1
|
Kumar AM, Hussein MA, Abdelrahim F, Ko N, Ramakrishna S, Saravanan S, Javid M, Oh SJ. Multifunctional Polymeric Bioactive Coatings on Ti Implants through the Drug Delivery Approach: In Vitro Corrosion Resistance, Biocompatibility, and Antibacterial Characteristics. ACS APPLIED BIO MATERIALS 2025; 8:2800-2812. [PMID: 40116332 DOI: 10.1021/acsabm.4c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
In the current study, we developed a controlled drug delivery system using a polymeric matrix composed of biopolymer poly(vinylidene fluoride) (PVDF) and ciprofloxacin (CPF)-loaded titanium (Ti) nanotubes (TNTs) on Ti substrates for biomedical applications. The TNT arrays over the Ti surface were obtained through an anodization route. The PVDF coatings were dip-coated on TNT-Ti loaded with CPF. The chemical, microstructure, and surface properties of the TNTs and coated surfaces were characterized using FTIR, XRD, transmission electron microscopy (TEM), scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS), and surface hydrophilicity analyses. The performance of the implant surfaces was evaluated through in vitro corrosion studies in simulated body fluid (SBF), biocompatibility with MG63 cells, and antibacterial properties. The results revealed that the PVDF/0.1CPF coatings exhibited sustained release of CPF from the polymer matrix at a linear rate and releasing profile for 168 h. PVDF/0.1CPF coating showed decreased corrosion current density (4.457 × 10-9 A/cm2) by 2 orders of magnitude than that of the Ti substrate, indicating enhanced corrosion protection in the SBF. PVDF/0.1CPF coating showed an antibacterial efficacy of 84.44% against Escherichia coli and 88.33% against Bacillus licheniformis after 24 h. The biocompatibility result showed that after 5 days of culturing, the PVDF/0.1CPF was pointedly higher than that of the pure PVDF and uncoated specimens. Additionally, after 7 days of culture, the quantity of cells on the PVDF/0.1CPF coating continued to increase significantly, whereas the bare specimens and pristine PVDF showed a lower rate of proliferation. The proposed biocompatible polymeric coatings hold synergic antibacterial and corrosion-resistant potential for biomedical applications.
Collapse
Affiliation(s)
- A Madhan Kumar
- Interdisciplinary Research Center for Advanced Materials and Department of Aerospace Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - M A Hussein
- Interdisciplinary Research Center for Advanced Materials and Department of Aerospace Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Faisal Abdelrahim
- Interdisciplinary Research Center for Advanced Materials and Department of Aerospace Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Nare Ko
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul 05505, South Korea
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, South Korea
- College of Medicine, Hanyang University, Seoul 04763, South Korea
| | - S Saravanan
- Department of Life Science, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mohamed Javid
- Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| |
Collapse
|
2
|
Araya M, Järvenpää A, Rautio T, Vindas R, Estrada R, de Ruijter M, Guillén T. In-vivo and ex-vivo evaluation of bio-inspired structures fabricated via PBF-LB for biomedical applications. Mater Today Bio 2025; 31:101450. [PMID: 39896284 PMCID: PMC11783004 DOI: 10.1016/j.mtbio.2025.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Titanium-based lattice structures have gained significant attention in biomedical engineering due to their potential to mimic bone-like behavior and improve implant performance. This study evaluates the performance of bio-inspired Ti64 TPMS Gyroyd and Stochastic lattice structures fabricated via Powder Bed Fusion-Laser Beam (PBF-LB), focusing on their in-vivo and ex-vivo mechanical and biological responses for biomedical applications. Utilizing an SLM 280 HL printer, samples exhibited notable geometric accuracy essential for mechanical integrity. The study highlights significant mechanical properties and geometric precision improvements achieved through chemical etching. Mechanical characterization revealed that the as-built Gyroid lattice had the highest elastic modulus (3.64 GPa) and yield strength (200.65 MPa), which improved post-etching (3.62 GPa and 219.35 MPa, respectively). The Stochastic lattice demonstrated lower yield strength values post-etching (169.81 MPa). In-vivo analyses in horse models, both structures demonstrated excellent biocompatibility and osseointegration with no adverse inflammatory responses. Ex-vivo push-out tests showed that the chemically etched Gyroid structure achieved the highest resistance to push-out force (1645.407 N) and most significant displacement (2.754 mm), indicating superior energy absorption (4920.425 mJ). These findings underscore the critical influence of microstructural design and surface treatments on implant functionality, offering novel insights into improving biomedical implant performance through lattice architecture and post-processing.
Collapse
Affiliation(s)
- Miguel Araya
- Bio-inspired Processes and Materials Research Group, Instituto Tecnológico de Costa Rica, Cartago, 30101, Costa Rica
- Future Manufacturing Technologies Research Group, University of Oulu, Oulu, 90014, Finland
| | - Antti Järvenpää
- Future Manufacturing Technologies Research Group, University of Oulu, Oulu, 90014, Finland
| | - Timo Rautio
- Future Manufacturing Technologies Research Group, University of Oulu, Oulu, 90014, Finland
| | - Rafael Vindas
- School of Veterinary Medicine, Universidad Nacional de Costa Rica, Heredia, 40104, Costa Rica
| | - Roberto Estrada
- School of Veterinary Medicine, Universidad Nacional de Costa Rica, Heredia, 40104, Costa Rica
| | - Mylène de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 3584, CX, the Netherlands
| | - Teodolito Guillén
- Bio-inspired Processes and Materials Research Group, Instituto Tecnológico de Costa Rica, Cartago, 30101, Costa Rica
| |
Collapse
|
3
|
Park J, Tesler AB, Gongadze E, Iglič A, Schmuki P, Mazare A. Nanoscale Topography of Anodic TiO 2 Nanostructures Is Crucial for Cell-Surface Interactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4430-4438. [PMID: 38232230 DOI: 10.1021/acsami.3c16033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Anodic titanium dioxide (TiO2) nanostructures, i.e., obtained by electrochemical anodization, have excellent control over the nanoscale morphology and have been extensively investigated in biomedical applications owing to their sub-100 nm nanoscale topography range and beneficial effects on biocompatibility and cell interactions. Herein, we obtain TiO2 nanopores (NPs) and nanotubes (NTs) with similar morphologies, namely, 15 nm diameter and 500 nm length, and investigate their characteristics and impact on stem cell adhesion. We show that the transition of TiO2 NPs to NTs occurs via a pore/wall splitting mechanism and the removal of the fluoride-rich layer. Furthermore, in contrast to the case of NPs, we observe increased cell adhesion and proliferation on nanotubes. The enhanced mesenchymal stem cell adhesion/proliferation seems to be related to a 3-fold increase in activated integrin clustering, as confirmed by immunogold labeling with β1 integrin antibody on the nanostructured layers. Moreover, computations of the electric field and surface charge density show increased values at the inner and outer sharp edges of the top surfaces of the NTs, which in turn can influence cell adhesion by increasing the bridging interactions mediated by proteins and molecules in the environment. Collectively, our results indicate that the nanoscale surface architecture of the lateral spacing topography can greatly influence stem cell adhesion on substrates for biomedical applications.
Collapse
Affiliation(s)
- Jung Park
- Division of Molecular Pediatrics, Department of Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Alexander B Tesler
- Department of Materials Science WW4-LKO, Friedrich-Alexander University of Erlangen Nürnberg, 91054 Erlangen, Germany
| | - Ekaterina Gongadze
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana SI-1000, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana SI-1000, Slovenia
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, Ljubljana 1000, Slovenia
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University of Erlangen Nürnberg, 91054 Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc 779 00, Czech Republic
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University of Erlangen Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
4
|
Nazarov D, Kozlova L, Rogacheva E, Kraeva L, Maximov M. Atomic Layer Deposition of Antibacterial Nanocoatings: A Review. Antibiotics (Basel) 2023; 12:1656. [PMID: 38136691 PMCID: PMC10740478 DOI: 10.3390/antibiotics12121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques and technologies used to apply these coatings. Among the various inorganic coating techniques, atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise control over their thickness and composition. ALD has various industrial applications, but its practical application in medicine is still limited. In recent years, a considerable number of papers have been published on the proposed use of thin films and coatings produced via ALD in medicine, notably those with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings of different compositions, including key characteristics such as thickness, morphology, and crystal structure. The use of ALD in the development of antibacterial coatings for various applications was analyzed. Furthermore, assumptions were made about the most promising areas of development. The final section provides a comparison of different coatings, as well as the advantages, disadvantages, and prospects of using ALD for the industrial production of antibacterial coatings.
Collapse
Affiliation(s)
- Denis Nazarov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Lada Kozlova
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Elizaveta Rogacheva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Ludmila Kraeva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Maxim Maximov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
| |
Collapse
|
5
|
Matchin AA, Nosov EV, Stadnikov AA, Klevtsov GV, Rezyapova LR, Sayapina NA, Blinova EV, Valiev RZ. In Vivo Studies of Medical Implants for Maxillofacial Surgery Produced from Nanostructured Titanium. ACS Biomater Sci Eng 2023; 9:6138-6145. [PMID: 37803938 DOI: 10.1021/acsbiomaterials.3c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
This paper presents the results of comprehensive in vivo studies into the osseointegration behavior of medical implants for maxillofacial surgery produced from nanostructured grade 4 titanium. Special attention is given to the phenomenology of bone tissue formation with consideration of its surface relief features and to evaluating the quantitative parameters of the morphological indicators of osteoblast and endothelial cells in the osseointegration zone. These parameters were compared with their measurement data for standard factory-made implants, and considerable acceleration in the fixation of nanotitanium implants due to osseointegation was found. The obtained results indicate a better osseointegration of implants made of nanotitanium in comparison to similar standard products.
Collapse
Affiliation(s)
- Alexander A Matchin
- Department of Dentistry and Maxillofacial Surgery, Orenburg State Medical University, Orenburg 460000, Russia
| | - Evgeniy V Nosov
- Department of Dentistry and Maxillofacial Surgery, Orenburg State Medical University, Orenburg 460000, Russia
| | - Alexander A Stadnikov
- Department of Histology, Cytology and Embryology, Orenburg State Medical University, Orenburg 460000, Russia
| | - Gennadiy V Klevtsov
- Department of Nanotechnology, Materials Science and Mechanics, Togliatti State University, Togliatti 445020, Russia
| | - Luiza R Rezyapova
- Institute of Physics of Advanced Materials, Ufa University of Science and Technology, Ufa 450076, Russia
| | - Natalia A Sayapina
- Institute of Physics of Advanced Materials, Ufa University of Science and Technology, Ufa 450076, Russia
| | - Elena V Blinova
- Department of Histology, Cytology and Embryology, Orenburg State Medical University, Orenburg 460000, Russia
| | - Ruslan Z Valiev
- Institute of Physics of Advanced Materials, Ufa University of Science and Technology, Ufa 450076, Russia
| |
Collapse
|
6
|
Li P, Yin R, Cheng J, Lin J. Bacterial Biofilm Formation on Biomaterials and Approaches to Its Treatment and Prevention. Int J Mol Sci 2023; 24:11680. [PMID: 37511440 PMCID: PMC10380251 DOI: 10.3390/ijms241411680] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial biofilms can cause widespread infection. In addition to causing urinary tract infections and pulmonary infections in patients with cystic fibrosis, biofilms can help microorganisms adhere to the surfaces of various medical devices, causing biofilm-associated infections on the surfaces of biomaterials such as venous ducts, joint prostheses, mechanical heart valves, and catheters. Biofilms provide a protective barrier for bacteria and provide resistance to antimicrobial agents, which increases the morbidity and mortality of patients. This review summarizes biofilm formation processes and resistance mechanisms, as well as the main features of clinically persistent infections caused by biofilms. Considering the various infections caused by clinical medical devices, we introduce two main methods to prevent and treat biomaterial-related biofilm infection: antibacterial coatings and the surface modification of biomaterials. Antibacterial coatings depend on the covalent immobilization of antimicrobial agents on the coating surface and drug release to prevent and combat infection, while the surface modification of biomaterials affects the adhesion behavior of cells on the surfaces of implants and the subsequent biofilm formation process by altering the physical and chemical properties of the implant material surface. The advantages of each strategy in terms of their antibacterial effect, biocompatibility, limitations, and application prospects are analyzed, providing ideas and research directions for the development of novel biofilm infection strategies related to therapeutic materials.
Collapse
Affiliation(s)
| | | | | | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China; (P.L.); (R.Y.); (J.C.)
| |
Collapse
|
7
|
Zemtsova EG, Kozlova LA, Yudintceva NM, Sokolova DN, Arbenin AY, Ponomareva AN, Korusenko PM, Kraeva LA, Rogacheva EV, Smirnov VM. Creation of a Composite Bioactive Coating with Antibacterial Effect Promising for Bone Implantation. Molecules 2023; 28:molecules28031416. [PMID: 36771083 PMCID: PMC9919298 DOI: 10.3390/molecules28031416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
When creating titanium-containing bone implants, the bioactive coatings that promote their rapid engraftment are important. The engraftment rate of titanium implants with bone tissue depends significantly on the modification of the implant surface. It is achieved by changing either the relief or the chemical composition of the surface layer, as well as a combination of these two factors. In this work, we studied the creation of composite coatings with a two-level (the micro- and nanolevel) hierarchy of the surface relief, which have bioactive and bactericidal properties, which are promising for bone implantation. Using the developed non-lithographic template electrochemical synthesis, a composite coating on titanium with a controlled surface structure was created based on an island-type TiO2 film, silver and hydroxyapatite (HAp). This TiO2/Ag/HAp composite coating has a developed surface relief at the micro- and nanolevels and has a significant cytological response and the ability to accelerate osteosynthesis, and also has an antibacterial effect. Thus, the developed biomaterial is suitable for production of dental and orthopedic implants with improved biomedical properties.
Collapse
Affiliation(s)
- Elena G. Zemtsova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-812-428-4033
| | - Lada A. Kozlova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| | - Natalia M. Yudintceva
- Institute of Cytology, Russian Academy of Sciences (RAS), Tikhoretsky pr 4, 194064 Saint Petersburg, Russia
| | - Daria N. Sokolova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| | - Andrey Yu. Arbenin
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| | - Alexandra N. Ponomareva
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| | - Petr M. Korusenko
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| | - Ludmila A. Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia
| | - Elizaveta V. Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia
| | - Vladimir M. Smirnov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia
| |
Collapse
|
8
|
Antibacterial and Osteogenic Properties of Ag Nanoparticles and Ag/TiO2 Nanostructures Prepared by Atomic Layer Deposition. J Funct Biomater 2022; 13:jfb13020062. [PMID: 35645270 PMCID: PMC9149969 DOI: 10.3390/jfb13020062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
The combination of titania nanofilms and silver nanoparticles (NPs) is a very promising material, with antibacterial and osseointegration-induced properties for titanium implant coatings. In this work, we successfully prepared TiO2 nanolayer/Ag NP structures on titanium disks using atomic layer deposition (ALD). The samples were studied by scanning electron microscopy (SEM), X-ray diffraction, X-ray photoelectron spectroscopy (XPS), contact angle measurements, and SEM-EDS. Antibacterial activity was tested against Staphylococcus aureus. The in vitro cytological response of MG-63 osteosarcoma and human fetal mesenchymal stem cells (FetMSCs) was examined using SEM study of their morphology, MTT test of viability and differentiation using alkaline phosphatase and osteopontin with and without medium-induced differentiation in the osteogenic direction. The samples with TiO2 nanolayers, Ag NPs, and a TiO2/Ag combination showed high antibacterial activity, differentiation in the osteogenic direction, and non-cytotoxicity. The medium for differentiation significantly improved osteogenic differentiation, but the ALD coatings also stimulated differentiation in the absence of the medium. The TiO2/Ag samples showed the best antibacterial ability and differentiation in the osteogenic direction, indicating the success of the combining of TiO2 and Ag to produce a multifunctional biocompatible and bactericidal material.
Collapse
|
9
|
MG-63 and FetMSC Cell Response on Atomic Layer Deposited TiO2 Nanolayers Prepared Using Titanium Tetrachloride and Tetraisopropoxide. COATINGS 2022. [DOI: 10.3390/coatings12050668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Titanium oxide nanocoatings were synthesized on the surface of monocrystalline silicon and ultra-fine-grained titanium by atomic layer deposition (ALD) using titanium tetrachloride (TiCl4) and titanium tetraisopropoxide (TTIP). The morphology of the samples was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and composition were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), contact angle measurements, and energy-dispersive spectroscopy (EDS). The cytological response of osteosarcoma MG-63 and human fetal mesenchymal stem cells (FetMSCs) were studied by analyzing their morphology, viability, and alkaline phosphatase activity with and without the use of medium-induced differentiation in the osteogenic direction. A significant influence of the precursor type and ALD temperature on the crystal structure, morphology, composition, and surface free energy of TiO2 nanocoatings was found. The biocompatibility of amorphous non-stoichiometric and partially crystalline stoichiometric TiO2 coatings was compared. Both types of cells showed faster adhesion and improved spreading on the surface for the samples from TTIP compared to those from TiCl4 at the early stages of cultivation (2 h) due to the difference in composition and higher surface free energy. No cytotoxic effect was found on both types of coatings, nor was there a noticeable difference in cell differentiation. All ALD coatings provided excellent biocompatibility and osteoconductive properties.
Collapse
|
10
|
Kylmäoja E, Holopainen J, Abushahba F, Ritala M, Tuukkanen J. Osteoblast Attachment on Titanium Coated with Hydroxyapatite by Atomic Layer Deposition. Biomolecules 2022; 12:biom12050654. [PMID: 35625580 PMCID: PMC9138598 DOI: 10.3390/biom12050654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The increasing demand for bone implants with improved osseointegration properties has prompted researchers to develop various coating types for metal implants. Atomic layer deposition (ALD) is a method for producing nanoscale coatings conformally on complex three-dimensional surfaces. We have prepared hydroxyapatite (HA) coating on titanium (Ti) substrate with the ALD method and analyzed the biocompatibility of this coating in terms of cell adhesion and viability. Methods: HA coatings were prepared on Ti substrates by depositing CaCO3 films by ALD and converting them to HA by wet treatment in dilute phosphate solution. MC3T3-E1 preosteoblasts were cultured on ALD-HA, glass slides and bovine bone slices. ALD-HA and glass slides were either coated or non-coated with fibronectin. After 48h culture, cells were imaged with scanning electron microscopy (SEM) and analyzed by vinculin antibody staining for focal adhesion localization. An 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) test was performed to study cell viability. Results: Vinculin staining revealed similar focal adhesion-like structures on ALD-HA as on glass slides and bone, albeit on ALD-HA and bone the structures were thinner compared to glass slides. This might be due to thin and broad focal adhesions on complex three-dimensional surfaces of ALD-HA and bone. The MTT test showed comparable cell viability on ALD-HA, glass slides and bone. Conclusion: ALD-HA coating was shown to be biocompatible in regard to cell adhesion and viability. This leads to new opportunities in developing improved implant coatings for better osseointegration and implant survival.
Collapse
Affiliation(s)
- Elina Kylmäoja
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland;
- Correspondence:
| | - Jani Holopainen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland; (J.H.); (M.R.)
| | - Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland; (J.H.); (M.R.)
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland;
| |
Collapse
|
11
|
Shahmohammadi M, Mukherjee R, Sukotjo C, Diwekar UM, Takoudis CG. Recent Advances in Theoretical Development of Thermal Atomic Layer Deposition: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:831. [PMID: 35269316 PMCID: PMC8912810 DOI: 10.3390/nano12050831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023]
Abstract
Atomic layer deposition (ALD) is a vapor-phase deposition technique that has attracted increasing attention from both experimentalists and theoreticians in the last few decades. ALD is well-known to produce conformal, uniform, and pinhole-free thin films across the surface of substrates. Due to these advantages, ALD has found many engineering and biomedical applications. However, drawbacks of ALD should be considered. For example, the reaction mechanisms cannot be thoroughly understood through experiments. Moreover, ALD conditions such as materials, pulse and purge durations, and temperature should be optimized for every experiment. It is practically impossible to perform many experiments to find materials and deposition conditions that achieve a thin film with desired applications. Additionally, only existing materials can be tested experimentally, which are often expensive and hazardous, and their use should be minimized. To overcome ALD limitations, theoretical methods are beneficial and essential complements to experimental data. Recently, theoretical approaches have been reported to model, predict, and optimize different ALD aspects, such as materials, mechanisms, and deposition characteristics. Those methods can be validated using a different theoretical approach or a few knowledge-based experiments. This review focuses on recent computational advances in thermal ALD and discusses how theoretical methods can make experiments more efficient.
Collapse
Affiliation(s)
- Mina Shahmohammadi
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Rajib Mukherjee
- Vishwamitra Research Institute, Crystal Lake, IL 60012, USA;
- Department of Chemical Engineering, University of Texas Permian Basin, Odessa, TX 79762, USA
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Urmila M. Diwekar
- Vishwamitra Research Institute, Crystal Lake, IL 60012, USA;
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Christos G. Takoudis
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
12
|
Sosnov EA, Malkov AA, Malygin AA. Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes: II. Molecular Layering Technology and Prospects for Its Commercialization and Development in the XXI Century. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221090020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Nazarov D, Rudakova A, Borisov E, Popovich A. Surface Modification of Additively Manufactured Nitinol by Wet Chemical Etching. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7683. [PMID: 34947279 PMCID: PMC8708015 DOI: 10.3390/ma14247683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
Three-dimensional printed nitinol (NiTi) alloys have broad prospects for application in medicine due to their unique mechanical properties (shape memory effect and superplasticity) and the possibilities of additive technologies. However, in addition to mechanical properties, specific physicochemical characteristics of the surface are necessary for successful medical applications. In this work, a comparative study of additively manufactured (AM) NiTi samples etched in H2SO4/H2O2, HCl/H2SO4, and NH4OH/H2O2 mixtures was performed. The morphology, topography, wettability, free surface energy, and chemical composition of the surface were studied in detail. It was found that etching in H2SO4/H2O2 practically does not change the surface morphology, while HCl/H2SO4 treatment leads to the formation of a developed morphology and topography. In addition, exposure of nitinol to H2SO4/H2O2 and HCl/H2SO4 contaminated its surface with sulfur and made the surface wettability unstable in air. Etching in NH4OH/H2O2 results in surface cracking and formation of flat plates (10-20 microns) due to the dissolution of titanium, but clearly increases the hydrophilicity of the surface (values of water contact angles are 32-58°). The etch duration (30 min or 120 min) significantly affects the morphology, topography, wettability and free surface energy for the HCl/H2SO4 and NH4OH/H2O2 etched samples, but has almost no effect on surface composition.
Collapse
Affiliation(s)
- Denis Nazarov
- Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia; (E.B.); (A.P.)
- Research Centre “Innovative Technologies of Composite Nanomaterials”, Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia
| | - Aida Rudakova
- Laboratory “Photoactive Nanocomposite Materials”, Saint Petersburg State University, Ulianovskaia Str. 1, Peterhof, 198504 Saint Petersburg, Russia;
| | - Evgenii Borisov
- Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia; (E.B.); (A.P.)
| | - Anatoliy Popovich
- Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia; (E.B.); (A.P.)
| |
Collapse
|
14
|
The Effects of Chemical Etching and Ultra-Fine Grain Structure of Titanium on MG-63 Cells Response. METALS 2021. [DOI: 10.3390/met11030510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we study the influence of the surface properties of ultrafine grained (UFG) and coarse grained (CG) titanium on the morphology, viability, proliferation and differentiation of osteoblast-like MG-63 cells. Wet chemical etching in H2SO4/H2O2 and NH4OH/H2O2 solutions was used for producing surfaces with varying morphology, topography, composition and wettability. The topography and morphology have been studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The composition was determined by time of flight mass-spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS). The results showed that it is possible to obtain samples with different compositions, hydrophilicity, topography and nanoscale or/and microscale structures by changing the etching time and the type of etching solution. It was found that developed topography and morphology can improve spreading and proliferation rate of MG-63 cells. A significant advantage of the samples of the UFG series in comparison with CG in adhesion, proliferation at later stages of cultivation (7 days), higher alkaline phosphatase (ALP) activity and faster achievement of its maximum values was found. However, there is no clear benefit of the UFG series on osteopontin (OPN) expression. All studied samples showed no cytotoxicity towards MG-63 cells and promoted their osteogenic differentiation.
Collapse
|
15
|
Blendinger F, Seitz D, Ottenschläger A, Fleischer M, Bucher V. Atomic Layer Deposition of Bioactive TiO 2 Thin Films on Polyetheretherketone for Orthopedic Implants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3536-3546. [PMID: 33438388 DOI: 10.1021/acsami.0c17990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
TiO2 thin films were deposited on the orthopedic implant material polyetheretherketone (PEEK) by plasma enhanced atomic layer deposition (PEALD) and characterized for their ability to enhance the osseointegrative properties. PEALD was chosen for film deposition to circumvent drawbacks present in line-of-sight deposition techniques, which require technically complex setups for a homogeneous coating thickness. Film conformality was analyzed on silicon 3D test structures and PEEK with micron-scale surface roughness. Wettability and surface energy were determined through contact angle measurements; film roughness and crystallinity were determined by atomic force microscopy and X-ray diffraction, respectively. Adhesion properties of TiO2 on PEEK were determined with tensile strength tests. Cell tests were performed with the mouse mesenchymal tumor stem cell line ST-2. TiO2-coated PEEK disks were used as substrates for cell proliferation tests and long-term differentiation tests. After 28 days of cultivation, a mineralized bone matrix was observed. Furthermore, the collagen I and osteocalcin content were determined. The results reveal that the osteogenic properties of the TiO2 thin film are comparable to those of hydroxyapatite, and thus bioactive properties of PEEK implants are improved by TiO2 thin films deposited with PEALD.
Collapse
Affiliation(s)
- Felix Blendinger
- Institute for Microsystems Technology (iMST), Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
- Institute for Applied Physics and Center LISA+, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| | - Daniel Seitz
- BioMed Center Innovation gGmbH, Ludwig-Thoma-Str. 36c, D-95447 Bayreuth, Germany
| | | | - Monika Fleischer
- Institute for Applied Physics and Center LISA+, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| | - Volker Bucher
- Institute for Microsystems Technology (iMST), Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| |
Collapse
|
16
|
Structure and Corrosion Behavior of TiO2 Thin Films Deposited by ALD on a Biomedical Magnesium Alloy. COATINGS 2021. [DOI: 10.3390/coatings11010070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnesium alloys have been investigated as temporary biomaterials for orthopedic applications. Despite their high osseointegration and mechanical (bone-like) properties, Mg alloys quickly degrade in simulated physiological media. Surface coatings can be deposited onto Mg alloys to slow the corrosion rate of these biomaterials in chloride-rich environments. TiO2 films show high potential for improving the corrosion resistance of magnesium alloys. This article presents the structural observations and corrosion behavior of TiO2 thin films deposited onto a MgCa2Zn1Gd3 alloy using atomic layer deposition (ALD). Surface morphologies were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM), and Raman analysis of the deposited TiO2 films was also carried out. The corrosion behavior of the uncoated alloy and the alloy coated with TiO2 was measured in Ringer’s solution at 37 °C using electrochemical and immersion tests. The microscopic observations of the TiO2 thin films with a thickness of about 52.5 and 70 nm showed that the surface morphology was homogeneous without visible defects on the TiO2 surface. The electrochemical and immersion test results showed that the thin films decreased the corrosion rate of the studied Mg-based alloy, and the corrosion resistance was higher in the thicker TiO2 film.
Collapse
|
17
|
Motola M, Capek J, Zazpe R, Bacova J, Hromadko L, Bruckova L, Ng S, Handl J, Spotz Z, Knotek P, Baishya K, Majtnerova P, Prikryl J, Sopha H, Rousar T, Macak JM. Thin TiO2 Coatings by ALD Enhance the Cell Growth on TiO2 Nanotubular and Flat Substrates. ACS APPLIED BIO MATERIALS 2020; 3:6447-6456. [DOI: 10.1021/acsabm.0c00871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Martin Motola
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Raul Zazpe
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Jana Bacova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Ludek Hromadko
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Lenka Bruckova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Siowwoon Ng
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Zdenek Spotz
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Petr Knotek
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Kaushik Baishya
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Pavlina Majtnerova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Jan Prikryl
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
| | - Hanna Sopha
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Jan M. Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic
| |
Collapse
|
18
|
Dai Y, Chu L, Luo Z, Tang T, Wu H, Wang F, Mei S, Wei J, Wang X, Shang X. Effects of a Coating of Nano Silicon Nitride on Porous Polyetheretherketone on Behaviors of MC3T3-E1 Cells in Vitro and Vascularization and Osteogenesis in Vivo. ACS Biomater Sci Eng 2019; 5:6425-6435. [PMID: 33417795 DOI: 10.1021/acsbiomaterials.9b00605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To improve the bioperformances of porous polyetheretherketone (PPK) for bone repair, silicon nitride-coated PPK (CSNPPK) was prepared by a method of suspension coating and melt binding. The results revealed that, as compared with PPK, the surface roughness, compressive strength, and water absorption of CSNPPK increased, while the pore size and porosity of CSNPPK exhibited no obvious changes. In addition, the cellular responses (including attachment, proliferation, and differentiation as well as osteogenically related gene expressions) of the MC3T3-E1 cells to CSNPPK were remarkably promoted compared with PPK and dense polyetheretherketone in vitro. Moreover, in the model of rabbit femoral condyle defects, the results of micro computed tomography and histological and mechanical evaluation revealed that the ingrowth of new vessels and bone tissues into CSNPPK was significantly greater than that into PPK in vivo. Furthermore, the load-displacement and push-out loads for CSNPPK with bone tissues were higher than for PPK, indicating good osseointegration. In short, CSNPPK not only promoted vascularization but also enhanced osteogenesis as well as osseointegration in vivo. Therefore, it can be suggested that CSNPPK with good biocompatibility, osteogenic activity, and vascularization might be a promising candidate as an implant for bone substitute and repair.
Collapse
Affiliation(s)
- Yong Dai
- Shandong University, No. 44 West Wenhua Road, Jinan 250012, China.,Department of Orthopaedics, The Third People's Hospital of Hefei, No. 204, East Wangjiang Road, Hefei 230022, China
| | - Linyang Chu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 115 Jinzun Road, Shanghai 200125, China.,Department of Orthopaedic Surgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Hefei 230001, China
| | - Zhengliang Luo
- Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 115 Jinzun Road, Shanghai 200125, China
| | - Han Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Fan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Xuehong Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Xifu Shang
- Department of Orthopaedic Surgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Hefei 230001, China
| |
Collapse
|
19
|
Bagherifard S, Molla MF, Kajanek D, Donnini R, Hadzima B, Guagliano M. Accelerated biodegradation and improved mechanical performance of pure iron through surface grain refinement. Acta Biomater 2019; 98:88-102. [PMID: 31100463 DOI: 10.1016/j.actbio.2019.05.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
Pure iron and its biocompatible and biodegradable alloys have a high potential to be used for temporary load bearing medical implants. Nevertheless, the formation of passive iron oxide and hydroxide layers, which lead to a considerably low degradation rate at the physiological environment, has highly restricted their application. Herein we used numerical and experimental methods to evaluate the effect of severe shot peening, as a scalable mechanical surface treatment, on adjusting the performance of pure iron for biomedical applications. The developed numerical model was used to identify the range of peening parameters that would promote grain refinement on the pure iron surface. Experimental tests were then performed to analyze the gradient structure and the characteristics of the interface free surface layer created on peened samples. The results indicated that severe shot peening could notably increase the surface roughness and wettability, induce remarkable surface deformation and grain refinement, enhance surface hardness and generate high in-depth compressive residual stresses. The increased surface roughness besides the high concentration of micro cracks and dislocation density in the grain refined top layer promoted pure iron's degradation in the biologically simulated environment. STATEMENT OF SIGNIFICANCE: Biodegradable metallic materials with resorbable degradation products have a high potential to be used for temporary implants such as screws, pins, staples, etc. They can eliminate the need for implant retrieval surgery after the damaged tissue is healed, and result in reduced patient suffering besides lowered hospitalization costs. Pure iron is biodegradable and is an essential nutrient in human body; however, its application as biomedical implant is highly restricted by its slow degradation rate in physiological environment. We applied a scalable surface treatment able to induce grain refinement and increase surface roughness. This treatment enhances mechanical performance of pure iron and accelerates its degradation rate, paving the way for its broader applications for biomedical implants.
Collapse
|
20
|
Feng F, Wu Y, Xin H, Chen X, Guo Y, Qin D, An B, Diao X, Luo H. Surface Characteristics and Biocompatibility of Ultrafine-Grain Ti after Sandblasting and Acid Etching for Dental Implants. ACS Biomater Sci Eng 2019; 5:5107-5115. [PMID: 33455258 DOI: 10.1021/acsbiomaterials.9b00579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study investigated the surface characteristics and biocompatibility of ultrafine-grain pure titanium (UFG Ti) after sandblasting and acid etching (SLA) treatment to determine an effective method for modification of UFG Ti dental implants. The UFG Ti was processed by equal-channel angular pressing (ECAP). The micromorphology, roughness, and wettability of its surface were studied after SLA modification in different conditions. Rat bone marrow mesenchymal stem cells were subsequently seeded onto the specimens to evaluate the biocompatibility of cell adhesion, proliferation, and differentiation compared with commercially pure titanium (CP Ti). The results showed that surface characteristics of UFG Ti were affected by the pressure of sandblasting and acid etching time in addition to material properties. The favorable hierarchical porous structure that would benefit cell adhesion was formed on the UFG Ti surface when the pressure of sandblasting was 0.6 MPa and the acid etching time was 5 min; at this time, UFG Ti promoted proliferation and differentiation to a greater extent than CP Ti because of its excellent wettability. From this study, it could be seen that UFG Ti can be used as a dental implant material after proper surface modification.
Collapse
Affiliation(s)
- Fan Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yulu Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Haitao Xin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoqiang Chen
- Department of Plastic and Burn Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Yazhou Guo
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dongyang Qin
- School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Baili An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoou Diao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Huiwen Luo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
21
|
Wu Y, Feng F, Xin H, Li K, Tang Z, Guo Y, Qin D, An B, Diao X, Dou C. Fracture Strength and Osseointegration of an Ultrafine-Grained Titanium Mini Dental Implant after Macromorphology Optimization. ACS Biomater Sci Eng 2019; 5:4122-4130. [DOI: 10.1021/acsbiomaterials.9b00406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yulu Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Fan Feng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Haitao Xin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Kai Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Zhongbin Tang
- School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yazhou Guo
- School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dongyang Qin
- School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Baili An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Xiaoou Diao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Chenyun Dou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|