1
|
Kim J, Kim R, Lee W, Kim GH, Jeon S, Lee YJ, Lee JS, Kim KH, Won J, Lee W, Park K, Kim HJ, Im S, Lee KJ, Park C, Kim J, Lee JY. Assembly of glioblastoma tumoroids and cerebral organoids: a 3D in vitro model for tumor cell invasion. Mol Oncol 2025; 19:698-715. [PMID: 39473365 PMCID: PMC11887666 DOI: 10.1002/1878-0261.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 03/08/2025] Open
Abstract
Glioblastoma (GBM) has a fatal prognosis because of its aggressive and invasive characteristics. Understanding the mechanism of invasion necessitates an elucidation of the relationship between tumor cells and the tumor microenvironment. However, there has been a scarcity of suitable models to investigate this. In this study, we established a glioblastoma-cerebral organoid assembloid (GCOA) model by co-culturing patient-derived GBM tumoroids and human cerebral organoids. Tumor cells from the tumoroids infiltrated the cerebral organoids, mimicking the invasive nature of the parental tumors. Using time-lapse imaging, various invasion patterns of cancer cells within cerebral organoids resembling a normal tissue milieu were monitored. Both single- and collective-cell invasion was captured in real-time. We also confirmed the formation of an intercellular tumor network and tumor-normal-cell interactions. Furthermore, the transcriptomic characterization of GCOAs revealed distinct features of invasive tumor cells. Overall, this study established the GCOA as a three-dimensional (3D) in vitro assembloid model to investigate invasion mechanisms and interactions between tumor cells and their microenvironment.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
| | - Rokhyun Kim
- Medical Research CenterGenomic Medicine Institute, Seoul National UniversitySeoulKorea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
| | - Wonseok Lee
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
- Department of Transitional MedicineSeoul National University College of MedicineSeoulKorea
- Department of Neurosurgery, Seoul National University HospitalSeoul National University College of MedicineSeoulKorea
| | - Gyu Hyun Kim
- Laboratory of Synaptic Circuit Plasticity, Neural Circuits Research GroupKorea Brain Research InstituteDaeguKorea
| | - Seeun Jeon
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
| | - Yun Jin Lee
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
| | - Jong Seok Lee
- Division of Pediatric NeurosurgerySeoul National University Children's HospitalSeoulKorea
| | - Kyung Hyun Kim
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
- Division of Pediatric NeurosurgerySeoul National University Children's HospitalSeoulKorea
| | - Jae‐Kyung Won
- Department of Pathology, Seoul National University HospitalSeoul National University College of MedicineSeoulKorea
| | - Woochan Lee
- Medical Research CenterGenomic Medicine Institute, Seoul National UniversitySeoulKorea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
| | - Kyunghyuk Park
- Medical Research CenterGenomic Medicine Institute, Seoul National UniversitySeoulKorea
| | - Hyun Je Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
- Cancer Research Institute, Medical Research CenterSeoul National University College of MedicineSeoulKorea
| | - Sun‐Wha Im
- Department of Biochemistry and Molecular BiologyKangwon National University School of MedicineChuncheonKorea
| | - Kea Joo Lee
- Laboratory of Synaptic Circuit Plasticity, Neural Circuits Research GroupKorea Brain Research InstituteDaeguKorea
| | - Chul‐Kee Park
- Department of Neurosurgery, Seoul National University HospitalSeoul National University College of MedicineSeoulKorea
| | - Jong‐Il Kim
- Medical Research CenterGenomic Medicine Institute, Seoul National UniversitySeoulKorea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
- Cancer Research Institute, Medical Research CenterSeoul National University College of MedicineSeoulKorea
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulKorea
| | - Ji Yeoun Lee
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
- Division of Pediatric NeurosurgerySeoul National University Children's HospitalSeoulKorea
- Neuroscience Research Institute, Medical Research CenterSeoul National University College of MedicineSeoulKorea
| |
Collapse
|
2
|
Kang RH, Baek SW, Oh CK, Kim YH, Kim D. Recent Advances of Macrostructural Porous Silicon for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5609-5626. [PMID: 39818715 PMCID: PMC11788993 DOI: 10.1021/acsami.4c18296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Porous silicon (pSi) has gained substantial attention as a versatile material for various biomedical applications due to its unique structural and functional properties. Initially used as a semiconductor material, pSi has transitioned into a bioactive platform, enabling its use in drug delivery systems, biosensing, tissue engineering scaffolds, and implantable devices. This review explores recent advancements in macrostructural pSi, emphasizing its biocompatibility, biodegradability, high surface area, and tunable properties. In drug delivery, pSi's potential for controlled and sustained release of therapeutic agents has been well-studied, making it suitable for chronic disease treatment. Innovative approaches, like microneedle arrays and hybrid drug delivery systems, are highlighted, along with challenges, such as scalability and stability, in biological environments. pSi-based biosensors offer exceptional sensitivity for detecting biomarkers, benefiting early disease diagnosis. In tissue engineering, fibrous and particulate pSi scaffolds mimic the extracellular matrix, promoting cell proliferation and tissue regeneration. pSi is also gaining momentum in orthopedic implants, demonstrating the potential for bone regeneration. Despite its promise, challenges like mechanical strength, scalability, and long-term stability must be addressed. Looking forward, future research should focus on optimizing production methods, enhancing stability, and exploring hybrid materials for pSi, paving the way for its widespread clinical use in personalized medicine, advanced drug delivery, and next-generation biosensors and implants.
Collapse
Affiliation(s)
- Rae Hyung Kang
- Department
of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Seung Woo Baek
- College
of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Kyu Oh
- Department
of Anatomy, School of Medicine, Pusan National
University, Yangsan 50612, Republic of Korea
- Institute
for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Hak Kim
- Department
of Anatomy, School of Medicine, Pusan National
University, Yangsan 50612, Republic of Korea
| | - Dokyoung Kim
- College
of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department
of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
- Department
of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
- KHU-KIST
Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic
of Korea
- Department
of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic
of Korea
- Center
for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Medical
Research Center for Bioreaction to Reactive Oxygen Species and Biomedical
Science Institute, School of Medicine, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- UC San Diego Materials Research Science
and Engineering Center, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Branco F, Cunha J, Mendes M, Vitorino C, Sousa JJ. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS NANO 2024; 18:16359-16394. [PMID: 38861272 PMCID: PMC11223498 DOI: 10.1021/acsnano.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma (GBM) remains the epitome of aggressiveness and lethality in the spectrum of brain tumors, primarily due to the blood-brain barrier (BBB) that hinders effective treatment delivery, tumor heterogeneity, and the presence of treatment-resistant stem cells that contribute to tumor recurrence. Nanoparticles (NPs) have been used to overcome these obstacles by attaching targeting ligands to enhance therapeutic efficacy. Among these ligands, peptides stand out due to their ease of synthesis and high selectivity. This article aims to review single and multiligand strategies critically. In addition, it highlights other strategies that integrate the effects of external stimuli, biomimetic approaches, and chemical approaches as nanocatalytic medicine, revealing their significant potential in treating GBM with peptide-functionalized NPs. Alternative routes of parenteral administration, specifically nose-to-brain delivery and local treatment within the resected tumor cavity, are also discussed. Finally, an overview of the significant obstacles and potential strategies to overcome them are discussed to provide a perspective on this promising field of GBM therapy.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Cunha
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Mendes
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - João J. Sousa
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
4
|
Porous silicon surface modification via a microwave-induced in situ cyclic disulfide (S-S) cleavage and Si-S bond formation. Colloids Surf B Biointerfaces 2023; 222:113055. [PMID: 36463610 DOI: 10.1016/j.colsurfb.2022.113055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Porous silicon (pSi) materials have gained a great deal of attention from various research fields, and their surface-functionalization is one of the critical points for their applications. In this study, a new surface modification method of Si-H-terminated pSi materials via microwave-induced Si-S bond formation is disclosed. The silicon hydride (Si-H) functionality on the pSi surface could react with the 5-membered cyclic disulfide (S-S) compound (DL-α-lipoic acid in this study) by microwave-induced in situ S-S bond cleavage and Si-S bond formation. This surface chemistry is fast responsive (<10 min) and more efficient than other methods such as vortexing, heating stirring, or ultrasonication. The reaction maintains the primary porous structure of pSi materials including pSi wafer, pSi rugate filer, and pSi nanoparticles. An additional functional group such as carboxylic acid is demonstrated to be readily introducible on the pSi surface for further applications. Overall, this study has successfully demonstrated the porous silicon surface modification via a microwave-induced in situ cyclic disulfide (S-S) cleavage and Si-S bond formation.
Collapse
|
5
|
Rodà F, Caraffi R, Picciolini S, Tosi G, Vandelli MA, Ruozi B, Bedoni M, Ottonelli I, Duskey JT. Recent Advances on Surface-Modified GBM Targeted Nanoparticles: Targeting Strategies and Surface Characterization. Int J Mol Sci 2023; 24:ijms24032496. [PMID: 36768820 PMCID: PMC9916841 DOI: 10.3390/ijms24032496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, associated with low long-term survival. Nanoparticles (NPs) developed against GBM are a promising strategy to improve current therapies, by enhancing the brain delivery of active molecules and reducing off-target effects. In particular, NPs hold high potential for the targeted delivery of chemotherapeutics both across the blood-brain barrier (BBB) and specifically to GBM cell receptors, pathways, or the tumor microenvironment (TME). In this review, the most recent strategies to deliver drugs to GBM are explored. The main focus is on how surface functionalizations are essential for BBB crossing and for tumor specific targeting. We give a critical analysis of the various ligand-based approaches that have been used to target specific cancer cell receptors and the TME, or to interfere with the signaling pathways of GBM. Despite the increasing application of NPs in the clinical setting, new methods for ligand and surface characterization are needed to optimize the synthesis, as well as to predict their in vivo behavior. An expert opinion is given on the future of this research and what is still missing to create and characterize a functional NP system for improved GBM targeting.
Collapse
Affiliation(s)
- Francesca Rodà
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Caraffi
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Giovanni Tosi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0592058573
| |
Collapse
|
6
|
Kumeria T. Advances on Porous Nanomaterials for Biomedical Application (Drug Delivery, Sensing, and Tissue Engineering). ACS Biomater Sci Eng 2022; 8:4025-4027. [PMID: 36210773 DOI: 10.1021/acsbiomaterials.2c01103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
An JM, Kang S, Koh CW, Park S, Oh MS, Kim D. Sceptrin-Au nano-aggregates (SANA) for overcoming drug-resistant Gram-negative bacteria. NANOSCALE HORIZONS 2022; 7:873-882. [PMID: 35818999 DOI: 10.1039/d2nh00279e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One of the recent advances in medical nanotechnology has been the development of nanoformulations to overcome drug-resistant bacterial infections. Herein, we disclose a new nano-antibiotic formulation based on sceptrin-Au nano-aggregates (SANA), which are drug-metal ion multiple complexes. Sceptrin is a natural compound from a marine organism (sponge) and was reported as a potential compound with drug activities. SANA consists of a sceptrin-Au ion and is a self-assembled nano-formation with electrostatic interaction. Interestingly, SANA showed superior antibiotic/antibiofilm activity toward carbapenem-resistant Gram-negative bacteria with low toxicity to red blood cells and endothelial cells. The working mechanism of SANA was identified with analysis of the extracellular reactive oxygen species level and membrane depolarization of bacteria. The feasibility of SANA as a new nano-antibiotic was demonstrated in CRPA-contaminated medical supplies where SANA inhibited the formation of biofilms as well as the growth of CRPA. This work presents a new concept for the development of next-generation nano-antibiotics and a more feasible clinical translational pathway.
Collapse
Affiliation(s)
- Jong Min An
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Sangrim Kang
- Division of Antimicrobial Resistance Research, National Institute of Infectious Diseases (NIID), Korea National Institute of Health, Cheongju, 28459, Republic of Korea
| | - Chang Woo Koh
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sungnam Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|