1
|
Yu H, Yang S, Jiang T, Li T, Duan H, Li M. Repair mechanisms of bone system tissues based on comprehensive perspective of multi-omics. Cell Biol Toxicol 2025; 41:45. [PMID: 39966216 PMCID: PMC11836151 DOI: 10.1007/s10565-025-09995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025]
Abstract
Bone disorders affect more than half of the adult population worldwide who may have a poor quality of life and physical independence worldwide. Multi-omic techniques are increasingly adopted and applied to determine the molecular mechanisms of bone tissue repair, providing perspective towards personalized medical intervention. Data from genomics, epigenomics, transcriptomics, proteomics, glycomics, and lipidomics were combined to elucidate dynamic processes in bone repair. In this narrative review, the key role of genetic and epigenetic factors in regulating injured cellular responses is highlighted, and changes in RNA and protein expression during the healing phase, as well as glucolipid metabolism adaptation, are described in detail how the repair process is affected. In a word, the integration of multi-omic techniques in this review not only benefits the comprehensive identification of new biomarkers, but also facilitates the development of personalized treatment strategies of bone disorders to revolutionize regenerative medicine.
Collapse
Affiliation(s)
- Honghao Yu
- Departments of Spine Surgery, Shengjing Hospital of China Medical University, Shengyang, China
| | - Shize Yang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianlong Jiang
- Department of Orthopedic Surgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin, 300100, China.
| | - Hongmei Duan
- Department of Rheumatology and Immunology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Minglei Li
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China.
| |
Collapse
|
2
|
Shayeb MA, Elfadil S, Abutayyem H, Shqaidef A, Marrapodi MM, Cicciù M, Minervini G. Bioactive surface modifications on dental implants: a systematic review and meta-analysis of osseointegration and longevity. Clin Oral Investig 2024; 28:592. [PMID: 39392473 PMCID: PMC11469970 DOI: 10.1007/s00784-024-05958-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Bioactive surface modifications have been proposed to enhance osseointegration and longevity of dental implants. This study aimed to systematically review and perform a meta-analysis on the effectiveness of various bioactive coatings in promoting bone integration and improving implant longevity. METHODS A systematic review was conducted, including studies that investigated bioactive surface modifications on titanium dental implants. Outcomes of interest were bone-to-implant contact (BIC) and implant longevity over a 30-day period. Data were extracted and analyzed using RevMan 5 (version 5.4.1), with forest plots generated to represent the mean difference (MD) and 95% confidence intervals (CI) under a random effects model. RESULTS The meta-analysis showed a significant improvement in BIC for surface-modified implants, with an overall MD of 7.29 (95% CI [2.94, 11.65]). Heterogeneity analysis indicated moderate heterogeneity (Tau² = 18.57, Chi² = 16.08, df = 8, P = 0.04, I² = 50%). The test for overall effect yielded Z = 3.28 (P = 0.001). For implant longevity, the overall MD was 7.52 (95% CI [3.18, 11.85]), with moderate heterogeneity (Tau² = 17.28, Chi² = 14.95, df = 8, P = 0.06, I² = 47%). The test for overall effect yielded Z = 3.40 (P = 0.0007). CONCLUSION Bioactive surface changes significantly improved osseointegration and lifespan of dental implants. Collagen-based coatings consistently encouraged early bone integration, while BMP-2 combinations were effective for osseointegration. Optimizing bioactive agent doses and combinations was critical for achieving desired outcomes.
Collapse
Affiliation(s)
- Maher Al Shayeb
- Department of Clinical Sciences, College of Dentistry, Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE.
| | - Sittana Elfadil
- Department of Clinical Sciences, College of Dentistry, Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Huda Abutayyem
- Department of Clinical Sciences, College of Dentistry, Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Abedalrahman Shqaidef
- Department of Clinical Sciences, College of Dentistry, Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Jordan, Amman, Jordan
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, 80121, Italy.
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, 95123, Italy
| | - Giuseppe Minervini
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples, 80121, Italy.
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Ureiro-Cueto G, Rodil SE, Silva-Bermúdez P, Santana-Vázquez M, Hoz-Rodríguez L, Arzate H, Montoya-Ayala G. Amorphous titanium oxide (aTiO 2) thin films biofunctionalized with CAP-p15 induce mineralized-like differentiation of human oral mucosal stem cells (hOMSCs). Biomed Mater 2024; 19:055003. [PMID: 38917837 DOI: 10.1088/1748-605x/ad5bab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Insufficient osseointegration of titanium-based implants is a factor conditioning their long-term success. Therefore, different surface modifications, such as multifunctional oxide coatings, calcium phosphates, and the addition of molecules such as peptides, have been developed to improve the bioactivity of titanium-based biomaterials. In this work, we investigate the behavior of human oral mucosal stem cells (hOMSCs) cultured on amorphous titanium oxide (aTiO2), surfaces designed to simulate titanium (Ti) surfaces, biofunctionalized with a novel sequence derived from cementum attachment protein (CAP-p15), exploring its impact on guiding hOMSCs towards an osteogenic phenotype. We carried out cell attachment and viability assays. Next, hOMSCs differentiation was assessed by red alizarin stain, ALP activity, and western blot analysis by evaluating the expression of RUNX2, BSP, BMP2, and OCN at the protein level. Our results showed that functionalized surfaces with CAP-p15 (1 µg ml-1) displayed a synergistic effect increasing cell proliferation and cell attachment, ALP activity, and expression of osteogenic-related markers. These data demonstrate that CAP-p15 and its interaction with aTiO2surfaces promote osteoblastic differentiation and enhanced mineralization of hOMSCs when compared to pristine samples. Therefore, CAP-p15 shows the potential to be used as a therapeutical molecule capable of inducing mineralized tissue regeneration onto titanium-based implants.
Collapse
Affiliation(s)
- Guadalupe Ureiro-Cueto
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, UNAM, Mexico
| | - Phaedra Silva-Bermúdez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico
| | - Maricela Santana-Vázquez
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| | - Lia Hoz-Rodríguez
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| | - Higinio Arzate
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| | - Gonzalo Montoya-Ayala
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| |
Collapse
|
4
|
Damiati LA, El Soury M. Bone-nerve crosstalk: a new state for neuralizing bone tissue engineering-A mini review. Front Med (Lausanne) 2024; 11:1386683. [PMID: 38690172 PMCID: PMC11059066 DOI: 10.3389/fmed.2024.1386683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Neuro bone tissue engineering is a multidisciplinary field that combines both principles of neurobiology and bone tissue engineering to develop innovative strategies for repairing and regenerating injured bone tissues. Despite the fact that regeneration and development are considered two distinct biological processes, yet regeneration can be considered the reactivation of development in later life stages to restore missing tissues. It is noteworthy that the regeneration capabilities are distinct and vary from one organism to another (teleost fishes, hydra, humans), or even in the same organism can vary dependent on the injured tissue itself (Human central nervous system vs. peripheral nervous system). The skeletal tissue is highly innervated, peripheral nervous system plays a role in conveying the signals and connecting the central nervous system with the peripheral organs, moreover it has been shown that they play an important role in tissue regeneration. Their regeneration role is conveyed by the different cells' resident in it and in its endoneurium (fibroblasts, microphages, vasculature associated cells, and Schwann cells) these cells secrete various growth factors (NGF, BDNF, GDNF, NT-3, and bFGF) that contribute to the regenerative phenotype. The peripheral nervous system and central nervous system synchronize together in regulating bone homeostasis and regeneration through neurogenic factors and neural circuits. Receptors of important central nervous system peptides such as Serotonin, Leptin, Semaphorins, and BDNF are expressed in bone tissue playing a role in bone homeostasis, metabolism and regeneration. This review will highlight the crosstalk between peripheral nerves and bone in the developmental stages as well as in regeneration and different neuro-bone tissue engineering strategies for repairing severe bone injuries.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| |
Collapse
|
5
|
Shrivas S, Samaur H, Yadav V, Boda SK. Soft and Hard Tissue Integration around Percutaneous Bone-Anchored Titanium Prostheses: Toward Achieving Holistic Biointegration. ACS Biomater Sci Eng 2024; 10:1966-1987. [PMID: 38530973 DOI: 10.1021/acsbiomaterials.3c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A holistic biointegration of percutaneous bone-anchored metallic prostheses with both hard and soft tissues dictates their longevity in the human body. While titanium (Ti) has nearly solved osseointegration, soft tissue integration of percutaneous metallic prostheses is a perennial problem. Unlike the firm soft tissue sealing in biological percutaneous structures (fingernails and teeth), foreign body response of the skin to titanium (Ti) leads to inflammation, epidermal downgrowth and inferior peri-implant soft tissue sealing. This review discusses various implant surface treatments/texturing and coatings for osseointegration, soft tissue integration, and against bacterial attachment. While surface microroughness by SLA (sandblasting with large grit and acid etched) and porous calcium phosphate (CaP) coatings improve Ti osseointegration, smooth and textured titania nanopores, nanotubes, microgrooves, and biomolecular coatings encourage soft tissue attachment. However, the inferior peri-implant soft tissue sealing compared to natural teeth can lead to peri-implantitis. Toward this end, the application of smart multifunctional bioadhesives with strong adhesion to soft tissues, mechanical resilience, durability, antibacterial, and immunomodulatory properties for soft tissue attachment to metallic prostheses is proposed.
Collapse
Affiliation(s)
- Sangeeta Shrivas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vinod Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sunil Kumar Boda
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
6
|
Li J, Zheng Y, Yu Z, Kankala RK, Lin Q, Shi J, Chen C, Luo K, Chen A, Zhong Q. Surface-modified titanium and titanium-based alloys for improved osteogenesis: A critical review. Heliyon 2024; 10:e23779. [PMID: 38223705 PMCID: PMC10784177 DOI: 10.1016/j.heliyon.2023.e23779] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
As implantable materials, titanium, and its alloys have garnered enormous interest from researchers for dental and orthopedic procedures. Despite their success in wide clinical applications, titanium, and its alloys fail to stimulate osteogenesis, resulting in poor bonding strength with surrounding bone tissue. Optimizing the surface topology and altered compositions of titanium and titanium-based alloys substantially promotes peri-implant bone regeneration. This review summarizes the utilization and importance of various osteogenesis components loaded onto titanium and its alloys. Further, different surface-modification methods and the release efficacy of loaded substances are emphasized. Finally, we summarize the article with prospects. We believe that further investigation studies must focus on identifying novel loading components, exploring various innovative, optimized surface-modification methods, and developing a sustained-release system on implant surfaces to improve peri-implant bone formation.
Collapse
Affiliation(s)
- Jingling Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Yaxin Zheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Zihe Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Qianying Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Jingbo Shi
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Chao Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Quan Zhong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, China
| |
Collapse
|
7
|
Dong S, Zhao T, Wu W, Zhang Z, Wu J, Cai K, Li G, Lv J, Zhou H, Tang C. Sandblasted/Acid-Etched Titanium Surface Modified with Calcium Phytate Enhances Bone Regeneration in a High-Glucose Microenvironment by Regulating Reactive Oxygen Species and Cell Senescence. ACS Biomater Sci Eng 2023; 9:4720-4734. [PMID: 37491189 DOI: 10.1021/acsbiomaterials.3c00385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Hyperglycemia in patients with diabetes affect osteoblast function, leading to abnormal bone metabolism and implant failure. Adequate bone volume surrounding an implant is essential for osseointegration, which can be improved by implant surface modifications. In this study, titanium surfaces were hydrothermally treated with a mixture of phytic acid (PA) and calcium hydroxide to produce a calcium-decorated surface. The control group comprised pure titanium with a sandblasted/acid-etched (SLA) surface. The elemental composition, hydrophilicity, surface roughness, and morphology of the titanium surfaces were examined. Evaluation of in vitro osteogenic differentiation ability in a high-glucose environment using alkaline phosphatase (ALP) staining, ALP activity assays, Alizarin Red S staining, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and immunofluorescence staining revealed that Ca-PA-modified SLA titanium surfaces can promote osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Evaluation of oxidative stress and aging using reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and β-galactosidase staining revealed that Ca-PA-modified SLA titanium surfaces can reduce ROS production and ameliorate oxidative stress damage in hBMSCs. In vivo assessment of osteogenesis in a diabetic rat model revealed that Ca-PA coating promotes peri-implant osseointegration. Ca-PA-modified SLA titanium surface is a candidate for improving implant osseointegration in patients with diabetes.
Collapse
Affiliation(s)
- Shuo Dong
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Tong Zhao
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Wei Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Zhewei Zhang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Jin Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Kunzhan Cai
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Guoqing Li
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Jiaxin Lv
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Heyang Zhou
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| |
Collapse
|
8
|
Nemcakova I, Litvinec A, Mandys V, Potocky S, Plencner M, Doubkova M, Nanka O, Olejnickova V, Sankova B, Bartos M, Ukraintsev E, Babčenko O, Bacakova L, Kromka A, Rezek B, Sedmera D. Coating Ti6Al4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo. Sci Rep 2022; 12:5264. [PMID: 35347219 PMCID: PMC8960880 DOI: 10.1038/s41598-022-09183-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
The present study investigates the effect of an oxidized nanocrystalline diamond (O-NCD) coating functionalized with bone morphogenetic protein 7 (BMP-7) on human osteoblast maturation and extracellular matrix mineralization in vitro and on new bone formation in vivo. The chemical structure and the morphology of the NCD coating and the adhesion, thickness and morphology of the superimposed BMP-7 layer have also been assessed. The material analysis proved synthesis of a conformal diamond coating with a fine nanostructured morphology on the Ti6Al4V samples. The homogeneous nanostructured layer of BMP-7 on the NCD coating created by a physisorption method was confirmed by AFM. The osteogenic maturation of hFOB 1.19 cells in vitro was only slightly enhanced by the O-NCD coating alone without any increase in the mineralization of the matrix. Functionalization of the coating with BMP-7 resulted in more pronounced cell osteogenic maturation and increased extracellular matrix mineralization. Similar results were obtained in vivo from micro-CT and histological analyses of rabbit distal femurs with screws implanted for 4 or 12 weeks. While the O-NCD-coated implants alone promoted greater thickness of newly-formed bone in direct contact with the implant surface than the bare material, a further increase was induced by BMP-7. It can be therefore concluded that O-NCD coating functionalized with BMP-7 is a promising surface modification of metallic bone implants in order to improve their osseointegration.
Collapse
Affiliation(s)
- Ivana Nemcakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Andrej Litvinec
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Vaclav Mandys
- Department of Pathology, Charles University, Third Faculty of Medicine, Ruska 2411, 100 00, Prague 10, Czech Republic
| | - Stepan Potocky
- Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, 162 00, Prague 6, Czech Republic
| | - Martin Plencner
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Martina Doubkova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Ondrej Nanka
- Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Veronika Olejnickova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Barbora Sankova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Martin Bartos
- Institute of Dental Medicine, Charles University, First Faculty of Medicine, U Nemocnice 2, 1280 00, Prague 2, Czech Republic
| | - Egor Ukraintsev
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - Oleg Babčenko
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Alexander Kromka
- Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, 162 00, Prague 6, Czech Republic
| | - Bohuslav Rezek
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - David Sedmera
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic. .,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
9
|
Accioni F, Vázquez J, Merinero M, Begines B, Alcudia A. Latest Trends in Surface Modification for Dental Implantology: Innovative Developments and Analytical Applications. Pharmaceutics 2022; 14:455. [PMID: 35214186 PMCID: PMC8876580 DOI: 10.3390/pharmaceutics14020455] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/27/2022] Open
Abstract
An increase in the world population and its life expectancy, as well as the ongoing concern about our physical appearance, have elevated the relevance of dental implantology in recent decades. Engineering strategies to improve the survival rate of dental implants have been widely investigated, focusing on implant material composition, geometry (usually guided to reduce stiffness), and interface surrounding tissues. Although efforts to develop different implant surface modifications are being applied in commercial dental prostheses today, the inclusion of surface coatings has gained special interest, as they can be tailored to efficiently enhance osseointegration, as well as to reduce bacterial-related infection, minimizing peri-implantitis appearance and its associated risks. The use of biomaterials to replace teeth has highlighted the need for the development of reliable analytical methods to assess the therapeutic benefits of implants. This literature review considers the state-of-the-art strategies for surface modification or coating and analytical methodologies for increasing the survival rate for teeth restoration.
Collapse
Affiliation(s)
- Francesca Accioni
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| | - Juan Vázquez
- Departamento de Química Orgánica, Universidad de Sevilla, 41012 Seville, Spain;
| | - Manuel Merinero
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
- Departamento de Citología e Histología Normal y Patológica, Universidad de Sevilla, 41012 Seville, Spain
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Universidad de Sevilla, 41012 Seville, Spain; (F.A.); (M.M.)
| |
Collapse
|
10
|
Gherasim O, Grumezescu AM, Grumezescu V, Andronescu E, Negut I, Bîrcă AC, Gălățeanu B, Hudiță A. Bioactive Coatings Loaded with Osteogenic Protein for Metallic Implants. Polymers (Basel) 2021; 13:4303. [PMID: 34960852 PMCID: PMC8703935 DOI: 10.3390/polym13244303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoconductive and osteoinductive coatings represent attractive and tunable strategies towards the enhanced biomechanics and osseointegration of metallic implants, providing accurate local modulation of bone-to-implant interface. Composite materials based on polylactide (PLA) and hydroxyapatite (HAp) are proved beneficial substrates for the modulation of bone cells' development, being suitable mechanical supports for the repair and regeneration of bone tissue. Moreover, the addition of osteogenic proteins represents the next step towards the fabrication of advanced biomaterials for hard tissue engineering applications, as their regulatory mechanisms beneficially contribute to the new bone formation. In this respect, laser-processed composites, based on PLA, Hap, and bone morphogenetic protein 4(BMP4), are herein proposed as bioactive coatings for metallic implants. The nanostructured coatings proved superior ability to promote the adhesion, viability, and proliferation of osteoprogenitor cells, without affecting their normal development and further sustaining the osteogenic differentiation of the cells. Our results are complementary to previous studies regarding the successful use of chemically BMP-modified biomaterials in orthopedic and orthodontic applications.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania;
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania;
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (E.A.); (A.C.B.)
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.G.); (A.H.)
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.G.); (A.H.)
| |
Collapse
|
11
|
Bjelić D, Finšgar M. The Role of Growth Factors in Bioactive Coatings. Pharmaceutics 2021; 13:1083. [PMID: 34371775 PMCID: PMC8309025 DOI: 10.3390/pharmaceutics13071083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
With increasing obesity and an ageing population, health complications are also on the rise, such as the need to replace a joint with an artificial one. In both humans and animals, the integration of the implant is crucial, and bioactive coatings play an important role in bone tissue engineering. Since bone tissue engineering is about designing an implant that maximally mimics natural bone and is accepted by the tissue, the search for optimal materials and therapeutic agents and their concentrations is increasing. The incorporation of growth factors (GFs) in a bioactive coating represents a novel approach in bone tissue engineering, in which osteoinduction is enhanced in order to create the optimal conditions for the bone healing process, which crucially affects implant fixation. For the application of GFs in coatings and their implementation in clinical practice, factors such as the choice of one or more GFs, their concentration, the coating material, the method of incorporation, and the implant material must be considered to achieve the desired controlled release. Therefore, the avoidance of revision surgery also depends on the success of the design of the most appropriate bioactive coating. This overview considers the integration of the most common GFs that have been investigated in in vitro and in vivo studies, as well as in human clinical trials, with the aim of applying them in bioactive coatings. An overview of the main therapeutic agents that can stimulate cells to express the GFs necessary for bone tissue development is also provided. The main objective is to present the advantages and disadvantages of the GFs that have shown promise for inclusion in bioactive coatings according to the results of numerous studies.
Collapse
Affiliation(s)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| |
Collapse
|
12
|
Damiati LA, El-Messeiry S. An Overview of RNA-Based Scaffolds for Osteogenesis. Front Mol Biosci 2021; 8:682581. [PMID: 34169095 PMCID: PMC8217814 DOI: 10.3389/fmolb.2021.682581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering provides new hope for the combination of cells, scaffolds, and bifactors for bone osteogenesis. This is achieved by mimicking the bone's natural behavior in recruiting the cell's molecular machinery for our use. Many researchers have focused on developing an ideal scaffold with specific features, such as good cellular adhesion, cell proliferation, differentiation, host integration, and load bearing. Various types of coating materials (organic and non-organic) have been used to enhance bone osteogenesis. In the last few years, RNA-mediated gene therapy has captured attention as a new tool for bone regeneration. In this review, we discuss the use of RNA molecules in coating and delivery, including messenger RNA (mRNA), RNA interference (RNAi), and long non-coding RNA (lncRNA) on different types of scaffolds (such as polymers, ceramics, and metals) in osteogenesis research. In addition, the effect of using gene-editing tools-particularly CRISPR systems-to guide RNA scaffolds in bone regeneration is also discussed. Given existing knowledge about various RNAs coating/expression may help to understand the process of bone formation on the scaffolds during osseointegration.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Sarah El-Messeiry
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Role of rhBMP-7, Fibronectin, And Type I Collagen in Dental Implant Osseointegration Process: An Initial Pilot Study on Minipig Animals. MATERIALS 2021; 14:ma14092185. [PMID: 33923213 PMCID: PMC8123155 DOI: 10.3390/ma14092185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/09/2022]
Abstract
Background: The biological factors involved in dental implant osseointegration need to be investigated to improve implant success. Methods: Twenty-four implants were inserted into the tibias of six minipigs. Bone samples were obtained at 7, 14, and 56 days. Biomolecular analyses evaluated mRNA of BMP-4, -7, Transforming Growth Factor-β2, Interleukin-1β, and Osteocalcin in sites treated with rhBMP-7, Type 1 Collagen, or Fibronectin (FN). Inflammation and osteogenesis were evaluated by histological analyses. Results: At 7 and 14 days, BMP-4 and BMP-7 increased in the sites prepared with rhBMP-7 and FN. BMP-7 remained greater at 56 days in rhBMP-7 and FN sites. BPM-4 at 7 and 14 days increased in Type 1 Collagen sites; BMP-7 increased from day 14. FN increased the TGF-β2 at all experimental times, whilst the rhBMP-7 only did so up to 7 days. IL-1β increased only in collagen-treated sites from 14 days. Osteocalcin was high in FN-treated sites. Neutrophilic granulocytes characterized the inflammatory infiltrate at 7 days, and mononuclear cells at 14 and 56 days. Conclusions: This initial pilot study, in a novel way, evidenced that Type 1 Collagen induced inflammation and did not stimulate bone production; conversely FN or rhBMP-7 showed neo-osteogenetic and anti-inflammatory properties when directly added into implant bone site.
Collapse
|
14
|
Dindelegan GC, Caziuc A, Brie I, Soritau O, Dindelegan MG, Bintintan V, Pascalau V, Mihu C, Popa C. Multilayered Porous Titanium-Based 3rd Generation Biomaterial Designed for Endosseous Implants. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1727. [PMID: 33807480 PMCID: PMC8036277 DOI: 10.3390/ma14071727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022]
Abstract
This work proposes a novel complex multi-layered material consisting of porous titanium as a substrate and a complex coating consisting of a chitosan film engulfing microsphere loaded with growth factors such as BMP2 (bone morphogenic protein 2) and IGF1 (insulin-like growth factor-1). The microspheres were obtained through deposition of dual layers of calcium cross linked pectin-chitosan/pectin polyelectrolyte onto a BSA (bovine serum albumin) gel core. The multilayer was conceived to behave like a 3rd generation biomaterial, by slow delivery of viable growth factors around implants, and to assist the healing of implantation wound and the development of new vital bone. The biologic effect of the delivery of growth factors was studied in vitro, on MSC-CD1 mesenchymal stem cells, and in vivo, on CD1 mice. Proliferation and differentiation of cells were accelerated by growth factors, especially IGF1 for proliferation and BMP2 for differentiation. In vivo tests analyzed histologically and by MicroCT show a more structured tissue around BMP2 samples. The present concept will give the best clinical results if both growth factors are delivered together by a coating film that contains a double population of microcarriers.
Collapse
Affiliation(s)
- George Calin Dindelegan
- Surgical Department, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400349 Cluj-Napoca, Romania; (G.C.D.); (V.B.)
| | - Alexandra Caziuc
- Surgical Department, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400349 Cluj-Napoca, Romania; (G.C.D.); (V.B.)
| | - Ioana Brie
- Radiobiology and Tumor Biology Department, Oncologic Institute Ion Chiricuta, 400015 Cluj-Napoca, Romania; (I.B.); (O.S.)
| | - Olga Soritau
- Radiobiology and Tumor Biology Department, Oncologic Institute Ion Chiricuta, 400015 Cluj-Napoca, Romania; (I.B.); (O.S.)
| | | | - Vasile Bintintan
- Surgical Department, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400349 Cluj-Napoca, Romania; (G.C.D.); (V.B.)
| | - Violeta Pascalau
- Department of Science and Technology, Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (V.P.); (C.P.)
| | - Carmen Mihu
- Histology Department, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400349 Cluj-Napoca, Romania;
| | - Catalin Popa
- Department of Science and Technology, Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (V.P.); (C.P.)
| |
Collapse
|
15
|
Abstract
Dental implants are widely used in the field of oral restoration, but there are still problems leading to implant failures in clinical application, such as failed osseointegration, marginal bone resorption, and peri-implantitis, which restrict the success rate of dental implants and patient satisfaction. Poor osseointegration and bacterial infection are the most essential reasons resulting in implant failure. To improve the clinical outcomes of implants, many scholars devoted to modifying the surface of implants, especially to preparing different physical and chemical modifications to improve the osseointegration between alveolar bone and implant surface. Besides, the bioactive-coatings to promote the adhesion and colonization of ossteointegration-related proteins and cells also aim to improve the osseointegration. Meanwhile, improving the anti-bacterial performance of the implant surface can obstruct the adhesion and activity of bacteria, avoiding the occurrence of inflammation related to implants. Therefore, this review comprehensively investigates and summarizes the modifying or coating methods of implant surfaces, and analyzes the ossteointegration ability and anti-bacterial characteristics of emerging functional coatings in published references.
Collapse
|
16
|
Osteo-Compatibility of 3D Titanium Porous Coating Applied by Direct Energy Deposition (DED) for a Cementless Total Knee Arthroplasty Implant: in Vitro and in Vivo Study. J Clin Med 2020; 9:jcm9020478. [PMID: 32050490 PMCID: PMC7074176 DOI: 10.3390/jcm9020478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/27/2022] Open
Abstract
Direct energy deposition (DED) technology has gained increasing attention as a new implant surface technology that replicates the porous structure of natural bones facilitating osteoblast colonization and bone ingrowth. However, concerns have arisen over osteolysis or chronic inflammation that could be caused by Cobalt-chrome (CoCr) alloy and Titanium (Ti) nanoparticles produced during the fabrication process. Here, we evaluated whether a DED Ti-coated on CoCr alloy could improve osteoblast colonization and osseointegration in vitro and in vivo without causing any significant side effects. Three types of implant CoCr surfaces (smooth, sand-blasted and DED Ti-coated) were tested and compared. Three cell proliferation markers and six inflammatory cytokine markers were measured using SaOS2 osteoblast cells. Subsequently, X-ray and bone histomorphometric analyses were performed after implantation into rabbit femur. There were no differences between the DED group and positive control in cytokine assays. However, in the 5-bromo-2′-deoxyuridine (BrdU) assay the DED group exhibited even higher values than the positive control. For bone histomorphometry, DED was significantly superior within the 1000 µm bone area. The results suggest that DED Ti-coated metal printing does not affect the osteoblast viability or impair osseointegration in vitro and in vivo. Thus, this technology is biocompatible for coating the surfaces of cementless total knee arthroplasty (TKA) implants.
Collapse
|
17
|
Donnelly H, Salmeron-Sanchez M, Dalby MJ. Designing stem cell niches for differentiation and self-renewal. J R Soc Interface 2019; 15:rsif.2018.0388. [PMID: 30158185 PMCID: PMC6127175 DOI: 10.1098/rsif.2018.0388] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells, characterized by their ability to differentiate into skeletal tissues and self-renew, hold great promise for both regenerative medicine and novel therapeutic discovery. However, their regenerative capacity is retained only when in contact with their specialized microenvironment, termed the stem cell niche Niches provide structural and functional cues that are both biochemical and biophysical, stem cells integrate this complex array of signals with intrinsic regulatory networks to meet physiological demands. Although, some of these regulatory mechanisms remain poorly understood or difficult to harness with traditional culture systems. Biomaterial strategies are being developed that aim to recapitulate stem cell niches, by engineering microenvironments with physiological-like niche properties that aim to elucidate stem cell-regulatory mechanisms, and to harness their regenerative capacity in vitro In the future, engineered niches will prove important tools for both regenerative medicine and therapeutic discoveries.
Collapse
Affiliation(s)
- Hannah Donnelly
- The Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Matthew J Dalby
- The Centre for the Cellular Microenvironment, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
18
|
Campsie P, Childs PG, Robertson SN, Cameron K, Hough J, Salmeron-Sanchez M, Tsimbouri PM, Vichare P, Dalby MJ, Reid S. Design, construction and characterisation of a novel nanovibrational bioreactor and cultureware for osteogenesis. Sci Rep 2019; 9:12944. [PMID: 31506561 PMCID: PMC6736847 DOI: 10.1038/s41598-019-49422-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/23/2019] [Indexed: 11/17/2022] Open
Abstract
In regenerative medicine, techniques which control stem cell lineage commitment are a rapidly expanding field of interest. Recently, nanoscale mechanical stimulation of mesenchymal stem cells (MSCs) has been shown to activate mechanotransduction pathways stimulating osteogenesis in 2D and 3D culture. This has the potential to revolutionise bone graft procedures by creating cellular graft material from autologous or allogeneic sources of MSCs without using chemical induction. With the increased interest in mechanical stimulation of cells and huge potential for clinical use, it is apparent that researchers and clinicians require a scalable bioreactor system that provides consistently reproducible results with a simple turnkey approach. A novel bioreactor system is presented that consists of: a bioreactor vibration plate, calibrated and optimised for nanometre vibrations at 1 kHz, a power supply unit, which supplies a 1 kHz sine wave signal necessary to generate approximately 30 nm of vibration amplitude, and custom 6-well cultureware with toroidal shaped magnets incorporated in the base of each well for conformal attachment to the bioreactor’s magnetic vibration plate. The cultureware and vibration plate were designed using finite element analysis to determine the modal and harmonic responses, and validated by interferometric measurement. This helps ensure that the vibration plate and cultureware, and thus collagen and MSCs, all move as a rigid body, avoiding large deformations close to the resonant frequency of the vibration plate and vibration damping beyond the resonance. Assessment of osteogenic protein expression was performed to confirm differentiation of MSCs after initial biological experiments with the system, as well as atomic force microscopy of the 3D gel constructs during vibrational stimulation to verify that strain hardening of the gel did not occur. This shows that cell differentiation was the result of the nanovibrational stimulation provided by the bioreactor alone, and that other cell differentiating factors, such as stiffening of the collagen gel, did not contribute.
Collapse
Affiliation(s)
- Paul Campsie
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow, G1 1QE, UK
| | - Peter G Childs
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Shaun N Robertson
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow, G1 1QE, UK
| | - Kenny Cameron
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - James Hough
- SUPA Institute for Gravitational Research, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Parag Vichare
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Stuart Reid
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow, G1 1QE, UK.
| |
Collapse
|
19
|
Damiati L, Eales MG, Nobbs AH, Su B, Tsimbouri PM, Salmeron-Sanchez M, Dalby MJ. Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants. J Tissue Eng 2018; 9:2041731418790694. [PMID: 30116518 PMCID: PMC6088466 DOI: 10.1177/2041731418790694] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023] Open
Abstract
Titanium (Ti) plays a predominant role as the material of choice in orthopaedic and dental implants. Despite the majority of Ti implants having long-term success, premature failure due to unsuccessful osseointegration leading to aseptic loosening is still too common. Recently, surface topography modification and biological/non-biological coatings have been integrated into orthopaedic/dental implants in order to mimic the surrounding biological environment as well as reduce the inflammation/infection that may occur. In this review, we summarize the impact of various Ti coatings on cell behaviour both in vivo and in vitro. First, we focus on the Ti surface properties and their effects on osteogenesis and then on bacterial adhesion and viability. We conclude from the current literature that surface modification of Ti implants can be generated that offer both osteoinductive and antimicrobial properties.
Collapse
Affiliation(s)
- Laila Damiati
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Marcus G Eales
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Bo Su
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|