1
|
Wiseman J, Basit RH, Suto A, Middya S, Kabiri B, Evans M, George V, Adams C, Malliaras G, Chari DM. A macro-transection model of brain trauma for neuromaterial testing with functional electrophysiological readouts. Neural Regen Res 2025; 20:3539-3552. [PMID: 39820327 PMCID: PMC11974669 DOI: 10.4103/nrr.nrr-d-24-00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 11/30/2024] [Indexed: 01/19/2025] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202512000-00024/figure1/v/2025-01-31T122243Z/r/image-tiff Functional recovery in penetrating neurological injury is hampered by a lack of clinical regenerative therapies. Biomaterial therapies show promise as medical materials for neural repair through immunomodulation, structural support, and delivery of therapeutic biomolecules. However, a lack of facile and pathology-mimetic models for therapeutic testing is a bottleneck in neural tissue engineering research. We have deployed a two-dimensional, high-density multicellular cortical brain sheet to develop a facile model of injury (macrotransection/scratch wound) in vitro . The model encompasses the major neural cell types involved in pathological responses post-injury. Critically, we observed hallmark pathological responses in injury foci including cell scarring, immune cell infiltration, precursor cell migration, and short-range axonal sprouting. Delivering test magnetic particles to evaluate the potential of the model for biomaterial screening shows a high uptake of introduced magnetic particles by injury-activated immune cells, mimicking in vivo findings. Finally, we proved it is feasible to create reproducible traumatic injuries in the brain sheet (in multielectrode array devices in situ ) characterized by focal loss of electrical spiking in injury sites, offering the potential for longer term, electrophysiology plus histology assays. To our knowledge, this is the first in vitro simulation of transecting injury in a two-dimensional multicellular cortical brain cell sheet, that allows for combined histological and electrophysiological readouts of damage/repair. The patho-mimicry and adaptability of this simplified model of brain injury could benefit the testing of biomaterial therapeutics in regenerative neurology, with the option for functional electrophysiological readouts.
Collapse
Affiliation(s)
- Jessica Wiseman
- School of Medicine, Keele University, Newcastle-under-Lyme, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Raja Haseeb Basit
- School of Medicine, Keele University, Newcastle-under-Lyme, UK
- Academic Department of Surgery, Queen Elizabeth Hospital & University of Birmingham, Edgbaston, UK
| | - Akihiro Suto
- Guy Hilton Research Center, School of Pharmacy & Bioengineering, Keele University, Newcastle-under-Lyme, UK
| | - Sagnik Middya
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Bushra Kabiri
- School of Medicine, Keele University, Newcastle-under-Lyme, UK
| | - Michael Evans
- School of Life Sciences, Keele University, Newcastle-under-Lyme, UK
| | - Vinoj George
- Guy Hilton Research Center, School of Pharmacy & Bioengineering, Keele University, Newcastle-under-Lyme, UK
| | | | - George Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
2
|
Hajinejad M, Far BF, Gorji A, Sahab-Negah S. The effects of self-assembling peptide on glial cell activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1391-1402. [PMID: 39305327 DOI: 10.1007/s00210-024-03415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/26/2024] [Indexed: 02/14/2025]
Abstract
Glial cells play a critical role in the healthy and diseased phases of the central nervous system (CNS). CNS diseases involve a wide range of pathological conditions characterized by poor recovery of neuronal function. Glial cell-related target therapies are progressively gaining interest in inhibiting secondary injury-related death. Modulation of the extracellular matrix by artificial scaffolds plays a critical role in the behavior of glial cells after injury. Among numerous types of scaffolds, self-assembling peptides (SAPs) notably give attention to the design of a proper biophysical and biomechanical microenvironment for cellular homeostasis and tissue regeneration. Implementing SAPs in an injured brain can induce neural differentiation in transplanted stem cells, reducing inflammation and inhibiting glial scar formation. In this review, we investigate the recent findings to elucidate the pivotal role of SAPs in orchestrating the most pivotal secondary response following CNS injury. Notably, we explore their impact on the activation of glial cells and their modulatory effects on microglial and astrocytic polarization.
Collapse
Affiliation(s)
- Mehrdad Hajinejad
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Epilepsy Research Center, Neurosurgery Department, Münster University, Münster, Germany
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
3
|
He X, Lei M, Chen X, Xu F, Liu H, Wei Z. Dynamic Hydrogel-Based Strategy for Traumatic Brain Injury Modeling and Therapy. CNS Neurosci Ther 2025; 31:e70148. [PMID: 39788897 PMCID: PMC11717553 DOI: 10.1111/cns.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most traumatizing and poses serious health risks to people's bodies due to its unique pathophysiological characteristics. The investigations on the pathological mechanism and valid interventions of TBI have attracted widespread attention worldwide. With bio-mimic mechanic cues, the dynamic hydrogels with dynamic stiffness changes or reversible crosslinking have been suggested to construct the in vitro disease models or novel therapeutic agents for TBI. However, there is a lack of clarification on the dynamic hydrogels currently reported and their biomedical applications on TBI. Our review starts with introducing the native mechanical characters and changes in TBI and then summarizes the common chemical strategies of the dynamic hydrogels with dynamically tunable stiffness and reversible networks for in vitro modeling and therapy. Finally, we prospect the future development of dynamic hydrogels in the mechanical modeling of TBI, providing new mechanical insights for TBI and guidance for tailored brain-targeted biomaterials.
Collapse
Affiliation(s)
- Xin He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher EducationZunyiPeople's Republic of China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xuewen Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Heng Liu
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher EducationZunyiPeople's Republic of China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
4
|
Wiseman JP, Chari DM. Neural Cell Interactions with a Surgical Grade Biomaterial Using a Simulated Injury in Brain Organotypic Slices. J Funct Biomater 2024; 15:362. [PMID: 39728162 DOI: 10.3390/jfb15120362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Tissue engineering research for neurological applications has demonstrated that biomaterial-based structural bridges present a promising approach for promoting regeneration. This is particularly relevant for penetrating traumatic brain injuries, where the clinical prognosis is typically poor, with no available regeneration-enhancing therapies. Specifically, repurposing clinically approved biomaterials offers many advantages (reduced approval time and achieving commercial scaleup for clinical applications), highlighting the need for detailed screening of potential neuromaterials. A major challenge in experimental testing is the limited availability of neuromimetic, technically accessible, cost-effective, and humane models of neurological injury for efficient biomaterial testing in injury-simulated environments. Three dimensional (3D) organotypic brain slices bridge the gap between live animal models and simplified co-cultures and are a versatile tool for studies on neural development, neurodegenerative disease and in drug testing. Despite this, their utility for investigation of neural cell responses to biomaterial implantation is poorly investigated. We demonstrate that murine brain organotypic slices can be used to develop a model of penetrating traumatic brain injury, wherein a surgical-grade biomaterial scaffold can be implanted into the lesion cavity. Critically, the model allowed for examination of key cellular responses involved in CNS injury pathology/biomaterial handling: astrogliosis, microglial activation and axonal sprouting. The approach offers a technically simple and versatile methodology to study biomaterial interventions as a regenerative therapy for neurological injuries.
Collapse
Affiliation(s)
- Jessica Patricia Wiseman
- School of Medicine, Keele University, Keele ST5 5BG, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Divya Maitreyi Chari
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
5
|
Mahmoudi N, Mohamed E, Dehnavi SS, Aguilar LMC, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Calming the Nerves via the Immune Instructive Physiochemical Properties of Self-Assembling Peptide Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303707. [PMID: 38030559 PMCID: PMC10837390 DOI: 10.1002/advs.202303707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/22/2023] [Indexed: 12/01/2023]
Abstract
Current therapies for the devastating damage caused by traumatic brain injuries (TBI) are limited. This is in part due to poor drug efficacy to modulate neuroinflammation, angiogenesis and/or promoting neuroprotection and is the combined result of challenges in getting drugs across the blood brain barrier, in a targeted approach. The negative impact of the injured extracellular matrix (ECM) has been identified as a factor in restricting post-injury plasticity of residual neurons and is shown to reduce the functional integration of grafted cells. Therefore, new strategies are needed to manipulate the extracellular environment at the subacute phase to enhance brain regeneration. In this review, potential strategies are to be discussed for the treatment of TBI by using self-assembling peptide (SAP) hydrogels, fabricated via the rational design of supramolecular peptide scaffolds, as an artificial ECM which under the appropriate conditions yields a supramolecular hydrogel. Sequence selection of the peptides allows the tuning of these hydrogels' physical and biochemical properties such as charge, hydrophobicity, cell adhesiveness, stiffness, factor presentation, degradation profile and responsiveness to (external) stimuli. This review aims to facilitate the development of more intelligent biomaterials in the future to satisfy the parameters, requirements, and opportunities for the effective treatment of TBI.
Collapse
Affiliation(s)
- Negar Mahmoudi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Elmira Mohamed
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
| | - Shiva Soltani Dehnavi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
| | - Lilith M. Caballero Aguilar
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Alan R. Harvey
- School of Human SciencesThe University of Western Australiaand Perron Institute for Neurological and Translational SciencePerthWA6009Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleMelbourneVIC3010Australia
| | | | - David R. Nisbet
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
- Melbourne Medical SchoolFaculty of MedicineDentistry and Health ScienceThe University of MelbourneMelbourneVIC3010Australia
| |
Collapse
|
6
|
Soltani Dehnavi S, Cembran A, Mahmoudi N, Caballero Aguilar LM, Wang Y, Cheeseman S, Malagutti N, Franks S, Long B, Lisowski L, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Molecular camouflage by a context-specific hydrogel as the key to unlock the potential of viral vector gene therapy. CHEMICAL ENGINEERING JOURNAL 2023; 477:146857. [DOI: 10.1016/j.cej.2023.146857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Kumar A, Sood A, Agrawal G, Thakur S, Thakur VK, Tanaka M, Mishra YK, Christie G, Mostafavi E, Boukherroub R, Hutmacher DW, Han SS. Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: A review. Int J Biol Macromol 2023; 247:125606. [PMID: 37406894 DOI: 10.1016/j.ijbiomac.2023.125606] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Nature-derived or biologically encouraged hydrogels have attracted considerable interest in numerous biomedical applications owing to their multidimensional utility and effectiveness. The internal architecture of a hydrogel network, the chemistry of the raw materials involved, interaction across the interface of counter ions, and the ability to mimic the extracellular matrix (ECM) govern the clinical efficacy of the designed hydrogels. This review focuses on the mechanistic viewpoint of different biologically driven/inspired biomacromolecules that encourages the architectural development of hydrogel networks. In addition, the advantage of hydrogels by mimicking the ECM and the significance of the raw material selection as an indicator of bioinertness is deeply elaborated in the review. Furthermore, the article reviews and describes the application of polysaccharides, proteins, and synthetic polymer-based multimodal hydrogels inspired by or derived from nature in different biomedical areas. The review discusses the challenges and opportunities in biomaterials along with future prospects in terms of their applications in biodevices or functional components for human health issues. This review provides information on the strategy and inspiration from nature that can be used to develop a link between multimodal hydrogels as the main frame and its utility in biomedical applications as the primary target.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yogendra Kumar Mishra
- Smart Materials, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg 6400, Denmark
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
8
|
Applications and Mechanisms of Stimuli-Responsive Hydrogels in Traumatic Brain Injury. Gels 2022; 8:gels8080482. [PMID: 36005083 PMCID: PMC9407546 DOI: 10.3390/gels8080482] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a global neurotrauma with high morbidity and mortality that seriously threatens the life quality of patients and causes heavy burdens to families, healthcare institutions, and society. Neuroinflammation and oxidative stress can further aggravate neuronal cell death, hinder functional recovery, and lead to secondary brain injury. In addition, the blood–brain barrier prevents drugs from entering the brain tissue, which is not conducive to the recovery of TBI. Due to their high water content, biodegradability, and similarity to the natural extracellular matrix (ECM), hydrogels are widely used for the delivery and release of various therapeutic agents (drugs, natural extracts, and cells, etc.) that exhibit beneficial therapeutic efficacy in tissue repair, such as TBI. Stimuli-responsive hydrogels can undergo reversible or irreversible changes in properties, structures, and functions in response to internal/external stimuli or physiological/pathological environmental stimuli, and further improve the therapeutic effects on diseases. In this paper, we reviewed the common types of stimuli-responsive hydrogels and their applications in TBI, and further analyzed the therapeutic effects of hydrogels in TBI, such as pro-neurogenesis, anti-inflammatory, anti-apoptosis, anti-oxidation, and pro-angiogenesis. Our study may provide strategies for the treatment of TBI by using stimuli-responsive hydrogels.
Collapse
|
9
|
Chen Y, Lin J, Yan W. A Prosperous Application of Hydrogels With Extracellular Vesicles Release for Traumatic Brain Injury. Front Neurol 2022; 13:908468. [PMID: 35720072 PMCID: PMC9201053 DOI: 10.3389/fneur.2022.908468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability worldwide, becoming a heavy burden to the family and society. However, the complexity of the brain and the existence of blood-brain barrier (BBB) do limit most therapeutics effects through simple intravascular injection. Hence, an effective therapy promoting neurological recovery is urgently required. Although limited spontaneous recovery of function post-TBI does occur, increasing evidence indicates that exosomes derived from stem cells promote these endogenous processes. The advantages of hydrogels for transporting drugs and stem cells to target injured sites have been discussed in multitudinous studies. Therefore, the combined employment of hydrogels and exosomes for TBI is worthy of further study. Herein, we review current research associated with the application of hydrogels and exosomes for TBI. We also discuss the possibilities and advantages of exosomes and hydrogels co-therapies after TBI.
Collapse
|
10
|
In vitro model of traumatic brain injury to screen neuro-regenerative biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112253. [PMID: 34474815 DOI: 10.1016/j.msec.2021.112253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/21/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022]
Abstract
Penetrating traumatic brain injury (pTBI) causes serious neurological deficits with no clinical regenerative therapies currently available. Tissue engineering strategies using biomaterial-based 'structural bridges' offer high potential to promote neural regeneration post-injury. This includes surgical grade materials which can be repurposed as biological scaffolds to overcome challenges associated with long approval processes and scaleup for human application. However, high throughput, pathomimetic models of pTBI are lacking for the developmental testing of such neuro-materials, representing a bottleneck in this rapidly emergent field. We have established a high throughput and facile culture model containing the major neural cell types which govern biomaterial handling in the central nervous system. We show that induction of traumatic injuries was feasible in the model, with post-injury implantation of a surgical grade biomaterial. Cellular imaging in lesions was achievable using standard epifluorescence microscopy methods. Key pathological features of pTBI were evident in vitro namely immune cell infiltration of lesions/biomaterial, with responses characteristic of cell scarring, namely hypertrophic astrocytes with GFAP upregulation. Based on our observations, we consider the high-throughput, inexpensive and facile pTBI model can be used to study biomaterial 'implantation' and evaluate neural cell-biomaterial responses. The model is highly versatile to test a range of laboratory and clinical grade materials for neural regeneration.
Collapse
|
11
|
Firipis K, Nisbet DR, Franks SJ, Kapsa RMI, Pirogova E, Williams RJ, Quigley A. Enhancing Peptide Biomaterials for Biofabrication. Polymers (Basel) 2021; 13:polym13162590. [PMID: 34451130 PMCID: PMC8400132 DOI: 10.3390/polym13162590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Biofabrication using well-matched cell/materials systems provides unprecedented opportunities for dealing with human health issues where disease or injury overtake the body’s native regenerative abilities. Such opportunities can be enhanced through the development of biomaterials with cues that appropriately influence embedded cells into forming functional tissues and organs. In this context, biomaterials’ reliance on rigid biofabrication techniques needs to support the incorporation of a hierarchical mimicry of local and bulk biological cues that mimic the key functional components of native extracellular matrix. Advances in synthetic self-assembling peptide biomaterials promise to produce reproducible mimics of tissue-specific structures and may go some way in overcoming batch inconsistency issues of naturally sourced materials. Recent work in this area has demonstrated biofabrication with self-assembling peptide biomaterials with unique biofabrication technologies to support structural fidelity upon 3D patterning. The use of synthetic self-assembling peptide biomaterials is a growing field that has demonstrated applicability in dermal, intestinal, muscle, cancer and stem cell tissue engineering.
Collapse
Affiliation(s)
- Kate Firipis
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
- The Graeme Clark Institute, Faculty of Engineering and Information Technology, Melbourne, VIC 3000, Australia
- Faculty of Medicine, Dentistry and Health Services, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephanie J. Franks
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
| | - Robert M. I. Kapsa
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
| | - Elena Pirogova
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Richard J. Williams
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
- Correspondence: (R.J.W.); (A.Q.)
| | - Anita Quigley
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
- Correspondence: (R.J.W.); (A.Q.)
| |
Collapse
|
12
|
Kaur H, Roy S. Designing aromatic N-cadherin mimetic short-peptide-based bioactive scaffolds for controlling cellular behaviour. J Mater Chem B 2021; 9:5898-5913. [PMID: 34263278 DOI: 10.1039/d1tb00598g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of suitable biomaterials is one of the key factors responsible for the success of the tissue-engineering field. Recently, significant effort has been devoted to the design of biomimetic materials that can elicit specific cellular responses and direct new tissue formation mediated by bioactive peptides. The success of the design principle of such biomimetic scaffolds is mainly related to the cell-extracellular matrix (ECM) interactions, whereas cell-cell interactions also play a vital role in cell survival, neurite outgrowth, attachment, migration, differentiation, and proliferation. Hence, an ideal strategy to improve cell-cell interactions would rely on the judicious incorporation of a bioactive motif in the designer scaffold. In this way, we explored for the first time the primary functional pentapeptide sequence of the N-cadherin protein, HAVDI, which is known to be involved in cell-cell interactions. We have formulated the shortest N-cadherin mimetic peptide sequence utilizing a minimalistic approach. Furthermore, we employed a classical molecular self-assembly strategy through rational modification of the basic pentapeptide motif of N-cadherin, i.e. HAVDI, using Fmoc and Nap aromatic moieties to modify the N-terminal end. The designed N-cadherin mimetic peptides, Fmoc-HAVDI and Nap-HAVDI, self-assembled to form a nanofibrous network resulting in a bioactive peptide hydrogel at physiological pH. The nanofibrous network of the pentapeptide hydrogels resembles the topology of the natural ECM. Furthermore, the mechanical strength of the gels also matches that of the native ECM of neural cells. Interestingly, both the N-cadherin mimetic peptide hydrogels supported cell adhesion and proliferation of the neural and non-neural cell lines, highlighting the diversity of these peptidic scaffolds. Further, the cultured neural and non-neural cells on the bioactive scaffolds showed normal expression of β-III tubulin and actin, respectively. The cellular response was compromised in control peptides, which further establishes the significance of the bioactive motifs towards controlling the cellular behaviour. Our study indicated that our designer N-cadherin-based peptidic hydrogels mimic the structural as well as the physical properties of the native ECM, which has been further reflected in the functional attributes offered by these scaffolds, and thus offer a suitable bioactive domain for further use as a next-generation material in tissue-engineering applications.
Collapse
Affiliation(s)
- Harsimran Kaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin-140306, India.
| | | |
Collapse
|
13
|
Firipis K, Boyd-Moss M, Long B, Dekiwadia C, Hoskin W, Pirogova E, Nisbet DR, Kapsa RMI, Quigley AF, Williams RJ. Tuneable Hybrid Hydrogels via Complementary Self-Assembly of a Bioactive Peptide with a Robust Polysaccharide. ACS Biomater Sci Eng 2021; 7:3340-3350. [PMID: 34125518 DOI: 10.1021/acsbiomaterials.1c00675] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic materials designed for improved biomimicry of the extracellular matrix must contain fibrous, bioactive, and mechanical cues. Self-assembly of low molecular weight gelator (LMWG) peptides Fmoc-DIKVAV (Fmoc-aspartic acid-isoleucine-lysine-valine-alanine-valine) and Fmoc-FRGDF (Fmoc-phenylalanine-arginine-glycine-aspartic acid-phenylalanine) creates fibrous and bioactive hydrogels. Polysaccharides such as agarose are biocompatible, degradable, and non-toxic. Agarose and these Fmoc-peptides have both demonstrated efficacy in vitro and in vivo. These materials have complementary properties; agarose has known mechanics in the physiological range but is inert and would benefit from bioactive and topographical cues found in the fibrous, protein-rich extracellular matrix. Fmoc-DIKVAV and Fmoc-FRGDF are synthetic self-assembling peptides that present bioactive cues "IKVAV" and "RGD" designed from the ECM proteins laminin and fibronectin. The work presented here demonstrates that the addition of agarose to Fmoc-DIKVAV and Fmoc-FRGDF results in physical characteristics that are dependent on agarose concentration. The networks are peptide-dominated at low agarose concentrations, and agarose-dominated at high agarose concentrations, resulting in distinct changes in structural morphology. Interestingly, at mid-range agarose concentration, a hybrid network is formed with structural similarities to both peptide and agarose systems, demonstrating reinforced mechanical properties. Bioactive-LMWG polysaccharide hydrogels demonstrate controllable microenvironmental properties, providing the ability for tissue-specific biomaterial design for tissue engineering and 3D cell culture.
Collapse
Affiliation(s)
- Kate Firipis
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Mitchell Boyd-Moss
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.,Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Benjamin Long
- Faculty of Science and Technology, Federation University, Mt. Helen, VIC 3350, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and MicroAnalysis Facility (RMMF), RMIT University, Melbourne, Vic 3000, Australia
| | - William Hoskin
- Faculty of Science and Technology, Federation University, Mt. Helen, VIC 3350, Australia
| | - Elena Pirogova
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra 2601, Australia
| | - Robert M I Kapsa
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.,ARC Centre of Excellence in Electromaterials Science, Department of Medicine, Melbourne University, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Vic 3065, Australia
| | - Anita F Quigley
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.,ARC Centre of Excellence in Electromaterials Science, Department of Medicine, Melbourne University, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Vic 3065, Australia
| | - Richard J Williams
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia.,Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
14
|
Sharma P, Pal VK, Roy S. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering. Biomater Sci 2021; 9:3911-3938. [PMID: 33973582 DOI: 10.1039/d0bm02049d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural tissue engineering holds great potential in addressing current challenges faced by medical therapies employed for the functional recovery of the brain. In this context, self-assembling peptides have gained considerable interest owing to their diverse physicochemical properties, which enable them to closely mimic the biophysical characteristics of the native ECM. Additionally, in contrast to synthetic polymers, which lack inherent biological signaling, peptide-based nanomaterials could be easily designed to present essential biological cues to the cells to promote cellular adhesion. Moreover, injectability of these biomaterials further widens their scope in biomedicine. In this context, hydrogels obtained from short bioactive peptide sequences are of particular interest owing to their facile synthesis and highly tunable properties. In spite of their well-known advantages, the exploration of short peptides for neural tissue engineering is still in its infancy and thus detailed discussion is required to evoke interest in this direction. This review provides a general overview of various bioactive hydrogels derived from short peptide sequences explored for neural tissue engineering. The review also discusses the current challenges in translating the benefits of these hydrogels to clinical practices and presents future perspectives regarding the utilization of these hydrogels for advanced biomedical applications.
Collapse
Affiliation(s)
- Pooja Sharma
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Vijay Kumar Pal
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| |
Collapse
|
15
|
Ngo MT, Harley BAC. Progress in mimicking brain microenvironments to understand and treat neurological disorders. APL Bioeng 2021; 5:020902. [PMID: 33869984 PMCID: PMC8034983 DOI: 10.1063/5.0043338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Neurological disorders including traumatic brain injury, stroke, primary and metastatic brain tumors, and neurodegenerative diseases affect millions of people worldwide. Disease progression is accompanied by changes in the brain microenvironment, but how these shifts in biochemical, biophysical, and cellular properties contribute to repair outcomes or continued degeneration is largely unknown. Tissue engineering approaches can be used to develop in vitro models to understand how the brain microenvironment contributes to pathophysiological processes linked to neurological disorders and may also offer constructs that promote healing and regeneration in vivo. In this Perspective, we summarize features of the brain microenvironment in normal and pathophysiological states and highlight strategies to mimic this environment to model disease, investigate neural stem cell biology, and promote regenerative healing. We discuss current limitations and resulting opportunities to develop tissue engineering tools that more faithfully recapitulate the aspects of the brain microenvironment for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Mai T. Ngo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Brendan A. C. Harley
- Author to whom correspondence should be addressed:. Tel.: (217) 244-7112. Fax: (217) 333-5052
| |
Collapse
|
16
|
Mukherjee N, Adak A, Ghosh S. Recent trends in the development of peptide and protein-based hydrogel therapeutics for the healing of CNS injury. SOFT MATTER 2020; 16:10046-10064. [PMID: 32724981 DOI: 10.1039/d0sm00885k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Traumatic brain injury (TBI) and spinal cord injury (SCI) cause millions of deaths and permanent or prolonged physical disabilities around the globe every year. It generally happens due to various incidents, such as accidents during sports, war, physical assault, and strokes which result in severe damage to brain and spinal cord. If this remains untreated, traumatic CNS injuries may lead to early development of several neurodegenerative diseases like Alzheimer's, Parkinson, multiple sclerosis, and other mental illnesses. The initial physical reaction, which is also termed as the primary phase, includes swelling, followed by inflammation as a result of internal haemorrhage causing damage to indigenous tissue, i.e., axonal shear injury, rupture of blood vessels, and partial impaired supply of oxygen and essential nutrients in the neurons, thereby initiating a cascade of events causing secondary injuries such as hypoxia, hypotension, cognitive impairment, seizures, imbalanced calcium homeostasis and glutamate-induced excitotoxicity resulting in concomitant neuronal cell death and cumulative permanent tissue damage. In the modern era of advanced biomedical technology, we are still living with scarcity of the clinically applicable comparative non-invasive therapeutic strategies for regeneration or functional recovery of neurons or neural networks after a massive CNS injury. One of the key reasons for this scarcity is the limited regenerative ability of neurons in CNS. Growth-impermissive glial scar and the lack of a synthetic biocompatible platform for proper neural tissue engineering and controlled supply of drugs further retard the healing process. Injectable or implantable hydrogel materials, consisting majorly of water in its porous three-dimensional (3D) structure, can serve as an excellent drug delivery platform as well as a transplanted cell-supporting scaffold medium. Among the various neuro-compatible bioinspired materials, we are limiting our discussion to the recent advancement of engineered biomaterials comprising mainly of peptides and proteins due to their growing demand, low immunogenicity and versatility in the fabrication of neuro regenerative medicine. In this article, we try to explore all the recent scientific avenues that are developing gradually to make peptide and peptide-conjugated biomaterial hydrogels as a therapeutic and supporting scaffold for treating CNS injuries.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.
| | | | | |
Collapse
|
17
|
Wiseman TM, Baron-Heeris D, Houwers IGJ, Keenan R, Williams RJ, Nisbet DR, Harvey AR, Hodgetts SI. Peptide Hydrogel Scaffold for Mesenchymal Precursor Cells Implanted to Injured Adult Rat Spinal Cord. Tissue Eng Part A 2020; 27:993-1007. [PMID: 33040713 DOI: 10.1089/ten.tea.2020.0115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A unique, biomimetic self-assembling peptide (SAP) hydrogel, Fmoc-DIKVAV, has been shown to be a suitable cell and drug delivery system in the injured brain. In this study, we assessed its utility in adult Fischer 344 (F344) rats as a stabilizing scaffold and vehicle for grafted cells after mild thoracic (thoracic level 10 [T10]) contusion spinal cord injury (SCI). Treatments were as follows: Fmoc-DIKVAV alone, Fmoc-DIKVAV containing viable or nonviable rat mesenchymal precursor cells (rMPCs), and rMPCs alone. The majority of post-SCI treatments were administered at 11-15 days (mean 13.5 days) and the results then compared to SCI-only control (no treatment) rats. Postinjury behavior was quantified using open field locomotion (BBB) and LadderWalk analysis. After perfusion at 8 weeks, longitudinal spinal cord sections were immunostained with a panel of antibodies. Qualitatively, in the SAP-only treatment group, implanted gels contained regenerate axons as well as astrocytic, immune cell, and extracellular matrix (ECM) component profiles. Grafts of Fmoc-DIKVAV plus viable or nonviable rMPCs also contained numerous macrophages/microglia and ECM components, but astrocytes were generally confined to implant margins, and axons were rare. Quantitative analysis showed that, while average cyst size was reduced in all experimental groups, the decrease compared to SCI-only controls was only significant in the SAP and rMPC treatment groups. There was gradual improvement in functionality after SCI, but a consistent trend was only seen between the rMPC treatment group and SCI-only controls. In summary, after contusion SCI, implantation of Fmoc-DIKVAV hydrogel provided a favorable microenvironment for cellular infiltration and axonal regrowth, a supportive role that unexpectedly appeared to be compromised by prior inclusion of rMPCs into the gel matrix. Impact statement The self-assembling peptide hydrogel, Fmoc-DIKVAV, is a biomimetic scaffold that is an effective cell and drug delivery system in the injured brain. We examined whether this hydrogel, alone or combined with mesenchymal precursor cells, was also able to stabilise spinal cord tissue after thoracic contusion injury and improve morphological and behavioral outcomes. While improved functionality was not consistently seen, there was reduced cyst size and increased tissue sparing in some groups. There was regenerative axonal growth into hydrogels, but only in initially cell-free implants. This type of polymer is a suitable candidate for further testing in spinal cord injury models.
Collapse
Affiliation(s)
- Tylie M Wiseman
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia
| | - Danii Baron-Heeris
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia
| | - Imke G J Houwers
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia
| | - Rory Keenan
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia
| | - Richard J Williams
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Burwood, Australia.,Biofab3D, St. Vincent's Hospital, Melbourne, Australia
| | - David R Nisbet
- Biofab3D, St. Vincent's Hospital, Melbourne, Australia.,Laboratory of Advanced Biomaterials, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Stuart I Hodgetts
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Australia
| |
Collapse
|
18
|
Adak A, Das G, Khan J, Mukherjee N, Gupta V, Mallesh R, Ghosh S. Extracellular Matrix (ECM)-Mimicking Neuroprotective Injectable Sulfo-Functionalized Peptide Hydrogel for Repairing Brain Injury. ACS Biomater Sci Eng 2020; 6:2287-2296. [PMID: 33455349 DOI: 10.1021/acsbiomaterials.9b01829] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brain injury can lead to the loss of neuronal functions and connections, along with the damage of the extracellular matrix (ECM). Thus, it ultimately results in devastating long-term damage, and recovery from this damage is a challenging task. To address this issue, we have designed a sulfo-group-functionalized injectable biocompatible peptide hydrogel, which not only mimics the ECM and supports the damaged neurons but also releases a neurotrophic factor around the injured sites of the brain in the presence of the matrix metalloproteinase 9 (MMP9) enzyme. It has also been observed that the driving force of hydrogel formation is a β-sheet secondary structure and π-π stacking interactions between Phe-Phe moieties. The hydrogel is able not only to promote neurite outgrowth of PC12-derived neurons and primary neurons cultured in its presence but also to nullify the toxic effects of anti-nerve growth factor (Anti-NGF)-induced neurons. It also promotes the expression of vital neuronal markers in rat cortical primary neurons, displays substantial potential in neuroregeneration, and also promotes fast recovery of the sham injured mice brain. Increased expression of reactive astrocytes in the hippocampal dentate gyrus region of the sham injured brain clearly suggests its tremendous ability in the neural repair of the damaged brain. Thus, we can convincingly state that our hydrogel is capable of repairing brain injury by mimicking an ECM-like environment and providing neuroprotection to the damaged neurons.
Collapse
Affiliation(s)
- Anindyasundar Adak
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Gaurav Das
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Juhee Khan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Nabanita Mukherjee
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rathnam Mallesh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Divisions, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
19
|
Tang W, Fang F, Liu K, Huang Z, Li H, Yin Y, Wang J, Wang G, Wei L, Ou Y, Wang Y. Aligned Biofunctional Electrospun PLGA-LysoGM1 Scaffold for Traumatic Brain Injury Repair. ACS Biomater Sci Eng 2020; 6:2209-2218. [PMID: 33455302 DOI: 10.1021/acsbiomaterials.9b01636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Due to poor regenerative capabilities of the brain, a treatment for traumatic brain injury (TBI) presents a serious challenge to modern medicine. Biofunctional scaffolds that can support neuronal growth, guide neurite elongation, and re-establish impaired brain tissues are urgently needed. To this end, we developed an aligned biofunctional scaffold (aPLGA-LysoGM1), in which poly (lactic-co-glycolic acid) (PLGA) was functionalized with sphingolipid ceramide N-deacylase (SCDase)-hydrolyzed monosialotetrahexosylganglioside (LysoGM1) and electrospinning was used to form an aligned fibrous network. As a ganglioside of neuronal membranes, the functionalized LysoGM1 endows the scaffold with unique biological properties favoring the growth of neuron and regeneration of injured brain tissues. Moreover, we found that the aligned PLGA-LysoGM1 fibers acted as a topographical cue to guide neurite extension, which is critical for organizing the formation of synaptic networks (neural networks). Systematic in vitro studies demonstrated that the aligned biofunctional scaffold promotes neuronal viability, neurite outgrowth, and synapse formation and also protects neurons from pressure-related injury. Additionally, in a rat TBI model, we demonstrated that the implantation of aPLGA-LysoGM1 scaffold supported recovery from brain injury, as more endogenous neurons were found to migrate and infiltrate into the defect zone compared with alternative scaffold. These results suggest that the aligned biofunctional aPLGA-LysoGM1 scaffold represents a promising therapeutic strategy for brain tissue regeneration following TBI.
Collapse
Affiliation(s)
- Wei Tang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Fang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Liu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hui Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ying Yin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jun Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Guocheng Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liyu Wei
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yun Ou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yazhou Wang
- School of Medicine, Chongqing University, Chongqing 400044, China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
20
|
Sharma P, Kaur H, Roy S. Designing a Tenascin-C-Inspired Short Bioactive Peptide Scaffold to Direct and Control Cellular Behavior. ACS Biomater Sci Eng 2019; 5:6497-6510. [DOI: 10.1021/acsbiomaterials.9b01115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pooja Sharma
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Harsimran Kaur
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10, Mohali, Punjab 160062, India
| | - Sangita Roy
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10, Mohali, Punjab 160062, India
| |
Collapse
|
21
|
Fitton HJ, Stringer DS, Park AY, Karpiniec SN. Therapies from Fucoidan: New Developments. Mar Drugs 2019; 17:E571. [PMID: 31601041 PMCID: PMC6836154 DOI: 10.3390/md17100571] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
Abstract
Since our last review in 2015, the study and use of fucoidan has extended in several research areas. Clinical use of fucoidan for the treatment of renal disease has become available and human safety studies have been undertaken on radiolabeled fucoidan for the purpose of imaging thrombi. Fucoidan has been incorporated into an increasing number of commercially available supplements and topical treatments. In addition, new measuring techniques are now available to assess the biologically relevant uptake of fucoidans and to assist in production. Microbiome modulation and anti-pathogenic effects are increasingly promising applications for fucoidans, due to the need for alternative approaches to antibiotic use in the food chain. This review outlines promising new developments in fucoidan research, including potential future therapeutic use.
Collapse
Affiliation(s)
- Helen J Fitton
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Damien S Stringer
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia
| | - Ah Young Park
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia
| | - Samuel N Karpiniec
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia
| |
Collapse
|
22
|
Firouzian KF, Zhang T, Zhang H, Song Y, Su X, Lin F. An Image-Guided Intrascaffold Cell Assembly Technique for Accurate Printing of Heterogeneous Tissue Constructs. ACS Biomater Sci Eng 2019; 5:3499-3510. [PMID: 33405733 DOI: 10.1021/acsbiomaterials.9b00318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For tissue engineering and regenerative medicine, creating thick and heterogeneous scaffold-based tissue constructs requires deep and precise multicellular deposition. Traditional cell seeding strategies lack the ability to create multicellular tissue constructs with high cell penetration and distribution, while emerging strategies aim to simultaneously combine cell-laden tissue segments with scaffold fabrication. Here we describe a technique that allows for three-dimensional (3D) intrascaffold cell assembly in which scaffolds are prefabricated and pretreated, followed by accurate cell distribution within the scaffold using an image-guided technique. This two-step process yields less limitation in scaffold material choice as well as additional treatments, provides accurate cell distribution, and has less potential to harm cells. The image processing technique captures a 2D geometric image of the scaffold, followed by a series of processes, mainly including grayscale transformation, threshold segmentation, and boundary extraction, to ultimately locate scaffold macropore centroids. Coupled with camera calibration data, accurate 3D cell assembly pathway plans can be made. Intrascaffold assembly parameter optimization and complex intrascaffold gradient, multidirectional, and vascular structure assembly were studied. Demonstration was also made with path planning and cell assembly experiments using NIH3T3-cell-laden hydrogels and collagen-coated poly(lactic-co-glycolic acid) (PLGA) scaffolds. Experiments with CellTracker fluorescent monitoring, live/dead staining, and phalloidin-F-actin/DAPI immunostaining and comparison with two control groups (bioink manual injection and cell suspension static surface pipetting) showed accurate cell distribution and positioning and high cell viability (>93%). The PrestoBlue assay showed obvious cell proliferation over seven culture days in vitro. This technique provides an accurate method to aid simple and complex cell colonization with variant depth within 3D-scaffold-based constructs using multiple cells. The modular method can be used with any existing printing platform and shows potential in facilitating direct spatial organization and hierarchal 3D assembly of multiple cells and/or drugs within scaffolds for further tissue engineering studies and clinical applications.
Collapse
Affiliation(s)
- Kevin F Firouzian
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hefeng Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Song
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaolei Su
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Feng Lin
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.,111 "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Maclean FL, Ims GM, Horne MK, Williams RJ, Nisbet DR. A Programmed Anti-Inflammatory Nanoscaffold (PAIN) as a 3D Tool to Understand the Brain Injury Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805209. [PMID: 30285286 DOI: 10.1002/adma.201805209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Immunology is the next frontier of nano/biomaterial science research, with the immune system determining the degree of tissue repair. However, the complexity of the inflammatory response represents a significant challenge that is essential to understand for the development of future therapies. Cell-instructive 3D culture environments are critical to improve our understanding of the link between the behavior and morphology of inflammatory cells and to remodel their response to injury. This study has taken two recent high-profile innovations-functional peptide-based hydrogels, and the inclusion of anti-inflammatory agents via coassembly-to make a programmed anti-inflammatory nanoscaffold (PAIN) with unusual and valuable properties that allows tissue-independent switching of the inflammatory cascade. Here, extraordinary durability of the anti-inflammatory agent allows, for the first time, the development of a 3D culture system that maintains the growth and cytoskeletal reorganization of brain tissue, while also facilitating the trophic behavior of brain cells for 22 d in vitro. Notably, this behavior was confirmed within an active scar site due to the unprecedented resilience to the presence of inflammatory cells and enzymes in the brain. Efficacy of the culture system is demonstrated via novel insights about inflammatory cell behavior, which would be impossible to obtain via in vivo experimentation.
Collapse
Affiliation(s)
- Francesca L Maclean
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, 2601, Australia
| | - Georgina M Ims
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, 2601, Australia
| | - Malcolm K Horne
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, 3065, Australia
| | - Richard J Williams
- School of Engineering, RMIT University, Melbourne, 3000, Australia
- BioFab3D, St Vincent's Hospital, Fitzroy, 3065, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, 2601, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
- BioFab3D, St Vincent's Hospital, Fitzroy, 3065, Australia
| |
Collapse
|
24
|
Kornev VA, Grebenik EA, Solovieva AB, Dmitriev RI, Timashev PS. Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review. Comput Struct Biotechnol J 2018; 16:488-502. [PMID: 30455858 PMCID: PMC6232648 DOI: 10.1016/j.csbj.2018.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Abstract
Recent years have witnessed the development of an enormous variety of hydrogel-based systems for neuroregeneration. Formed from hydrophilic polymers and comprised of up to 90% of water, these three-dimensional networks are promising tools for brain tissue regeneration. They can assist structural and functional restoration of damaged tissues by providing mechanical support and navigating cell fate. Hydrogels also show the potential for brain injury therapy due to their broadly tunable physical, chemical, and biological properties. Hydrogel polymers, which have been extensively implemented in recent brain injury repair studies, include hyaluronic acid, collagen type I, alginate, chitosan, methylcellulose, Matrigel, fibrin, gellan gum, self-assembling peptides and proteins, poly(ethylene glycol), methacrylates, and methacrylamides. When viewed as tools for neuroregeneration, hydrogels can be divided into: (1) hydrogels suitable for brain injury therapy, (2) hydrogels that do not meet basic therapeutic requirements and (3) promising hydrogels which meet the criteria for further investigations. Our analysis shows that fibrin, collagen I and self-assembling peptide-based hydrogels display very attractive properties for neuroregeneration.
Collapse
Affiliation(s)
- Vladimir A. Kornev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
| | - Ekaterina A. Grebenik
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
| | - Anna B. Solovieva
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., Moscow 117977, Russian Federation
| | - Ruslan I. Dmitriev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., Moscow 117977, Russian Federation
- Institute of Photonic Technologies, Research Center “Crystallography and Photonics” Russian Academy of Sciences, 2 Pionerskaya st., Troitsk, Moscow 108840, Russian Federation
| |
Collapse
|
25
|
Maclean FL, Horne MK, Williams RJ, Nisbet DR. Review: Biomaterial systems to resolve brain inflammation after traumatic injury. APL Bioeng 2018; 2:021502. [PMID: 31069296 PMCID: PMC6481708 DOI: 10.1063/1.5023709] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
The inflammatory response within the central nervous system (CNS) is a tightly regulated cascade of events which is a balance of both cytotoxic and cytotrophic effects which determine the outcome of an injury. The two effects are inextricably linked, particularly in traumatic brain injury or stroke, where permanent dysfunction is often observed. Chronic brain inflammation is a key barrier to regeneration. This is considered a toxic, growth inhibitory mechanism; yet, the inflammatory response must also be considered as a mechanism that can be exploited as protective and reparative. Repurposing this complex response is the challenge for tissue engineers: to design treatments to repair and regenerate damaged tissue after brain insult. Astrocytes are important cells within the CNS which play a key role after traumatic brain injury. A comprehensive understanding of their functions-both cytotrophic and cytotoxic-will enable designed materials and drug delivery approaches for improved treatment options post traumatic injury. Understanding, evaluating, and designing biomaterials that match the healthy neural environment to temporally alter the inflammatory cascade represent a promise neural tissue engineering strategy to optimise repair and regeneration after injury.
Collapse
Affiliation(s)
- Francesca L. Maclean
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | | | - Richard J. Williams
- R. J. Williams and D. R. Nisbet contributed equally to this work. Electronic addresses: and
| | - David R. Nisbet
- R. J. Williams and D. R. Nisbet contributed equally to this work. Electronic addresses: and
| |
Collapse
|
26
|
Li R, McRae NL, McCulloch DR, Boyd-Moss M, Barrow CJ, Nisbet DR, Stupka N, Williams RJ. Large and Small Assembly: Combining Functional Macromolecules with Small Peptides to Control the Morphology of Skeletal Muscle Progenitor Cells. Biomacromolecules 2018; 19:825-837. [DOI: 10.1021/acs.biomac.7b01632] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Rui Li
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds 3216, Australia
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan 571339, China
| | - Natasha L. McRae
- School of Medicine, Centre for Molecular and Medical Research SRC, Deakin University, Waurn Ponds 3216, Australia
| | - Daniel R. McCulloch
- School of Medicine, Centre for Molecular and Medical Research SRC, Deakin University, Waurn Ponds 3216, Australia
| | - Mitchell Boyd-Moss
- Biofab3D, St. Vincent’s Hospital, Fitzroy 3065, Australia
- School of Engineering, RMIT University, Bundoora 3083, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds 3216, Australia
| | - David R. Nisbet
- Research School of Engineering, The Australian National University, Canberra 2601, Australia
- Biofab3D, St. Vincent’s Hospital, Fitzroy 3065, Australia
| | - Nicole Stupka
- School of Medicine, Centre for Molecular and Medical Research SRC, Deakin University, Waurn Ponds 3216, Australia
| | - Richard J. Williams
- Biofab3D, St. Vincent’s Hospital, Fitzroy 3065, Australia
- School of Engineering, RMIT University, Bundoora 3083, Australia
| |
Collapse
|