1
|
Liu C, Yan Z, Yang J, Wei P, Zhang D, Wang Q, Zhang X, Hao Y, Yang D. Corrosion and Biological Behaviors of Biomedical Ti-24Nb-4Zr-8Sn Alloy under an Oxidative Stress Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18503-18521. [PMID: 38570902 DOI: 10.1021/acsami.4c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Biomaterials can induce an inflammatory response in surrounding tissues after implantation, generating and releasing reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). The excessive accumulation of ROS may create a microenvironment with high levels of oxidative stress (OS), which subsequently accelerates the degradation of the passive film on the surface of titanium (Ti) alloys and affects their biological activity. The immunomodulatory role of macrophages in biomaterial osteogenesis under OS is unknown. This study aimed to explore the corrosion behavior and bone formation of Ti implants under an OS microenvironment. In this study, the corrosion resistance and osteoinduction capabilities in normal and OS conditions of the Ti-24Nb-4Zr-8Sn (wt %, Ti2448) were assessed. Electrochemical impedance spectroscopy analysis indicated that the Ti2448 alloy exhibited superior corrosion resistance on exposure to excessive ROS compared to the Ti-6Al-4V (TC4) alloy. This can be attributed to the formation of the TiO2 and Nb2O5 passive films, which mitigated the adverse effects of OS. In vitro MC3T3-E1 cell experiments revealed that the Ti2448 alloy exhibited good biocompatibility in the OS microenvironment, whereas the osteogenic differentiation level was comparable to that of the TC4 alloy. The Ti2448 alloy significantly alleviates intercellular ROS levels, inducing a higher proportion of M2 phenotypes (52.7%) under OS. Ti2448 alloy significantly promoted the expression of the anti-inflammatory cytokine, interleukin 10 (IL-10), and osteoblast-related cytokines, bone morphogenetic protein 2 (BMP-2), which relatively increased by 26.9 and 31.4%, respectively, compared to TC4 alloy. The Ti2448 alloy provides a favorable osteoimmune environment and significantly promotes the proliferation and differentiation of osteoblasts in vitro compared to the TC4 alloy. Ultimately, the Ti2448 alloy demonstrated excellent corrosion resistance and immunomodulatory properties in an OS microenvironment, providing valuable insights into potential clinical applications as implants to repair bone tissue defects.
Collapse
Affiliation(s)
- Chang Liu
- School of Stomatology, Jiamusi University, Jiamusi, Heilongjiang 154004, People's Republic of China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Zenglong Yan
- Liaoning People's Hospital, 33 Wenyi Road, Shenyang, Liaoning 110013, People's Republic of China
| | - Jun Yang
- School of Stomatology, Jiamusi University, Jiamusi, Heilongjiang 154004, People's Republic of China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Penggong Wei
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Yulin Hao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Donghong Yang
- School of Stomatology, Jiamusi University, Jiamusi, Heilongjiang 154004, People's Republic of China
| |
Collapse
|
2
|
Sotniczuk A, Kalita D, Chromiński W, Matczuk M, Pisarek M, Garbacz H. Albumin suppresses oxidation of TiNb alloy in the simulated inflammatory environment. J Biomed Mater Res B Appl Biomater 2024; 112:e35404. [PMID: 38533765 DOI: 10.1002/jbm.b.35404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Literature data has shown that reactive oxygen species (ROS), generated by immune cells during post-operative inflammation, could induce corrosion of standard Ti-based biomaterials. For Ti6Al4V alloy, this process can be further accelerated by the presence of albumin. However, this phenomenon remains unexplored for Ti β-phase materials, such as TiNb alloys. These alloys are attractive due to their relatively low elastic modulus value. This study aims to address the question of how albumin influences the corrosion resistance of TiNb alloy under simulated inflammation. Electrochemical and ion release tests have revealed that albumin significantly enhances corrosion resistance over both short (2 and 24 h) and long (2 weeks) exposure periods. Furthermore, post-immersion XPS and cross-section TEM analysis have demonstrated that prolonged exposure to an albumin-rich inflammatory solution results in the complete coverage of the TiNb surface by a protein layer. Moreover, TEM studies revealed that H2O2-induced oxidation and further formation of a defective oxide film were suppressed in the solution enriched with albumin. Overall results indicate that contrary to Ti6Al4V, the addition of albumin to the PBS + H2O2 solution is not necessary to simulate the harsh inflammatory conditions as could possibly be found in the vicinity of a TiNb implant.
Collapse
Affiliation(s)
- Agata Sotniczuk
- NOMATEN Centre of Excellence, National Centre for Nuclear Research, Otwock, Poland
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Damian Kalita
- NOMATEN Centre of Excellence, National Centre for Nuclear Research, Otwock, Poland
| | - Witold Chromiński
- NOMATEN Centre of Excellence, National Centre for Nuclear Research, Otwock, Poland
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Pisarek
- Laboratory of Surface Analysis, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Halina Garbacz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
3
|
Al-Khateeb A, Al-Hassani ES, Jabur AR. Active nanoceramic compound dipped in biopolymers to create composite coating for metallic implant surface. Heliyon 2023; 9:e19594. [PMID: 37810162 PMCID: PMC10558830 DOI: 10.1016/j.heliyon.2023.e19594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Biofunctionalization of an implant using functional ceramics with exceptional electrical characterization, such as BaTiO3 and SrTiO3, has gained considerable attention in creating a composite coating with bio-polymer to activate metal implant surfaces for bone tissue engineering applications and, at the same time, resist bacterial infection. A Ti-Zr alloy sample was created by powder technology, and then a coating was applied using the electrospinning technique. Individually, nanopowders of ceramic compounds such as nBaTiO3 and nSrTiO3 were added to a blend of polycaprolactone and chitosan to create composite solutions that could be converted into a nanofibrous coating layer using the electrospinning technique. The samples were analyzed for their morphology, chemical composition, surface roughness, dielectric constant, and wettability. The techniques employed were SEM, EDS, FTIR, an LCR meter, and a contact angle goniometer. The samples' cytocompatibility was assessed by examining the cell viability, ALP activity, proliferation, and attachment of MC3T3-E1 osteoblast cells on both coated and uncoated sample surfaces.The bacterial resistance assays were conducted against Staphylococcus aureus and Streptococcus mutans. The findings demonstrate a notable enhancement in the biocompatibility of the coated specimens following a week of cellular cultivation. The composite coating containing piezoelectric BaTiO3 has a dielectric constant Ɛr (16) close to dry human bone at 100HZ frequency. Cell proliferation increases dramatically with time in coated samples, and the improvement approaches 125.16% for (BA1) and 111.38% for (SR1) as compared to uncoated Ti-25Zr sample. Cell viability percentage for the coated samples is compared with bare Ti-25Zr, which has an 80.52 ± 1.97% crucial increase, while (BA1) has 181.63 ± 17.87 and (SR1) 170.09 ± 18.12%. No zone of inhibition was detected in the bacterial resistance test for the uncoated sample, while the samples with composite coating show an adequate and comparable inhibitory zone. The composite nano-fiber has a strong biocompatibility, and the coating process is simple and economical, holding potential for use in orthodontic and orthopedic bone regeneration applications.
Collapse
Affiliation(s)
- Amjed Al-Khateeb
- Department of Materials Engineering, University of Technology, Iraq, Baghdad
| | - Emad S. Al-Hassani
- Department of Materials Engineering, University of Technology, Iraq, Baghdad
| | - Akram R. Jabur
- Department of Materials Engineering, University of Technology, Iraq, Baghdad
| |
Collapse
|
4
|
Electrochemical and biological characterization of Ti-Nb-Zr-Si alloy for orthopedic applications. Sci Rep 2023; 13:2312. [PMID: 36759646 PMCID: PMC9911760 DOI: 10.1038/s41598-023-29553-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The performance of current biomedical titanium alloys is limited by inflammatory and severe inflammatory conditions after implantation. In this study, a novel Ti-Nb-Zr-Si (TNZS) alloy was developed and compared with commercially pure titanium, and Ti-6Al-4V alloy. Electrochemical parameters of specimens were monitored during 1 h and 12 h immersion in phosphate buffered saline (PBS) as a normal, PBS/hydrogen peroxide (H2O2) as an inflammatory, and PBS/H2O2/albumin/lactate as a severe inflammatory media. The results showed an effect of the H2O2 in inflammatory condition and the synergistic behavior of H2O2, albumin, and lactate in severe inflammatory condition towards decreasing the corrosion resistance of titanium biomaterials. Electrochemical tests revealed a superior corrosion resistance of the TNZS in all conditions due to the presence of silicide phases. The developed TNZS was tested for subsequent cell culture investigation to understand its biocompatibility nature. It exhibited favorable cell-materials interactions in vitro compared with Ti-6Al-4V. The results suggest that TNZS alloy might be a competitive biomaterial for orthopedic applications.
Collapse
|
5
|
Sinha TK, Lim JH, Chothe HR, Kim JG, Nam T, Lee T, Oh JS. Polyvinyl pyrrolidone (
PVP
) as an efficient and biocompatible binder for metal alloy processing: A case study with
Ti‐20Zr‐11Nb‐3Sn. J Appl Polym Sci 2022. [DOI: 10.1002/app.52396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tridib Kumar Sinha
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
- Department of Applied Sciences School of Engineering, University of Petroleum & Energy Studies (UPES), Energy Acres Building Dehradun Uttarakhand India
| | - Jin Hwan Lim
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
| | - Harshada R. Chothe
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
| | - Jung Gi Kim
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
| | - Taehyun Nam
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
| | - Taekyung Lee
- School of Mechanical Engineering Pusan National University Busan South Korea
| | - Jeong Seok Oh
- Department of Materials Engineering and Convergence Technology, RIGET Gyeongsang National University Jinju South Korea
| |
Collapse
|
6
|
Prestat M, Thierry D. Corrosion of titanium under simulated inflammation conditions: clinical context and in vitro investigations. Acta Biomater 2021; 136:72-87. [PMID: 34626820 DOI: 10.1016/j.actbio.2021.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Titanium and alloys thereof are widely utilized for biomedical applications in the fields of orthopedics and dentistry. The corrosion resistance and perceived biocompatibility of such materials are essentially related to the presence of a thin passive oxide layer on the surface. However, during inflammation phases, the immune system and its leukocytic cells generate highly aggressive molecules, such as hydrogen peroxide and radicals, that can significantly alter the passive film resulting in the degradation of the titanium implants. In combination with mechanical factors, this can lead to the release of metal ions, nanoparticles or microscaled debris in the surrounding tissues (which may sustain chronic inflammation), bring about relevant health issues and contribute to implant loss or failure. After briefly presenting the context of inflammation, this review article analyses the state-of-the-art knowledge of the in vitro corrosion of titanium, titanium alloys and coated titanium by reactive oxygen species and by living cells with an emphasis on electrochemical and microstructural aspects. STATEMENT OF SIGNIFICANCE: Inflammation involves the production of reactive oxygen species that are known to alter the passive layer protecting titanium implants against the aggressive environment of the human body. Inflammatory processes therefore contribute to the deterioration of biomedical devices. Although review articles on biomaterials for implant applications are regularly published in the literature, none has ever focused specifically on the topic of inflammation. After briefly recalling the clinical context, this review analyses the in vitro studies on titanium corrosion under simulated inflammation conditions from the pioneer works of the 80s and the 90s till the most recent investigations. It reports about the status of this research area for a multidisciplinary readership covering the fields of materials science, corrosion and implantology.
Collapse
Affiliation(s)
- M Prestat
- French Corrosion Institute - RISE, 220 rue Pierre Rivoalon, 29200 Brest, France.
| | - D Thierry
- French Corrosion Institute - RISE, 220 rue Pierre Rivoalon, 29200 Brest, France; Research Institutes of Sweden (RISE), Stockholm, Sweden
| |
Collapse
|
7
|
Gallego-Cartagena E, Morillas H, Carrero JA, Madariaga JM, Maguregui M. Naturally growing grimmiaceae family mosses as passive biomonitors of heavy metals pollution in urban-industrial atmospheres from the Bilbao Metropolitan area. CHEMOSPHERE 2021; 263:128190. [PMID: 33297155 DOI: 10.1016/j.chemosphere.2020.128190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
In analytical chemistry, biomonitoring is known as the methodology, which consider the use of living organisms to monitor and assess the impact of different contaminants in a known area. This type of monitoring is a relatively inexpensive method and easy to implement, being a viable alternative to be developed in sites where there is no infrastructure/instruments for a convenctional air quality monitoring. These organisms, having the capability to monitor the pollution, are also known as passive biomonitors (PBs), since they are able to identify possible contamination sources without the need of any additional tool. In this work, a multianalytical methodology was applied to verify the usefulness of naturally growing Grimmia genus mosses as PBs of atmospheric heavy metals pollution. Once mosses were identified according to their morphology and taxonomy, thei ability to accumulate particulate matter (PM) was determined by SEM. EDS coupled to SEM also allowed to identify the main metallic particles deposited and finally, an acid digestion of the mosses and a subsequent ICP-MS study define more precisely the levels of metals accumulated on each collected moss. The study was focused on six sampling locations from the Bilbao Metropolitan area (Biscay, Basque Country, north of Spain). The experimental evidences obtained allowed to propose naturally growing Grimmia genus as PB of atmospheric heavy metals pollution and to identify the anthropogenic sources that contribute to the emission of the airborne particulate matter rich in metals, evaluating in this sense the atmospheric heavy metals pollution of the selected locations.
Collapse
Affiliation(s)
- Euler Gallego-Cartagena
- Department of Civil and Environmental, Universidad de La Costa, Calle 58 #55-66, 080002, Barranquilla, Colombia; Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain.
| | - Héctor Morillas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain; Department of Didactic of Mathematics and Experimental Sciences, Faculty of Education and Sport, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | - José Antonio Carrero
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Basque Country, Spain
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080, Vitoria-Gasteiz, Basque Country, Spain
| |
Collapse
|
8
|
Xie L, Mi X, Liu Y, Li Y, Sun Y, Zhan S, Hu W. Highly Efficient Degradation of Polyacrylamide by an Fe-Doped Ce 0.75Zr 0.25O 2 Solid Solution/CF Composite Cathode in a Heterogeneous Electro-Fenton Process. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30703-30712. [PMID: 31361111 DOI: 10.1021/acsami.9b06396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyacrylamide (PAM) in environmental water has become a major problem in water pollution management due to its high molecular mass, corrosion resistance, high viscosity, and nonabsorption by soil. The composite of Fe-doped Ce0.75Zr0.25O2 solid solution (Fe-Ce0.75Zr0.25O2) loaded on carbon felt (CF) was fabricated by a hydrothermal synthesis method, which was used as the cathode in a heterogeneous electro-Fenton system for the degradation of PAM. It showed that the degradation efficiency of PAM by the Fe-Ce0.75Zr0.25O2/CF cathode was 86% after 120 min and the molecular mass of PAM decreased by more than 90% after 300 min. Total organic carbon removal reached 78.86% in the presence of Fe-Ce0.75Zr0.25O2/CF, while the value was only 38.01% in the absence of Fe-Ce0.75Zr0.25O2. Further studies showed that the breaking of the chain begins with the amide bond, and then, the carbon chain was cracked into a short alkyl chain. As degradation progressed, both the complex viscosity and elasticity modulus of PAM solutions decreased nearly 50% at 300 min. It indicated that •OH were the most significant active species for the degradation of PAM. This novel Fe-Ce0.75Zr0.25O2/CF composite is an efficient and promising electrode for the removal of PAM in wastewater.
Collapse
Affiliation(s)
- Liangbo Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science , Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Xueyue Mi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Yigang Liu
- Bohai Oilfield Research Institute, Tianjin Branch, CNOOC China Limited , Tianjin 300459 , China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science , Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Yan Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering , Nankai University , Tianjin 300071 , China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science , Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| |
Collapse
|
9
|
Sotniczuk A, Kuczyńska-Zemła D, Kwaśniak P, Thomas M, Garbacz H. Corrosion behavior of Ti-29Nb-13Ta-4.6Zr and commercially pure Ti under simulated inflammatory conditions – comparative effect of grain refinement and non-toxic β phase stabilizers. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Qin P, Chen Y, Liu YJ, Zhang J, Chen LY, Li Y, Zhang X, Cao C, Sun H, Zhang LC. Resemblance in Corrosion Behavior of Selective Laser Melted and Traditional Monolithic β Ti-24Nb-4Zr-8Sn Alloy. ACS Biomater Sci Eng 2018; 5:1141-1149. [DOI: 10.1021/acsbiomaterials.8b01341] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peng Qin
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027, Australia
| | - Yang Chen
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yu-Jing Liu
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027, Australia
| | - Junxi Zhang
- Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Liang-Yu Chen
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027, Australia
- School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yuhua Li
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Xuhui Zhang
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Chongde Cao
- Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027, Australia
| | - Lai-Chang Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, Western Australia 6027, Australia
| |
Collapse
|