1
|
Vinken M, Grimm D, Baatout S, Baselet B, Beheshti A, Braun M, Carstens AC, Casaletto JA, Cools B, Costes SV, De Meulemeester P, Doruk B, Eyal S, Ferreira MJS, Miranda S, Hahn C, Helvacıoğlu Akyüz S, Herbert S, Krepkiy D, Lichterfeld Y, Liemersdorf C, Krüger M, Marchal S, Ritz J, Schmakeit T, Stenuit H, Tabury K, Trittel T, Wehland M, Zhang YS, Putt KS, Zhang ZY, Tagle DA. Taking the 3Rs to a higher level: replacement and reduction of animal testing in life sciences in space research. Biotechnol Adv 2025; 81:108574. [PMID: 40180136 PMCID: PMC12048243 DOI: 10.1016/j.biotechadv.2025.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Human settlements on the Moon, crewed missions to Mars and space tourism will become a reality in the next few decades. Human presence in space, especially for extended periods of time, will therefore steeply increase. However, despite more than 60 years of spaceflight, the mechanisms underlying the effects of the space environment on human physiology are still not fully understood. Animals, ranging in complexity from flies to monkeys, have played a pioneering role in understanding the (patho)physiological outcome of critical environmental factors in space, in particular altered gravity and cosmic radiation. The use of animals in biomedical research is increasingly being criticized because of ethical reasons and limited human relevance. Driven by the 3Rs concept, calling for replacement, reduction and refinement of animal experimentation, major efforts have been focused in the past decades on the development of alternative methods that fully bypass animal testing or so-called new approach methodologies. These new approach methodologies range from simple monolayer cultures of individual primary or stem cells all up to bioprinted 3D organoids and microfluidic chips that recapitulate the complex cellular architecture of organs. Other approaches applied in life sciences in space research contribute to the reduction of animal experimentation. These include methods to mimic space conditions on Earth, such as microgravity and radiation simulators, as well as tools to support the processing, analysis or application of testing results obtained in life sciences in space research, including systems biology, live-cell, high-content and real-time analysis, high-throughput analysis, artificial intelligence and digital twins. The present paper provides an in-depth overview of such methods to replace or reduce animal testing in life sciences in space research.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sarah Baatout
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium; Department of Molecular Biotechnology, Gent University, Gent, Belgium
| | - Bjorn Baselet
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Afshin Beheshti
- Center of Space Biomedicine, McGowan Institute for Regenerative Medicine, and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Markus Braun
- German Space Agency, German Aerospace Center, Bonn, Germany
| | | | - James A Casaletto
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Ben Cools
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium; Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Sylvain V Costes
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Phoebe De Meulemeester
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bartu Doruk
- Space Applications Services NV/SA, Sint-Stevens-Woluwe, Belgium; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Silvana Miranda
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium; Department of Molecular Biotechnology, Gent University, Gent, Belgium
| | - Christiane Hahn
- European Space Agency, Human and Robotic Exploration Programmes, Human Exploration Science team, Noordwijk, the Netherlands
| | - Sinem Helvacıoğlu Akyüz
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Herbert
- Space Systems, Airbus Defence and Space, Immenstaad am Bodensee, Germany
| | - Dmitriy Krepkiy
- Office of Special Initiatives, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yannick Lichterfeld
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Christian Liemersdorf
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jette Ritz
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Theresa Schmakeit
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Hilde Stenuit
- Space Applications Services NV/SA, Sint-Stevens-Woluwe, Belgium
| | - Kevin Tabury
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Torsten Trittel
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany; Department of Engineering, Brandenburg University of Applied Sciences, Brandenburg an der Havel, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Yu Shrike Zhang
- Division of Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA; Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Danilo A Tagle
- Office of Special Initiatives, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Marotta D, Ward N, Bauer SR, Hunsberger J, Stoudemire J, Savin K, Giulianotti M, Jamieson CHM, Roberts D, Roberts M. Biomanufacturing in low Earth orbit: A paradigm shift. Stem Cell Reports 2025:102536. [PMID: 40541172 DOI: 10.1016/j.stemcr.2025.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 05/20/2025] [Accepted: 05/21/2025] [Indexed: 06/22/2025] Open
Abstract
This perspective article explores the transformative potential of biomanufacturing in low Earth orbit (LEO) for regenerative medicine. Building on key symposia and workshops, it highlights the International Space Station (ISS) National Laboratory's role in advancing tissue engineering through microgravity research. The article discusses breakthroughs in stem cell therapies, disease modeling, and automation, while emphasizing the need for collaboration, investment, and emerging technologies like AI and machine learning. Insights from the scientific community and market analyses point to a rapidly growing sector. Strategic partnerships and policy support will be essential to scale space-based biomanufacturing and unlock new therapeutic possibilities for patients on Earth.
Collapse
Affiliation(s)
- Davide Marotta
- International Space Station National Laboratory, Melbourne, Florida, USA.
| | - Noor Ward
- International Space Station National Laboratory, Melbourne, Florida, USA
| | - Steven R Bauer
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Joshua Hunsberger
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | - Donna Roberts
- International Space Station National Laboratory, Melbourne, Florida, USA
| | - Michael Roberts
- International Space Station National Laboratory, Melbourne, Florida, USA
| |
Collapse
|
3
|
König NF, Reuter M, Reuß M, Kromer CSF, Herder M, Garmshausen Y, Asfari B, Israel E, Vasconcelos Lima L, Puvati N, Leonhard J, Madalo L, Heuschkel S, Engelhard M, Arzhangnia Y, Radzinski D. Xolography for 3D Printing in Microgravity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413391. [PMID: 39670699 DOI: 10.1002/adma.202413391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/27/2024] [Indexed: 12/14/2024]
Abstract
Xolography is a volumetric 3D printing technique utilizing intersecting light beams within a volume of photopolymer for a spatially controlled photopolymerization. Unlike layer-based methods, Xolography creates structures continuously within a closed photopolymer vat, eliminating the prevalent need for support structures and allowing full geometrical freedom at high printing speeds. The volumetric working principle does not rely on gravity, making Xolography an outstanding technology for additive manufacturing under microgravity conditions as illustrated in a set of experiments during a parabolic flight campaign. The microgravity environment obviates the need for rheology control of resins, enabling the use of low-viscosity formulations (e.g., 11 mPa s) while maintaining the fast and precise 3D printing of acrylic polymer resins and hydrogels. Xolography's speed and reliability facilitate rapid iterations of a print task between Earth's gravity and microgravity conditions. This capability positions Xolography as an ideal tool for material research and manufacturing in space, offering significant cost and efficiency advantages over traditional methods.
Collapse
Affiliation(s)
| | | | - Marvin Reuß
- xolo GmbH, Volmerstraße 9B, 12489, Berlin, Germany
| | | | | | | | - Baraa Asfari
- xolo GmbH, Volmerstraße 9B, 12489, Berlin, Germany
| | - Eric Israel
- xolo GmbH, Volmerstraße 9B, 12489, Berlin, Germany
| | | | | | | | - Linos Madalo
- xolo GmbH, Volmerstraße 9B, 12489, Berlin, Germany
| | | | | | | | | |
Collapse
|
4
|
van den Nieuwenhof DWA, Moroni L, Chou J, Hinkelbein J. Cellular response in three-dimensional spheroids and tissues exposed to real and simulated microgravity: a narrative review. NPJ Microgravity 2024; 10:102. [PMID: 39505879 PMCID: PMC11541851 DOI: 10.1038/s41526-024-00442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
The rising aging population underscores the need for advances in tissue engineering and regenerative medicine. Alterations in cellular response in microgravity might be pivotal in unraveling the intricate cellular mechanisms governing tissue and organ regeneration. Microgravity could improve multicellular spheroid, tissue, and organ formation. This review summarizes microgravity-induced cellular alterations and highlights the potential of tissue engineering in microgravity for future breakthroughs in space travel, transplantation, drug testing, and personalized medicine.
Collapse
Affiliation(s)
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - Joshua Chou
- University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Jochen Hinkelbein
- Department of Anesthesiology, Intensive Care Medicine and Emergency Medicine, Johannes Wesling Klinikum Minden, University Hospital Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Klarmann GJ, Rogers AJ, Gilchrist KH, Ho VB. 3D bioprinting meniscus tissue onboard the International Space Station. LIFE SCIENCES IN SPACE RESEARCH 2024; 43:82-91. [PMID: 39521498 DOI: 10.1016/j.lssr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
We bioprinted meniscus tissue on the International Space Station (ISS) using the onboard BioFabrication Facility (BFF). The three dimensional (3D) printing bioink, cells, culture media and fixative were delivered to the ISS on NG-18 and SpX-27 vehicles and stored prior to the printing operation. The meniscus tissue was fabricated from ink composed of collagens type I and II, chondroitin sulfate and mesenchymal stem cells. Following printing, the meniscus tissue was cultured for 2 weeks in growth media, then stored at 4 °C and returned to earth for analysis. The print showed good overall shape fidelity, and dimensions were comparable to control meniscus tissue printed on Earth. Young's modulus of the ISS printed meniscus was approximately 4-fold lower than the control. Histologic evaluation showed good cell distribution within the print. Though logistical challenges were encountered during payload delivery to the ISS and operational challenges limited the cell culture portion of this study, this investigation demonstrated the feasibility for 3D printed musculoskeletal tissue in microgravity. The completed meniscus tissue print is the largest tissue engineered model 3D printed on the ISS to date, the first to be 3D bioprinted using an ink similar in composition to native tissue, and the first to be fabricated on the ISS in an anatomically relevant shape. These experiments help advance the field of tissue engineering in low or microgravity where 3D bioprinting may have a role in future long term space flight or extraterrestrial habitation.
Collapse
Affiliation(s)
- George J Klarmann
- 4D Bio³ Center for Biotechnology, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; The Geneva Foundation, Tacoma, WA, USA.
| | | | - Kristin H Gilchrist
- 4D Bio³ Center for Biotechnology, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; The Geneva Foundation, Tacoma, WA, USA
| | - Vincent B Ho
- 4D Bio³ Center for Biotechnology, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
6
|
Lemos MFL. Beyond Earth: Harnessing Marine Resources for Sustainable Space Colonization. Mar Drugs 2024; 22:481. [PMID: 39590761 PMCID: PMC11595546 DOI: 10.3390/md22110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
The quest for sustainable space exploration and colonization is a challenge in its infancy, which faces scarcity of resources and an inhospitable environment. In recent years, advancements in space biotechnology have emerged as potential solutions to the hurdles of prolonged space habitation. Taking cues from the oceans, this review focuses on the sundry types of marine organisms and marine-derived chemicals that have the potential of sustaining life beyond planet Earth. It addresses how marine life, including algae, invertebrates, and microorganisms, may be useful in bioregenerative life support systems, food production, pharmaceuticals, radiation shielding, energy sources, materials, and other applications in space habitats. With the considerable and still unexplored potential of Earth's oceans that can be employed in developing space colonization, we allow ourselves to dream of the future where people can expand to other planets, not only surviving but prospering. Implementing the blend of marine and space sciences is a giant leap toward fulfilling man's age-long desire of conquering and colonizing space, making it the final frontier.
Collapse
Affiliation(s)
- Marco F L Lemos
- MARE-Marine and Environmental Sciences Centre, ARNET-Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
7
|
Mo X, Zhang Y, Wang Z, Zhou X, Zhang Z, Fang Y, Fan Z, Guo Y, Zhang T, Xiong Z. Satellite-Based On-Orbit Printing of 3D Tumor Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309618. [PMID: 38145905 DOI: 10.1002/adma.202309618] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Space three dimension (3D) bioprinting provides a precise and bionic tumor model for evaluating the compound effect of the space environment on tumors, thereby providing insight into the progress of the disease and potential treatments. However, space 3D bioprinting faces several challenges, including prelaunch uncertainty, possible liquid leakage, long-term culture in space, automatic equipment control, data acquisition, and transmission. Here, a novel satellite-based 3D bioprinting device with high structural strength, small volume, and low weight (<6 kg) is developed. A microgel-based biphasic thermosensitive bioink and suspension medium that supports the on-orbit printing and in situ culture of complex tumor models is developed. An intelligent control algorithm that enables the automatic control of 3D printing, autofocusing, fluorescence imaging, and data transfer back to the ground is developed. To the authors' knowledge, this is the first time that on-orbit printing of tumor models is achieved in space with stable morphology and moderate viability via a satellite. It is found that 3D tumor models are more sensitive to antitumor drugs in space than on Earth. This study opens up a new avenue for 3D bioprinting in space and offers new possibilities for future research in space life science and medicine.
Collapse
Affiliation(s)
- Xingwu Mo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yanmei Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zixuan Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Xianhao Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhenrui Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zilian Fan
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yihan Guo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Chandra DK, Reis RL, Kundu SC, Kumar A, Mahapatra C. Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine. ACS Biomater Sci Eng 2024; 10:4145-4174. [PMID: 38822783 DOI: 10.1021/acsbiomaterials.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.
Collapse
Affiliation(s)
- Dilip Kumar Chandra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| |
Collapse
|
9
|
Sun Y, Li C, Xu Z, Cao Y, Sheng H, Wang ZL, Cao LNY. Conformable Multifunctional Space Fabric by Metal 3D Printing for Collision Hazard Protection and Self-Powered Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38019043 DOI: 10.1021/acsami.3c15232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The monitoring of space debris assumes paramount significance to ensure the sustainability and security of space activities as well as underground bases in outer space. However, designing a wide range monitoring system with easy fabrication, low power, and high precision remains an urgent challenge under the scarcity of materials and extreme environment conditions of outer space. Here, we designed a one-piece, robust, but flexible, and repairable 3D metal-printed triboelectric nanogenerator (FR-TENG) by incorporating the advantages of standardization and customization of outer space 3D metal printing. Inspired by the structure of hexagonal and pangolin scales, a curved structure is ingeniously applied in the design of 3D printed metal to adapt different curved surfaces while maintaining superior compressive strength, providing excellent flexibility and shape adaptability. Benefiting from the unique structural design, the FR-TENG has a minimum length of 1 cm with a weight of only 3.5 g and the minimum weight resolution detected of 9.6 g, with a response time of 20 ms. Furthermore, a multichannel self-powered collision monitoring system has been developed to monitor minor collisions, providing warnings to determine potential impacts on the space station and bases surfaces. The system may contribute to ensuring the successful completion of space missions and providing a safer space environment for the exploration of extraterrestrial life and the establishment of underground protective bases.
Collapse
Affiliation(s)
- Yanshuo Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengyu Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zijie Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaxing Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hengrui Sheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, Guangxi, P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Leo N Y Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Cordonier GJ, Anderson K, Butts R, O’Hara R, Garneau R, Wimer N, Kuhlman JM, Sierros KA. Direct Writing of a Titania Foam in Microgravity for Photocatalytic Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47745-47753. [PMID: 37767972 PMCID: PMC10571002 DOI: 10.1021/acsami.3c09658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
This work explores the potential for additive manufacturing to be used to fabricate ultraviolet light-blocking or photocatalytic materials with in situ resource utilization, using a titania foam as a model system. Direct foam writing was used to deposit titania-based foam lines in microgravity using parabolic flight. The wet foam was based on titania primary particles and a titania precursor (Ti (IV) bis(ammonium lactato) dihydroxide). Lines were also printed in Earth gravity and their resulting properties were compared with regard to average cross-sectional area, height, and width. The cross-sectional height was found to be higher when printing at low speeds in microgravity compared to Earth gravity, but lower when printing at high speeds in microgravity compared to Earth gravity. It was also observed that volumetric flow rate was generally higher when writing in Earth gravity compared to microgravity. Additionally, heterogeneous photocatalytic degradation of methylene blue was studied to characterize the foams for water purification and was found to generally increase as the foam heat treatment temperature increased. Optical and scanning electron microscopies were used to observe foam morphology. X-ray diffraction spectroscopy was used to study the change in crystallinity with respect to temperature. Contact angle of water was found to increase on the surface of the foam as ultraviolet light exposure time increased. Additionally, the foam blocked more ultraviolet light over time when exposed to ultraviolet radiation. Finally, bubble coarsening measurements were taken to observe bubble radius growth over time.
Collapse
Affiliation(s)
- G. Jacob Cordonier
- Department
of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Kyleigh Anderson
- Department
of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ronan Butts
- Department
of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ross O’Hara
- Department
of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Renee Garneau
- Department
of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Nathanael Wimer
- Department
of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - John M. Kuhlman
- Department
of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Konstantinos A. Sierros
- Department
of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
11
|
Frankowski J, Kurzątkowska M, Sobczak M, Piotrowska U. Utilization of 3D bioprinting technology in creating human tissue and organoid models for preclinical drug research - State-of-the-art. Int J Pharm 2023; 644:123313. [PMID: 37579828 DOI: 10.1016/j.ijpharm.2023.123313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Rapid development of tissue engineering in recent years has increased the importance of three-dimensional (3D) bioprinting technology as novel strategy for fabrication functional 3D tissue and organoid models for pharmaceutical research. 3D bioprinting technology gives hope for eliminating many problems associated with traditional cell culture methods during drug screening. However, there is a still long way to wider clinical application of this technology due to the numerous difficulties associated with development of bioinks, advanced printers and in-depth understanding of human tissue architecture. In this review, the work associated with relatively well-known extrusion-based bioprinting (EBB), jetting-based bioprinting (JBB), and vat photopolymerization bioprinting (VPB) is presented and discussed with the latest advances and limitations in this field. Next we discuss state-of-the-art research of 3D bioprinted in vitro models including liver, kidney, lung, heart, intestines, eye, skin as well as neural and bone tissue that have potential applications in the development of new drugs.
Collapse
Affiliation(s)
- Joachim Frankowski
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Matylda Kurzątkowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Urszula Piotrowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland.
| |
Collapse
|
12
|
Sarabi MR, Karagoz AA, Yetisen AK, Tasoglu S. 3D-Printed Microrobots: Translational Challenges. MICROMACHINES 2023; 14:1099. [PMID: 37374684 DOI: 10.3390/mi14061099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023]
Abstract
The science of microrobots is accelerating towards the creation of new functionalities for biomedical applications such as targeted delivery of agents, surgical procedures, tracking and imaging, and sensing. Using magnetic properties to control the motion of microrobots for these applications is emerging. Here, 3D printing methods are introduced for the fabrication of microrobots and their future perspectives are discussed to elucidate the path for enabling their clinical translation.
Collapse
Affiliation(s)
| | - Ahmet Agah Karagoz
- School of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Türkiye
- Koç University Is Bank Artificial Intelligence Lab (KUIS AI Lab), Koç University, Istanbul 34450, Türkiye
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Savas Tasoglu
- Koç University Is Bank Artificial Intelligence Lab (KUIS AI Lab), Koç University, Istanbul 34450, Türkiye
- School of Mechanical Engineering, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Türkiye
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Türkiye
| |
Collapse
|