1
|
Shi M, Li X, Xing L, Li Z, Zhou S, Wang Z, Zou X, She Y, Zhao R, Qin D. Polycystic Ovary Syndrome and the Potential for Nanomaterial-Based Drug Delivery in Therapy of This Disease. Pharmaceutics 2024; 16:1556. [PMID: 39771535 PMCID: PMC11678845 DOI: 10.3390/pharmaceutics16121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is the predominant endocrine disorder among women of reproductive age and represents the leading cause of anovulatory infertility, which imposes a considerable health and economic burden. Currently, medications used to treat PCOS can lead to certain adverse reactions, such as affecting fertility and increasing the risk of venous thrombosis. Drug delivery systems utilizing nanomaterials, characterized by prolonged half-life, precision-targeted delivery, enhanced bioavailability, and reduced toxicity, are currently being employed in the management of PCOS. This innovative approach is gaining traction as a favored strategy for augmenting the therapeutic efficacy of medications. Consequently, this paper discusses the roles of nanoparticles, nanocarriers, and targeted ligands within nanomaterial-based drug delivery systems, aiming to identify optimal methodologies for treating PCOS using nanomaterials. Additionally, prospective research avenues concerning nanomaterial-based delivery systems in the context of PCOS, as well as the implications of existing insights on the advancement of novel therapies for PCOS, are highlighted.
Collapse
Affiliation(s)
- Mingqin Shi
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China; (M.S.); (L.X.)
| | - Xinyao Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (S.Z.); (X.Z.); (Y.S.)
| | - Liwei Xing
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China; (M.S.); (L.X.)
| | - Zhenmin Li
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China;
| | - Sitong Zhou
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (S.Z.); (X.Z.); (Y.S.)
| | - Zihui Wang
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Xuelian Zou
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (S.Z.); (X.Z.); (Y.S.)
| | - Yuqing She
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (S.Z.); (X.Z.); (Y.S.)
| | - Rong Zhao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China; (M.S.); (L.X.)
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (S.Z.); (X.Z.); (Y.S.)
| |
Collapse
|
2
|
Sharma N, Sharma A, Park M, Lee HJ. Silkworm-derived carbon nano rods (swCNR) for detection of bismuth ions (Bi 3+) in aquatic medium and their antiradical properties. Heliyon 2024; 10:e33572. [PMID: 39040249 PMCID: PMC11261021 DOI: 10.1016/j.heliyon.2024.e33572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/26/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
The extensive utilization of bismuth and its derivatives in many industries, such as chemical, semiconductor, pharmaceutical, and cosmetics, leads to their accumulation in wastewater, posing a risk to both human health and the environment. Carbon nanorods (CNR) are fluorescent nanoparticles with an ability to detect various analytes as sensing probes. This study focuses on the production, structure, and chemical composition characterization of silkworm-derived CNR (swCNR) and their ability to detect bismuth ions (Bi3+) and inhibit radicals. The optimum wavelength for exciting the fluorescence of swCNR was 370 nm, and the resulting emission peak was observed at 436 nm. The prepared swCNR showed static fluorescence quenching mechanism-based sensing of Bi3+ ions with a limit of detection of 175 nM and two linear ranges from 0.5 to 5 μM (R2 = 0.9997) and 10-50 μM (R2 = 0.9995). The swCNR demonstrated high selectivity in detecting Bi3+ ions in the spiked river water samples, thus establishing the swCNR's role as a nano fluorescence probe designed for the selective detection of Bi3+ ions among other metal ions. Favorable results for the antiradical ability of swCNR were obtained against hydroxyl, 2,2 diphenyl-1 picrylhydrazyl, and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radicals with scavenging percentages of 15, 32, and 90, respectively. The possible applications of swCNR in the environmental and antioxidant sectors are proposed in this study.
Collapse
Affiliation(s)
- Neha Sharma
- College of Bionanotechnology, Department of Food and Nutrition, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Anshul Sharma
- College of Bionanotechnology, Department of Food and Nutrition, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Miey Park
- College of Bionanotechnology, Department of Food and Nutrition, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Hae-Jeung Lee
- College of Bionanotechnology, Department of Food and Nutrition, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea
| |
Collapse
|
3
|
Khamis A, Mahmoud AS, El Naga AOA, Shaban SA, Youssef NA. Activation of peroxymonosulfate with ZIF-67-derived Co/N-doped porous carbon nanocubes for the degradation of Congo red dye. Sci Rep 2024; 14:12313. [PMID: 38811620 PMCID: PMC11137160 DOI: 10.1038/s41598-024-62029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
In this study, porous carbon nanocubes encapsulated magnetic metallic Co nanoparticles (denoted as Co@N-PCNC) was prepared via pyrolyzing ZIF-67 nanocubes precursor at 600 °C and characterized by various technologies. It was used to activate peroxymonosulfate (PMS) to degrade Congo red (CR) dye efficiently. Over 98.45% of 50 mg L-1 CR was degraded using 0.033 mM PMS activated by 75 mg L-1 Co@N-PCNC within 12 min. The free radical quenching experiments were performed to reveal the nature of the reactive oxygen species radicals generated throughout the catalytic oxidation of CR. The effects of common inorganic anions and the water matrix on CR removal were studied. Moreover, the results of the kinetic study revealed the suitability of the pseudo-first-order and Langmuir-Hinshelwood kinetic models for illustrating CR degradation using the Co@N-PCNC/PMS system. Ultimately, the Co@N-PCNC displayed good operational stability, and after five cycles, the CR removal rate can still maintain over 90% after 12 min.
Collapse
Affiliation(s)
- Aya Khamis
- Chemistry Department, Faculty of Women, Ain Shams University, Cairo, Egypt
| | - Aya S Mahmoud
- Chemistry Department, Faculty of Women, Ain Shams University, Cairo, Egypt
| | - Ahmed O Abo El Naga
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Seham A Shaban
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Nadia A Youssef
- Chemistry Department, Faculty of Women, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Gupta S, Sharma N, Arora S, Verma S. Diabetes: a review of its pathophysiology, and advanced methods of mitigation. Curr Med Res Opin 2024; 40:773-780. [PMID: 38512073 DOI: 10.1080/03007995.2024.2333440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Diabetes mellitus (DM) is a long-lasting metabolic non-communicable disease often characterized by an increase in the level of glucose in the blood or hyperglycemia. Approximately, 415 million people between the ages of 20 and 79 years had DM in 2015 and this figure will rise by 200 million by 2040. In a study conducted by CARRS, it's been found that in Delhi the prevalence of diabetes is around 27% and for prediabetic cases, it is more than 46%. The disease DM can be both short-term and long-term and is often associated with one or more diseases like cardiovascular disease, liver disorder, or kidney malfunction. Early identification of diabetes may help avoid catastrophic repercussions because untreated DM can result in serious complications. Diabetes' primary symptoms are persistently high blood glucose levels, frequent urination, increased thirst, and increased hunger. Therefore, DM is classified into four major categories, namely, Type 1, Type 2, Gestational diabetes, and secondary diabetes. There are various oral and injectable formulations available in the market like insulin, biguanides, sulphonylureas, etc. for the treatment of DM. Recent attention can be given to the various nano approaches undertaken for the treatment, diagnosis, and management of diabetes mellitus. Various nanoparticles like Gold Nanoparticles, carbon nanomaterials, and metallic nanoparticles are some of the approaches mentioned in this review. Besides nanotechnology, artificial intelligence (AI) has also found its application in diabetes care. AI can be used for screening the disease, helping in decision-making, predictive population-level risk stratification, and patient self-management tools. Early detection and diagnosis of diabetes also help the patient avoid expensive treatments later in their life with the help of IoT (internet of medical things) and machine learning models. These tools will help healthcare physicians to predict the disease early. Therefore, the Nano drug delivery system along with AI tools holds a very bright future in diabetes care.
Collapse
Affiliation(s)
- Sarika Gupta
- Centre for Pharmaceutics, Industrial Pharmacy and Drugs Regulatory Affairs, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Nitin Sharma
- Centre for Pharmaceutics, Industrial Pharmacy and Drugs Regulatory Affairs, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Sandeep Arora
- Centre for Pharmaceutics, Industrial Pharmacy and Drugs Regulatory Affairs, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh Verma
- Centre for Pharmaceutics, Industrial Pharmacy and Drugs Regulatory Affairs, Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
5
|
Das GS, Tripathi VK, Dwivedi J, Jangir LK, Tripathi KM. Nanocarbon-based sensors for the structural health monitoring of smart biocomposites. NANOSCALE 2024; 16:1490-1525. [PMID: 38186362 DOI: 10.1039/d3nr05522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Structural health monitoring (SHM) is a critical aspect of ensuring the safety and durability of smart biocomposite materials used as multifunctional materials. Smart biocomposites are composed of renewable or biodegradable materials and have emerged as eco-friendly alternatives of traditional non-biodegradable glass fiber-based composite materials. Although biocomposites exhibit fascinating properties and many desirable traits, real-time and early stage SHM is the most challenging issue to enable their long-term use. Smart biocomposites are integrated with sensors for in situ identification of the progress of damage and composite failure. The sensitivity of such smart biocomposites is a key functionality, which can be tuned by the introduction of an appropriate filler. In particular, nanocarbons hold promising potential to be incorporated in SHM applications of biocomposites. This review focused on the potential applications of nanocarbons in SHM of biocomposites. The aspects related to fabrication techniques and working mechanism of sensors are comprehensively discussed. Furthermore, their unique mechanical and electrical properties and sustainable nature ensure seamless integration into biocomposites, allowing for real-time monitoring without compromising the material's properties. These sensors offer multi-parameter sensing capabilities, such as strain, pressure, humidity, temperature, and chemical exposure, allowing a comprehensive assessment of biocomposite health. Additionally, their durability and longevity in harsh conditions, along with wireless connectivity options, provide cost-effective and sustainable SHM solutions. As research in this field advances, ongoing efforts seek to enhance the sensitivity and selectivity of these sensors, optimizing their performance for real-world applications. This review highlights the significant advances, ongoing efforts to enhance the sensitivity and selectivity, and performance optimization of nanocarbon-based sensors along with their working mechanism in the field of SHM for smart biocomposites. The key challenges and future research perspectives facing the conversion of nanocarbons to smart biocomposites are also displayed.
Collapse
Affiliation(s)
- Gouri Sankar Das
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India. kumud@
| | - Vijayendra Kumar Tripathi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan-304022, India
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Jaya Dwivedi
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Lokesh Kumar Jangir
- Department of Chemistry, Indian Institute of Technology BHU, Varanasi-221005, India.
| | - Kumud Malika Tripathi
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India. kumud@
| |
Collapse
|
6
|
Sharma A, Choi HK, Lee HJ. Carbon Dots for the Treatment of Inflammatory Diseases: An Appraisal of In Vitro and In Vivo Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3076119. [PMID: 37273553 PMCID: PMC10234732 DOI: 10.1155/2023/3076119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/16/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023]
Abstract
In recent decades, several studies demonstrating various applications of carbon dots (C-dots), including metal sensing, bioimaging, pH sensing, and antimicrobial activities, have been published. Recent developments have shifted this trend toward biomedical applications that target various biomarkers relevant to chronic diseases. However, relevant developments and research results regarding the anti-inflammatory properties of C-dots against inflammation-associated diseases have not been systematically reviewed. Hence, this review discusses the anti-inflammatory effects of C-dots in in vivo and in vitro models of LPS-induced inflammation, gout, cartilage tissue engineering, drug-induced inflammation, spinal cord injury, wound healing, liver diseases, stomach cancer, gastric ulcers, acute kidney and lung injury, psoriasis, fever or hypothermia, and bone tissue regeneration. The compiled studies demonstrate the promising potential of C-dots as anti-inflammatory agents for the development of new drugs.
Collapse
Affiliation(s)
- Anshul Sharma
- College of Bionanotechnology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea 55365
| | - Hae-Jeung Lee
- College of Bionanotechnology, Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
7
|
Lu Y, Xu H, Wei S, Jiang F, Zhang J, Ge Y, Li Z. In situ doping lignin-derived carbon quantum dots on magnetic hydrotalcite for enhanced degradation of Congo Red over a wide pH range and simultaneous removal of heavy metal ions. Int J Biol Macromol 2023; 239:124303. [PMID: 37019204 DOI: 10.1016/j.ijbiomac.2023.124303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
A new N, S-CQDs@Fe3O4@HTC composite was prepared by loading N, S carbon quantum dots (N, S-CQDs) derived from lignin on magnetic hydrotalcite (HTC) via an in-situ growth method. The characterization results showed that the catalyst had a mesoporous structure. These pores facilitate the diffusion and mass transfer of pollutant molecules inside the catalyst, allowing them to approach the active site smoothly. The catalyst performed well in the UV degradation of Congo red (CR) over a wide pH range (3-11), with efficiencies over 95.43 % in all cases. Even at a high NaCl content (100 g/L), the catalyst showed extraordinary CR degradation (99.30 %). ESR analysis and free radical quenching experiments demonstrated that OH and O2- were the main active species governing CR degradation. Besides, the composite had outstanding removal efficiency for Cu2+ (99.90 %) and Cd2+ (85.08 %) simultaneously due to the electrostatic attraction between the HTC and metal ions. Moreover, the N, S-CQDs@Fe3O4@HTC had excellent stability and recyclability during five cycles, making it free of secondary contamination. This work provides a new environment-friendly catalyst for the simultaneous removal of multiple pollutants and a waste-to-waste strategy for the value-added utilization of lignin.
Collapse
|
8
|
Hanif S, Javed R, Khan A, Sajjad A, Zia M. IAA-decorated CuO nanocarriers significantly improve Chickpea growth by increasing antioxidative activities. 3 Biotech 2023; 13:104. [PMID: 36875960 PMCID: PMC9975142 DOI: 10.1007/s13205-023-03516-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Plant growth regulators tagged on metallic oxide nanoparticles (NPs) may function as nanofertilizers with reduced toxicity of NPs. CuO NPs were synthesized to function as nanocarriers of Indole-3-acetic acid (IAA). Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed 30.4 nm size of NPs and sheet-like structure, respectively, of CuO-IAA NPs. Fourier-transform infrared spectroscopy (FTIR) confirmed CuO-IAA formation. IAA-decorated CuO NPs enhanced the physiological parameters of Chickpea plants, i.e., root length, shoot length, and biomass compared to naked CuO NPs. The variation in physiological response was due to change of phytochemical contents in plants. Phenolic content increased up to 17.98 and 18.13 µgGAE/mg DW at 20 and 40 mg/L of CuO-IAA NPs, respectively. However, significant decrease in antioxidant enzymes' activity was recorded compared to control. Presence of CuO-IAA NPs increased the reducing potential of plants at higher concentration of NPs, while decrease in total antioxidant response was observed. This study concludes that IAA conjugation to CuO NPs reduces toxicity of NPs. Furthermore, NPs can be explored as nanocarriers for plant modulators and slow release in future studies.
Collapse
Affiliation(s)
- Saad Hanif
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Rabia Javed
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, NF A2H 5G4 Canada
| | - Aisha Khan
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| |
Collapse
|
9
|
Aggarwal R, Garg AK, Saini D, Sonkar SK, Sonker AK, Westman G. Cellulose Nanocrystals Derived from Microcrystalline Cellulose for Selective Removal of Janus Green Azo Dye. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ruchi Aggarwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur302017, India
| | - Anjali Kumari Garg
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur302017, India
| | - Amit Kumar Sonker
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg41296, Sweden
- Wallenberg Wood Science Center (WWSC), Chalmers University of Technology, Gothenburg41296, Sweden
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg41296, Sweden
- Wallenberg Wood Science Center (WWSC), Chalmers University of Technology, Gothenburg41296, Sweden
| |
Collapse
|
10
|
Chakraborty P, Krishnani KK. Emerging bioanalytical sensors for rapid and close-to-real-time detection of priority abiotic and biotic stressors in aquaculture and culture-based fisheries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156128. [PMID: 35605873 DOI: 10.1016/j.scitotenv.2022.156128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses of various chemical contamination of physical, inorganic, organic and biotoxin origin and biotic stresses of bacterial, viral, parasitic and fungal origins are the significant constraints in achieving higher aquaculture production. Testing and rapid detection of these chemical and microbial contaminants are crucial in identifying and mitigating abiotic and biotic stresses, which has become one of the most challenging aspects in aquaculture and culture-based fisheries. The classical analytical techniques, including titrimetric methods, spectrophotometric, mass spectrometric, spectroscopic, and chromatographic techniques, are tedious and sometimes inaccessible when required. The development of novel and improved bioanalytical methods for rapid, selective and sensitive detection is a wide and dynamic field of research. Biosensors offer precise detection of biotic and abiotic stressors in aquaculture and culture-based fisheries within no time. This review article allows filling the knowledge gap for detection and monitoring of chemical and microbial contaminants of abiotic and biotic origin in aquaculture and culture-based fisheries using nano(bio-) analytical technologies, including nano(bio-)molecular and nano(bio-)sensing techniques.
Collapse
Affiliation(s)
- Puja Chakraborty
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India
| | - K K Krishnani
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India.
| |
Collapse
|