydrogels have been fabricated as a kind of promising hydrous scaffolds for enhancing vascularization during tissue repairing. In order to investigate the effects of pore size on vascularization, macroporous methacrylated hyaluronic acid (HAMA) hydrogels with different pore sizes were fabricated by a gelatin microspheres (GMS) template method. After leaching out GMS templates, uniform and highly interconnected macropores were formed in hydrogels, which provided an ideal physical microenvironment to induce human umbilical vein endothelial cells (HUVECs) migration and tissue vascularization. In vitro results revealed that macroporous hydrogels facilitated cells proliferation and migration compared with non-macroporous hydrogels. Hydrogels with middle pore size of 200-250 μm (HAMA250 hydrogels) supported the best cell proliferation and furthest 3D migration of HUVECs. The influences of pore sizes on vascularization were then evaluated with subcutaneous embedding. In vivo results illustrated that HAMA250 hydrogels exhibited optimum vascularization behavior. Highest number of newly formed blood vessels and expression of CD31 could be found in HAMA250 hydrogels rather than in other hydrogels. In summary, our results concluded that the best pore size for endothelial cells migration and tissue vascularization was 200-250 μm. This research provides a new insight into the engineering vascularized tissues and may find utility in designing regenerative biomaterial scaffolds.
Collapse
Affiliation(s)
- Daohuan Lu
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Zhiwen Zeng
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, Guangzhou, guangzhou, 51000, CHINA
| | - Zhijie Geng
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Cuiping Guo
- Institute of Medicine and Health, Guangdong Academy of Sciences, , guangzhou, 51000, CHINA
| | - Dating Pei
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Jin Zhang
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| | - Shan Yu
- Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue, Tianhe District, guangzhou, 51000, CHINA
| |
Collapse
|
22
|
Ravoor J, Thangavel M, Elsen S R. Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction. ACS APPLIED BIO MATERIALS 2021; 4:8129-8158. [PMID: 35005929 DOI: 10.1021/acsabm.1c00949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bio-scaffolds are synthetic entities widely employed in bone and soft-tissue regeneration applications. These bio-scaffolds are applied to the defect site to provide support and favor cell attachment and growth, thereby enhancing the regeneration of the defective site. The progressive research in bio-scaffold fabrication has led to identification of biocompatible and mechanically stable materials. The difficulties in obtaining grafts and expenditure incurred in the transplantation procedures have also been overcome by the implantation of bio-scaffolds. Drugs, cells, growth factors, and biomolecules can be embedded with bio-scaffolds to provide localized treatments. The right choice of materials and fabrication approaches can help in developing bio-scaffolds with required properties. This review mostly focuses on the available materials and bio-scaffold techniques for bone and soft-tissue regeneration application. The first part of this review gives insight into the various classes of biomaterials involved in bio-scaffold fabrication followed by design and simulation techniques. The latter discusses the various additive, subtractive, hybrid, and other improved techniques involved in the development of bio-scaffolds for bone regeneration applications. Techniques involving multimaterial printing and multidimensional printing have also been briefly discussed.
Collapse
Affiliation(s)
- Jishita Ravoor
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mahendran Thangavel
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen S
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
23
|
Lee AKX, Lin YH, Tsai CH, Chang WT, Lin TL, Shie MY. Digital Light Processing Bioprinted Human Chondrocyte-Laden Poly (γ-Glutamic Acid)/Hyaluronic Acid Bio-Ink towards Cartilage Tissue Engineering. Biomedicines 2021; 9:biomedicines9070714. [PMID: 34201600 PMCID: PMC8301387 DOI: 10.3390/biomedicines9070714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cartilage injury is the main cause of disability in the United States, and it has been projected that cartilage injury caused by osteoarthritis will affect 30% of the entire United States population by the year 2030. In this study, we modified hyaluronic acid (HA) with γ-poly(glutamic) acid (γ-PGA), both of which are common biomaterials used in cartilage engineering, in an attempt to evaluate them for their potential in promoting cartilage regeneration. As seen from the results, γ-PGA-GMA and HA, with glycidyl methacrylate (GMA) as the photo-crosslinker, could be successfully fabricated while retaining the structural characteristics of γ-PGA and HA. In addition, the storage moduli and loss moduli of the hydrogels were consistent throughout the curing durations. However, it was noted that the modification enhanced the mechanical properties, the swelling equilibrium rate, and cellular proliferation, and significantly improved secretion of cartilage regeneration-related proteins such as glycosaminoglycan (GAG) and type II collagen (Col II). The cartilage tissue proof with Alcian blue further demonstrated that the modification of γ-PGA with HA exhibited suitability for cartilage tissue regeneration and displayed potential for future cartilage tissue engineering applications. This study built on the previous works involving HA and further showed that there are unlimited ways to modify various biomaterials in order to further bring cartilage tissue engineering to the next level.
Collapse
Affiliation(s)
- Alvin Kai-Xing Lee
- School of Medicine, China Medical University, Taichung 406040, Taiwan; (A.K.-X.L.); (C.-H.T.)
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan; (Y.-H.L.); (W.-T.C.)
| | - Yen-Hong Lin
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan; (Y.-H.L.); (W.-T.C.)
- The Ph.D. Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung 406040, Taiwan
| | - Chun-Hao Tsai
- School of Medicine, China Medical University, Taichung 406040, Taiwan; (A.K.-X.L.); (C.-H.T.)
- Department of Orthopedics, China Medical University Hospital, Taichung 406040, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Wan-Ting Chang
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan; (Y.-H.L.); (W.-T.C.)
| | - Tsung-Li Lin
- Department of Orthopedics, China Medical University Hospital, Taichung 406040, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 406040, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Correspondence: (T.-L.L.); (M.-Y.S.); Tel.: +886-4-22967979 (ext. 3700) (T.-L.L.)
| | - Ming-You Shie
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan; (Y.-H.L.); (W.-T.C.)
- School of Dentistry, China Medical University, Taichung City 40447, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan
- Correspondence: (T.-L.L.); (M.-Y.S.); Tel.: +886-4-22967979 (ext. 3700) (T.-L.L.)
| |
Collapse
|
24
|
Musilová L, Mráček A, Kašpárková V, Minařík A, Valente AJM, Azevedo EFG, Veríssimo LMP, Rodrigo MM, Esteso MA, Ribeiro ACF. Effect of Hofmeister Ions on Transport Properties of Aqueous Solutions of Sodium Hyaluronate. Int J Mol Sci 2021; 22:ijms22041932. [PMID: 33669232 PMCID: PMC7919783 DOI: 10.3390/ijms22041932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Tracer diffusion coefficients obtained from the Taylor dispersion technique at 25.0 °C were measured to study the influence of sodium, ammonium and magnesium salts at 0.01 and 0.1 mol dm−3 on the transport behavior of sodium hyaluronate (NaHy, 0.1%). The selection of these salts was based on their position in Hofmeister series, which describe the specific influence of different ions (cations and anions) on some physicochemical properties of a system that can be interpreted as a salting-in or salting-out effect. In our case, in general, an increase in the ionic strength (i.e., concentrations at 0.01 mol dm−3) led to a significant decrease in the limiting diffusion coefficient of the NaHy 0.1%, indicating, in those circumstances, the presence of salting-in effects. However, the opposite effect (salting-out) was verified with the increase in concentration of some salts, mainly for NH4SCN at 0.1 mol dm−3. In this particular salt, the cation is weakly hydrated and, consequently, its presence does not favor interactions between NaHy and water molecules, promoting, in those circumstances, less resistance to the movement of NaHy and thus to the increase of its diffusion (19%). These data, complemented by viscosity measurements, permit us to have a better understanding about the effect of these salts on the transport behaviour of NaHy.
Collapse
Affiliation(s)
- Lenka Musilová
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic; (L.M.); (A.M.)
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic;
| | - Aleš Mráček
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic; (L.M.); (A.M.)
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic;
- Correspondence: (A.M.); (A.J.M.V.); Tel.: +420-608-707-577 (A.M.); +351-239-854-459 (A.J.M.V.)
| | - Věra Kašpárková
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic;
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 762 72 Zlín, Czech Republic
| | - Antonín Minařík
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 760 01 Zlín, Czech Republic; (L.M.); (A.M.)
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic;
| | - Artur J. M. Valente
- Department of Chemistry, University of Coimbra, CQC, 3004-535 Coimbra, Portugal; (E.F.G.A.); (L.M.P.V.); (M.M.R.); (A.C.F.R.)
- Correspondence: (A.M.); (A.J.M.V.); Tel.: +420-608-707-577 (A.M.); +351-239-854-459 (A.J.M.V.)
| | - Eduarda F. G. Azevedo
- Department of Chemistry, University of Coimbra, CQC, 3004-535 Coimbra, Portugal; (E.F.G.A.); (L.M.P.V.); (M.M.R.); (A.C.F.R.)
| | - Luis M. P. Veríssimo
- Department of Chemistry, University of Coimbra, CQC, 3004-535 Coimbra, Portugal; (E.F.G.A.); (L.M.P.V.); (M.M.R.); (A.C.F.R.)
| | - M. Melia Rodrigo
- Department of Chemistry, University of Coimbra, CQC, 3004-535 Coimbra, Portugal; (E.F.G.A.); (L.M.P.V.); (M.M.R.); (A.C.F.R.)
| | - Miguel A. Esteso
- U.D. Química Física, Universidad de Alcalá, 28871 Alcalá de Henares, Spain;
- Universidad Católica Santa Teresa de Jesús de Ávila, Calle los Canteros s/n, 05005 Ávila, Spain
| | - Ana C. F. Ribeiro
- Department of Chemistry, University of Coimbra, CQC, 3004-535 Coimbra, Portugal; (E.F.G.A.); (L.M.P.V.); (M.M.R.); (A.C.F.R.)
| |
Collapse
|
25
|
Thummarati P, Suksiriworapong J, Sakchaisri K, Junyaprasert VB. Effect of chemical linkers of curcumin conjugated hyaluronic acid on nanoparticle properties and in vitro performances in various cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|