1
|
Wu Y, Jia Z, Sun K, Zhou G, Tao K. A multi-gradient organoid of articular cartilage with bionic matrix microenvironment. Biomaterials 2025; 322:123393. [PMID: 40339197 DOI: 10.1016/j.biomaterials.2025.123393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/26/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Reconstructing the zonal organization of articular cartilage, including the heterogeneity in matrix distribution and chondrocyte status, remains a significant challenge. In this study, we developed a compression technique to engineer artificial cartilage architecture. By controlling the orientation of fibers within a collagen hydrogel, we obtained a gradient from parallel alignment in the surface layer to random distribution in deeper layers. Simultaneously, we established a diverse concentration gradient of chondroitin sulfate to mimic cartilage composition. Encapsulating chondrocytes within this construct yielded a "cartilage organoid." In vitro culture demonstrated that the plastic compression achieved an increased density, parallel alignment, and a flattened morphology of cells in the surface layer. Especially, type II collagen and superficial zone protein (SZP), which are crucial for the functional durability of articular cartilage, were specifically excreted by the regulated cells within the surface region. Subcutaneous implantation of the cartilage organoid confirmed the stable retention of these specific features of the organoid in vivo, accompanied by further tissue maturation. Following implantation into articular cartilage defects, successful regeneration of well-integrated cartilage tissue with region-specific characteristics was achieved. These findings suggest a biomimetic cartilage organoid fully mimicking the factors in the structure and composition of natural cartilages, which may be a promising candidate for cartilage reconstruction and functional regeneration.
Collapse
Affiliation(s)
- Yongjie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zenghui Jia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, PR China; Research Institute of Plastic Surgery, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, PR China; Research Institute of Plastic Surgery, Shandong Second Medical University, Weifang, Shandong, 261053, PR China.
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
2
|
Hashemi-Afzal F, Fallahi H, Bagheri F, Collins MN, Eslaminejad MB, Seitz H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact Mater 2025; 43:1-31. [PMID: 39318636 PMCID: PMC11418067 DOI: 10.1016/j.bioactmat.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.
Collapse
Affiliation(s)
- Fariba Hashemi-Afzal
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hooman Fallahi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104 USA
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Maurice N. Collins
- School of Engineering, Bernal Institute and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 16635-148, Iran
| | - Hermann Seitz
- Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
3
|
Semitela A, Marques PAAP, Completo A. Strategies to engineer articular cartilage with biomimetic zonal features: a review. Biomater Sci 2024; 12:5961-6005. [PMID: 39463257 DOI: 10.1039/d4bm00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Articular cartilage (AC) is a highly specialized tissue with restricted ability for self-regeneration, given its avascular and acellular nature. Although a considerable number of surgical treatments is available for the repair, reconstruction, and regeneration of AC defects, most of them do not prioritize the development of engineered cartilage with zonal stratification derived from biomimetic biochemical, biomechanical and topographic cues. In the absence of these zonal elements, engineered cartilage will exhibit increased susceptibility to failure and will neither be able to withstand the mechanical loading to which AC is subjected nor will it integrate well with the surrounding tissue. In this regard, new breakthroughs in the development of hierarchical stratified engineered cartilage are highly sought after. Initially, this review provides a comprehensive analysis of the composition and zonal organization of AC, aiming to enhance our understanding of the significance of the structure of AC for its function. Next, we direct our attention towards the existing in vitro and in vivo studies that introduce zonal elements in engineered cartilage to elicit appropriate AC regeneration by employing tissue engineering strategies. Finally, the advantages, challenges, and future perspectives of these approaches are presented.
Collapse
Affiliation(s)
- Angela Semitela
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Paula A A P Marques
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - António Completo
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Eckstein KN, Hergert JE, Uzcategui AC, Schoonraad SA, Bryant SJ, McLeod RR, Ferguson VL. Controlled Mechanical Property Gradients Within a Digital Light Processing Printed Hydrogel-Composite Osteochondral Scaffold. Ann Biomed Eng 2024; 52:2162-2177. [PMID: 38684606 PMCID: PMC11989580 DOI: 10.1007/s10439-024-03516-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
Tissue engineered scaffolds are needed to support physiological loads and emulate the micrometer-scale strain gradients within tissues that guide cell mechanobiological responses. We designed and fabricated micro-truss structures to possess spatially varying geometry and controlled stiffness gradients. Using a custom projection microstereolithography (μSLA) system, using digital light projection (DLP), and photopolymerizable poly(ethylene glycol) diacrylate (PEGDA) hydrogel monomers, three designs with feature sizes < 200 μm were formed: (1) uniform structure with 1 MPa structural modulus ( E ) designed to match equilibrium modulus of healthy articular cartilage, (2) E = 1 MPa gradient structure designed to vary strain with depth, and (3) osteochondral bilayer with distinct cartilage ( E = 1 MPa) and bone ( E = 7 MPa) layers. Finite element models (FEM) guided design and predicted the local mechanical environment. Empty trusses and poly(ethylene glycol) norbornene hydrogel-infilled composite trusses were compressed during X-ray microscopy (XRM) imaging to evaluate regional stiffnesses. Our designs achieved target moduli for cartilage and bone while maintaining 68-81% porosity. Combined XRM imaging and compression of empty and hydrogel-infilled micro-truss structures revealed regional stiffnesses that were accurately predicted by FEM. In the infilling hydrogel, FEM demonstrated the stress-shielding effect of reinforcing structures while predicting strain distributions. Composite scaffolds made from stiff μSLA-printed polymers support physiological load levels and enable controlled mechanical property gradients which may improve in vivo outcomes for osteochondral defect tissue regeneration. Advanced 3D imaging and FE analysis provide insights into the local mechanical environment surrounding cells in composite scaffolds.
Collapse
Affiliation(s)
- Kevin N Eckstein
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 427 UCB, Boulder, CO, 80309, USA
| | - John E Hergert
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
| | - Asais Camila Uzcategui
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
| | - Sarah A Schoonraad
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Robert R McLeod
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
- Department of Electrical, Computer & Energy Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Virginia L Ferguson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 427 UCB, Boulder, CO, 80309, USA.
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
5
|
Liu Y, Yuan Z, Liu S, Zhong X, Wang Y, Xie R, Song W, Ren L. Bioactive Phenylboronic Acid-Functionalized Hyaluronic Acid Hydrogels Induce Chondro-Aggregates and Promote Chondrocyte Phenotype. Macromol Biosci 2023; 23:e2300153. [PMID: 37400079 DOI: 10.1002/mabi.202300153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Hydrogels are extensively investigated as biomimetic extracellular matrix (ECM) scaffolds in tissue engineering. The physiological properties of ECM affect cellular behaviors, which is an inspiration for cell-based therapies. Photocurable hyaluronic acid (HA) hydrogel (AHAMA-PBA) modified with 3-aminophenylboronic acid, sodium periodate, and methacrylic anhydride simultaneously is constructed in this study. Chondrocytes are then cultured on the surface of the hydrogels to evaluate the effect of the physicochemical properties of the hydrogels on modulating cellular behaviors. Cell viability assays demonstrate that the hydrogel is non-toxic to chondrocytes. The existence of phenylboronic acid (PBA) moieties enhances the interaction of chondrocytes and hydrogel, promoting cell adhesion and aggregation through filopodia. RT-PCR indicates that the gene expression levels of type II collagen, Aggrecan, and Sox9 are significantly up-regulated in chondrocytes cultured on hydrogels. Moreover, the mechanical properties of the hydrogels have a significant effect on the cell phenotype, with soft gels (≈2 kPa) promoting chondrocytes to exhibit a hyaline phenotype. Overall, PBA-functionalized HA hydrogel with low stiffness exhibits the best effect on promoting the chondrocyte phenotype, which is a promising biomaterial for cartilage regeneration.
Collapse
Affiliation(s)
- Ying Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhongrun Yuan
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiupeng Zhong
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yanyan Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Renjian Xie
- School of Medical Information Engineering, Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of the Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Wenjing Song
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Li Ren
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
6
|
Lee JC, Brien HJ, Walton BL, Eidman ZM, Toda S, Lim WA, Brunger JM. Instructional materials that control cellular activity through synthetic Notch receptors. Biomaterials 2023; 297:122099. [PMID: 37023529 PMCID: PMC10320837 DOI: 10.1016/j.biomaterials.2023.122099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
The field of regenerative engineering relies primarily on the dual technical platforms of cell selection/conditioning and biomaterial fabrication to support directed cell differentiation. As the field has matured, an appreciation for the influence of biomaterials on cell behaviors has resulted in engineered matrices that meet biomechanical and biochemical demands of target pathologies. Yet, despite advances in methods to produce designer matrices, regenerative engineers remain unable to reliably orchestrate behaviors of therapeutic cells in situ. Here, we present a platform named MATRIX whereby cellular responses to biomaterials can be custom defined by combining engineered materials with cells expressing cognate synthetic biology control modules. Such privileged channels of material-to-cell communication can activate synthetic Notch receptors and govern activities as diverse as transcriptome engineering, inflammation attenuation, and pluripotent stem cell differentiation, all in response to materials decorated with otherwise bioinert ligands. Further, we show that engineered cellular behaviors are confined to programmed biomaterial surfaces, highlighting the potential to use this platform to spatially organize cellular responses to bulk, soluble factors. This integrated approach of co-engineering cells and biomaterials for orthogonal interactions opens new avenues for reproducible control of cell-based therapies and tissue replacements.
Collapse
Affiliation(s)
- Joanne C Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Hannah J Brien
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Bonnie L Walton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Zachary M Eidman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Satoshi Toda
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Wendell A Lim
- Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, 37212, USA.
| |
Collapse
|
7
|
Liu J, Huang B, Ma Z, Xu S, Zhao H, Ren L. Full Regional Creep Displacement Map of Articular Cartilage Based on Nanoindentation Array. ACS Biomater Sci Eng 2023. [PMID: 37115745 DOI: 10.1021/acsbiomaterials.2c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The elucidation of the mechanisms underlying articular cartilage lesions poses a formidable challenge in the field of cartilage repair. Despite significant strides in cartilage mechanics research, the region-dependent creep properties of articular cartilage remain elusive. In this study, we employ depth-sensing indentation tests to experimentally determine the creep properties of four distinct regions of articular cartilage, thereby unveiling a region-dependent full map of creep parameters. The measured creep displacement-time response curves indicate that the creep properties of the articular cartilage exhibit a clear regional correlation. Accordingly, the full regional creep map of articular cartilage is experimentally constructed for the first time. The correlation between the microstructures and the creep properties of cartilage in different regions is revealed. A three-parameter model is established to describe the creep velocity-displacement response of cartilage. Raman spectra reveal that the proteoglycan content is positively correlated with creep properties. The Raman shift directly indicates diverse residual stresses in different microregions. The obtained data facilitate a deep understanding of the potential creep dependent damage mechanism of cartilage and the further development of artificial cartilage materials.
Collapse
Affiliation(s)
- Jize Liu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Bin Huang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Zhichao Ma
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
- Key Laboratory of CNC Equipment Reliability Ministry of Education, Jilin University, Changchun 130025, China
| | - Shuting Xu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
- Key Laboratory of CNC Equipment Reliability Ministry of Education, Jilin University, Changchun 130025, China
| | - Luquan Ren
- Weihai Institute for Bionics-Jilin University, Weihai 264207, China
| |
Collapse
|
8
|
Zhu D, Trinh P, Liu E, Yang F. Cell-Cell Interactions Enhance Cartilage Zonal Development in 3D Gradient Hydrogels. ACS Biomater Sci Eng 2023; 9:831-843. [PMID: 36629329 DOI: 10.1021/acsbiomaterials.2c00469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cartilage tissue is characterized by zonal organization with gradual transitions of biochemical and mechanical cues from superficial to deep zones. We previously reported that 3D gradient hydrogels made of polyethylene glycol and chondroitin sulfate can induce zonal-specific responses of chondrocytes, resulting in zonal cartilage formation that mimics native tissues. While the role of cell-matrix interactions has been studied extensively, how cell-cell interactions across different zones influence cartilage zonal development remains unknown. The goal of this study is to harness gradient hydrogels as a tool to elucidate the role of cell-cell interactions in driving cartilage zonal development. When encapsulated in intact gradient hydrogels, chondrocytes exhibited strong zonal-specific responses that mimic native cartilage zonal organization. However, the separate culture of each zone of gradient hydrogels resulted in a significant decrease in cell proliferation and cartilage matrix deposition across all zones, while the trend of zonal dependence remains. Unexpectedly, mixing the coculture of all five zones of hydrogels in the same culture well largely abolished the zonal differences, with all zones behaving similarly to the softest zone. These results suggest that paracrine signal exchange among cells in different zones is essential in driving cartilage zonal development, and a spatial organization of zones is required for proper tissue zonal development. Intact, separate, or coculture groups resulted in distinct gene expression patterns in mechanosensing and cartilage-specific markers, suggesting that cell-cell interactions can also modulate mechanosensing. We further showed that 7 days of priming in intact gradient culture was sufficient to instruct the cells to complete the zonal development, and the separate or mixed coculture after 7 days of intact culture had minimal effects on cartilage formation. This study highlights the important role of cell-cell interactions in driving cartilage zonal development and validates gradient hydrogels as a useful tool to elucidate the role of cell-matrix and cell-cell interactions in driving zonal development during tissue morphogenesis and regeneration.
Collapse
Affiliation(s)
- Danqing Zhu
- Department of Bioengineering, Stanford University, Palo Alto, California 94305, United States
| | - Pavin Trinh
- Department of Bioengineering, Stanford University, Palo Alto, California 94305, United States
| | - Elisa Liu
- Department of Bioengineering, Stanford University, Palo Alto, California 94305, United States
| | - Fan Yang
- Department of Bioengineering, Stanford University, Palo Alto, California 94305, United States.,Department of Orthopaedic Surgery, Stanford University, Palo Alto, California 94305, United States
| |
Collapse
|
9
|
Dehghan-Baniani D, Mehrjou B, Chu PK, Lee WYW, Wu H. Recent Advances in "Functional Engineering of Articular Cartilage Zones by Polymeric Biomaterials Mediated with Physical, Mechanical, and Biological/Chemical Cues". Adv Healthc Mater 2022; 12:e2202581. [PMID: 36571465 DOI: 10.1002/adhm.202202581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Indexed: 12/27/2022]
Abstract
Articular cartilage (AC) plays an unquestionable role in joint movements but unfortunately the healing capacity is restricted due to its avascular and acellular nature. While cartilage tissue engineering has been lifesaving, it is very challenging to remodel the complex cartilage composition and architecture with gradient physio-mechanical properties vital to proper tissue functions. To address these issues, a better understanding of the intrinsic AC properties and how cells respond to stimuli from the external microenvironment must be better understood. This is essential in order to take one step closer to producing functional cartilaginous constructs for clinical use. Recently, biopolymers have aroused much attention due to their versatility, processability, and flexibility because the properties can be tailored to match the requirements of AC. This review highlights polymeric scaffolds developed in the past decade for reconstruction of zonal AC layers including the superficial zone, middle zone, and deep zone by means of exogenous stimuli such as physical, mechanical, and biological/chemical signals. The mimicked properties are reviewed in terms of the biochemical composition and organization, cell fate (morphology, orientation, and differentiation), as well as mechanical properties and finally, the challenges and potential ways to tackle them are discussed.
Collapse
Affiliation(s)
- Dorsa Dehghan-Baniani
- Department of Chemical and Biological Engineering Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.,Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China.,Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong SAR, China
| | - Hongkai Wu
- Department of Chemical and Biological Engineering Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.,Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Wang Q, Wang Z, Zhang D, Gu J, Ma Y, Zhang Y, Chen J. Circular Patterns of Dynamic Covalent Hydrogels with Gradient Stiffness for Screening of the Stem Cell Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47461-47471. [PMID: 36240467 DOI: 10.1021/acsami.2c14924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As extracellular matrix (ECM) mimetic materials, hydrogels have been widely used for broad biomedical applications. However, with so many physical or chemical cues in the matrix that regulate cell behaviors or functions, it remains challenging to design a customizable hydrogel with the desired properties on demand. In the current study, we aim to establish a circular-patterned hydrogel model with gradient stiffness for screening the most favorable ECM environment for specific cells or certain application purposes. First, six types of hydrogels with a wide stiffness range of 1.2-28.9 kPa were prepared by dynamic covalent cross-linking between gelatin derivatives and oxidized hyaluronic acid. Taking advantage of their instantaneous self-healing property from dynamic chemistry, the hydrogels were further spliced into one whole piece of circular-patterned hydrogel. When rabbit bone marrow mesenchymal stem cells were seeded in the center, the influences of matrix stiffness on the regulation of stem cell adhesion, migration, and differentiation were directly observed and compared under one visual field. In addition, these hydrogels all possessed good biocompatibility, degradability, and injectability, showing great potential for tissue-engineering-related applications.
Collapse
Affiliation(s)
- Qimeng Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Ziyan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Difei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jieyu Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yongxin Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
11
|
Cai J, Wang J, Sun C, Dai J, Zhang C. Biomaterials with Stiffness Gradient for Interface Tissue Engineering. Biomed Mater 2022; 17. [PMID: 35985317 DOI: 10.1088/1748-605x/ac8b4a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/19/2022] [Indexed: 11/11/2022]
Abstract
Interface tissue engineering is a rapidly growing field that aims to develop engineered tissue alternates with the goal of promoting integration between multiple tissue types. Engineering interface tissues is a complex process, which requires a specialized biomaterials with organized material composition, stiffness, cell types, and signaling molecules. Among these, stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior. Especially these substrates with graded stiffness are advantageous since they allow the differentiation of multiple cell phenotypes and subsequent tissue development. In this review, we highlight the various types of manufacturing techniques that can be leveraged to fabricate scaffolds with stiffness gradient, discuss methods to characterize them, and gradient biomaterials for controlling cellular behavior including attachment, migration, proliferation, and differentiation. We also address fundamentals of interface tissue organization, and stiffness gradient biomaterials for interface tissue regeneration. Potential challenges and future directions in this emerging field are also discussed.
Collapse
Affiliation(s)
- Jialun Cai
- Hunan University, #27 Tianma Road, Changsha, Hunan, 410082, CHINA
| | - Junjuan Wang
- Hangzhou Medical College, Binwen Road, Hangzhou, Zhejiang, 310053, CHINA
| | - Chenxuan Sun
- Hunan University, 27# Tianma Road, ChangSha, Hunan, 410000, CHINA
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| | - Can Zhang
- Biomedical Engineering, Hunan University, #27 Tianma Road, Changsha, 410000, CHINA
| |
Collapse
|
12
|
Charlet A, Bono F, Amstad E. Mechanical reinforcement of granular hydrogels. Chem Sci 2022; 13:3082-3093. [PMID: 35414870 PMCID: PMC8926196 DOI: 10.1039/d1sc06231j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Granular hydrogels are composed of hydrogel-based microparticles, so-called microgels, that are densely packed to form an ink that can be 3D printed, injected or cast into macroscopic structures. They are frequently used as tissue engineering scaffolds because microgels can be made biocompatible and the porosity of the granular hydrogels enables a fast exchange of reagents, waste products, and if properly designed even the infiltration of cells. Most of these granular hydrogels can be shaped into appropriate macroscopic structures, yet, these structures are mechanically rather weak. The poor mechanical properties prevent the use of these structures as load-bearing materials and hence, limit their field of applications. The mechanical properties of granular hydrogels depend on the composition of microgels and the interparticle interactions. In this review, we discuss different strategies to assemble microparticles into granular hydrogels and highlight the influence of inter-particle connections on the stiffness and toughness of the resulting materials. Mechanically strong and tough granular hydrogels have the potential to open up new fields of their use and thereby to contribute to fast advances in these fields. In particular, we envisage them to be well-suited as soft actuators and robots, tissue replacements, and adaptive sensors.
Collapse
Affiliation(s)
- Alvaro Charlet
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| | - Francesca Bono
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| |
Collapse
|
13
|
Burdis R, Chariyev-Prinz F, Kelly DJ. Bioprinting of biomimetic self-organised cartilage with a supporting joint fixation device. Biofabrication 2021; 14. [PMID: 34825656 DOI: 10.1088/1758-5090/ac36be] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/04/2021] [Indexed: 12/30/2022]
Abstract
Despite sustained efforts, engineering truly biomimetic articular cartilage (AC) via traditional top-down approaches remains challenging. Emerging biofabrication strategies, from 3D bioprinting to scaffold-free approaches that leverage principles of cellular self-organisation, are generating significant interest in the field of cartilage tissue engineering as a means of developing biomimetic tissue analoguesin vitro.Although such strategies have advanced the quality of engineered cartilage, recapitulation of many key structural features of native AC, in particular a collagen network mimicking the tissue's 'Benninghoff arcade', remains elusive. Additionally, a complete solution to fixating engineered cartilagesin situwithin damaged synovial joints has yet to be identified. This study sought to address both of these key challenges by engineering biomimetic AC within a device designed to anchor the tissue within a synovial joint defect. We first designed and fabricated a fixation device capable of anchoring engineered cartilage into the subchondral bone. Next, we developed a strategy for inkjet printing porcine mesenchymal stem/stromal cells (MSCs) into this supporting fixation device, which was also designed to provide instructive cues to direct the self-organisation of MSC condensations towards a stratified engineered AC. We found that a higher starting cell-density supported the development of a more zonally defined collagen network within the engineered tissue. Dynamic culture was implemented to further enhance the quality of this engineered tissue, resulting in an approximate 3 fold increase in glycosaminoglycan and collagen accumulation. Ultimately this strategy supported the development of AC that exhibited near-native levels of glycosaminoglycan accumulation (>5% WW), as well as a biomimetic collagen network organisation with a perpendicular to a parallel fibre arrangement (relative to the tissue surface) from the deep to superficial zones via arcading fibres within the middle zone of the engineered tissue. Collectively, this work demonstrates the successful convergence of novel biofabrication methods, bioprinting strategies and culture regimes to engineer a hybrid implant suited to resurfacing AC defects.
Collapse
Affiliation(s)
- Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Farhad Chariyev-Prinz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.,Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
14
|
Ha I, Kim M, Kim KK, Hong S, Cho H, Kwon J, Han S, Yoon Y, Won P, Ko SH. Reversible, Selective, Ultrawide-Range Variable Stiffness Control by Spatial Micro-Water Molecule Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102536. [PMID: 34449132 PMCID: PMC8529442 DOI: 10.1002/advs.202102536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Indexed: 05/03/2023]
Abstract
Evolution has decided to gift an articular structure to vertebrates, but not to invertebrates, owing to their distinct survival strategies. An articular structure permits kinematic motion in creatures. However, it is inappropriate for creatures whose survival strategy depends on the high deformability of their body. Accordingly, a material in which the presence of the articular structure can be altered, allowing the use of two contradictory strategies, will be advantageous in diverse dynamic applications. Herein, spatial micro-water molecule manipulation, termed engineering on variable occupation of water (EVO), that is used to realize a material with dual mechanical modes that exhibit extreme differences in stiffness is introduced. A transparent and homogeneous soft material (110 kPa) reversibly converts to an opaque material embodying a mechanical gradient (ranging from 1 GPa to 1 MPa) by on-demand switching. Intensive theoretical analysis of EVO yields the design of spatial transformation scheme. The EVO gel accomplishes kinematic motion planning and shows great promise for multimodal kinematics. This approach paves the way for the development and application of smart functional materials.
Collapse
Affiliation(s)
- Inho Ha
- Soft Robotics Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Minwoo Kim
- Soft Robotics Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Kyun Kyu Kim
- Soft Robotics Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Sukjoon Hong
- Optical Nanoprocessing LabDepartment of Mechanical EngineeringHanyang University55 Hanyangdaehak‐ro, Sangnok‐guAnsan15588Korea
| | - Hyunmin Cho
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Jinhyeong Kwon
- Intelligent Manufacturing System R&D DepartmentKorea Institute of Industrial Technology89 Yangdaegiro‐gil, Ipjang‐myeon, Seobuk‐guCheonanChungcheongnam‐do31056Korea
| | - Seonggeun Han
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Yeosang Yoon
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Phillip Won
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
| | - Seung Hwan Ko
- Soft Robotics Research CenterSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Korea
- Institute of Advanced Machines and Design/Institute of Engineering ResearchSeoul National UniversitySeoul08826Korea
| |
Collapse
|
15
|
Ngadimin KD, Stokes A, Gentile P, Ferreira AM. Biomimetic hydrogels designed for cartilage tissue engineering. Biomater Sci 2021; 9:4246-4259. [DOI: 10.1039/d0bm01852j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cartilage-like hydrogels based on materials like gelatin, chondroitin sulfate, hyaluronic acid and polyethylene glycol are reviewed and contrasted, revealing existing limitations and challenges on biomimetic hydrogels for cartilage regeneration.
Collapse
Affiliation(s)
- Kresanti D. Ngadimin
- Faculty of Medical Sciences
- Newcastle University
- Newcastle upon Tyne
- UK
- Faculty of Medicine
| | - Alexander Stokes
- Faculty of Science
- Agriculture & Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Piergiorgio Gentile
- Faculty of Science
- Agriculture & Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Ana M. Ferreira
- Faculty of Science
- Agriculture & Engineering
- Newcastle University
- Newcastle upon Tyne
- UK
| |
Collapse
|
16
|
Liu E, Zhu D, Gonzalez Diaz E, Tong X, Yang F. Gradient Hydrogels for Optimizing Niche Cues to Enhance Cell-Based Cartilage Regeneration. Tissue Eng Part A 2020; 27:929-939. [PMID: 32940136 DOI: 10.1089/ten.tea.2020.0158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hydrogels have been widely used for cell delivery to enhance cell-based therapies for cartilage tissue regeneration. To better support cartilage deposition, it is imperative to determine hydrogel formulation with physical and biochemical cues that are optimized for different cell populations. Previous attempts to identify optimized hydrogels rely mostly on testing hydrogel formulations with discrete properties, which are time-consuming and require large amounts of cells and materials. Gradient hydrogels encompass a range of continuous changes in niche properties, therefore offering a promising solution for screening a wide range of cell-niche interactions using less materials and time. However, harnessing gradient hydrogels to assess how matrix stiffness modulates cartilage formation by different cell types in vivo have never been investigated before. The goal of this study is to fabricate gradient hydrogels for screening the effects of varying hydrogel stiffness on cartilage formation by mesenchymal stem cells (MSCs) and chondrocytes, respectively, the two most commonly used cell populations for cartilage regeneration. We fabricated stiffness gradient hydrogels with tunable dimensions that support homogeneous cell encapsulation. Using gradient hydrogels with tunable stiffness range, we found MSCs and chondrocytes exhibit opposite trend in cartilage deposition in response to stiffness changes in vitro. Specifically, MSCs require soft hydrogels with Young's modulus less than 5 kPa to support faster cartilage deposition, as shown by type II collagen and sulfated glycosaminoglycan staining. In contrast, chondrocytes produce cartilage more effectively in stiffer matrix (>20 kPa). We chose optimal ranges of stiffness for each cell population for further testing in vivo using a mouse subcutaneous model. Our results further validated that soft matrix (Young's modulus <5 kPa) is better in supporting MSC-based cartilage deposition in three-dimensional, whereas stiffer matrix (Young's modulus >20 kPa) is more desirable for supporting chondrocyte-based cartilage deposition. Our results show the importance of optimizing niche cues in a cell-type-specific manner and validate the potential of using gradient hydrogels for optimizing niche cues to support cartilage regeneration in vitro and in vivo. Impact statement The present study validates the utility of gradient hydrogels for determining optimal hydrogel stiffness for supporting cartilage regeneration using both chondrocytes and stem cells. We demonstrate that such gradient hydrogels can be used for fast optimizing matrix stiffness for specific cell type to support optimal cartilage regeneration. To our knowledge, this is the first demonstration of applying gradient hydrogels for assessing optimal niche cues that support tissue regeneration in vivo and may be used for assessing optimal niche cues for different cell types to regeneration of different tissues.
Collapse
Affiliation(s)
- Elisa Liu
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Danqing Zhu
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Eva Gonzalez Diaz
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
17
|
Xing J, Huang X, Ding C, Chen Y, Xie J, Li J. From kPa to MPa: An Environmentally Friendly Way to Prepare a Polysaccharide Hydrogel with Tunable Mechanical Properties. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jiaqi Xing
- Department of Biomedical Polymers and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinyi Huang
- Department of Biomedical Polymers and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chunmei Ding
- Department of Biomedical Polymers and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yu Chen
- Department of Biomedical Polymers and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jing Xie
- Department of Biomedical Polymers and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- Department of Biomedical Polymers and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
18
|
Liu J, Ding Z, Lu G, Wang J, Wang L, Lu Q. Amorphous Silk Fibroin Nanofiber Hydrogels with Enhanced Mechanical Properties. Macromol Biosci 2019; 19:e1900326. [DOI: 10.1002/mabi.201900326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Jiawei Liu
- School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Guozhong Lu
- Department of Burns and Plastic SurgeryThe Affiliated Hospital of Jiangnan University Wuxi 214041 P. R. China
| | - Jingui Wang
- School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Ling Wang
- School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| |
Collapse
|
19
|
Gao X, Gao L, Groth T, Liu T, He D, Wang M, Gong F, Chu J, Zhao M. Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair. J Biomed Mater Res A 2019; 107:2076-2087. [PMID: 31087770 DOI: 10.1002/jbm.a.36720] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
Three-dimensional scaffolds like hydrogels can be employed as cell carriers for in vitro or in vivo colonization and have become a major research topic to replace damaged tissue. In the current study, a novel composite hydrogel composed of sodium alginate (SA) and platelet-rich-plasma (PRP) varying in blending ratios, cross-linked with calcium ions, released from calcium carbonate-D-Glucono-d-lactone (CaCO3 -GDL) was successfully prepared. It was found that addition of PRP changed largely the physical properties and biological performance of the composite hydrogels, which was depending on the blending ratio. The gelation rate and swelling ratio of alginate hydrogels were significantly reduced by the addition of PRP, which produced also a more homogeneous gel structure. Field emission scanning electron microscopy (FE-SEM) investigation confirmed the incorporation of PRP-derived proteins in the hydrogel, where a porous structure with a pore size of 200-300 μm was found. On the other hand, an increase in surface roughness was observed after the addition of PRP. The compressive mechanical strength of SA/PRP composite hydrogel was enhanced in comparison to the pure SA gel. The composite hydrogels with the highest PRP content exhibited at a maximum compressive stress of 0.26 MPa a maximum strain of 55%, while the maximum compressive strain of pure SA hydrogels was only 45% at a stress of 0.08 MPa. It was also found that the in vitro degradation of the alginate gel was accelerated by the addition of PRP. In terms of cellular responses, all gels exhibited an excellent cytocompatibility. Indeed, the composite hydrogels supported bone marrow-derived mesenchymal stem cells proliferation and their chondrogenesis with up-regulation of chondrogenic marker genes Sox9 and Aggrecan. Overall, the present study suggests a great potential of SA/PRP composite hydrogels as cell carriers for cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liyang Gao
- School of Life Science, Ningxia University, Yinchuan, China
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Interdisciplinary Center of Materials Research, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tianfeng Liu
- Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dongning He
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Mingrui Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fan Gong
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingyan Zhao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|