1
|
Tsai MC, Hsiao LY, Chang YH, Chen YH, Hu SH, Hung CY, Chiang WH. Enhanced Intracellular IR780 Delivery by Acidity-Triggered PEG-Detachable Hybrid Nanoparticles to Augment Photodynamic and Photothermal Combination Therapy for Melanoma Treatment. ACS APPLIED BIO MATERIALS 2025; 8:3995-4007. [PMID: 40219978 DOI: 10.1021/acsabm.5c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
The PEGylation of drug-carrying nanoparticles has often been used to prolong blood circulation and improve drug deposition at tumor sites. Nevertheless, the PEG-rich hydrophilic surfaces retard the release of the payloads and internalization of therapeutic nanoparticles by cancer cells, thus lowering the anticancer efficacy. To boost the anticancer potency of the combined photodynamic therapy (PDT) and photothermal therapy (PTT) against melanoma by conquering the PEG dilemma, herein, the hybrid PEGylated chitosan-covered polydopamine (PDA) nanoparticles (PCPNs) with acidity-elicited PEG detachment ability were fabricated as carriers of IR780, a small-molecule photosensitizer used for PTT and PDT. The IR780@PCPNs displayed a uniform, solid-like spherical shape and sound colloidal stability. Under near-infrared (NIR) irradiation, the IR780@PCPNs showed prominent photothermal conversion efficiency (ca. 54.6%), robust photothermal stability, reduced IR780 photobleaching, sufficient singlet oxygen (1O2) production, and glutathione-depleting ability. Moreover, with the environmental pH being reduced from 7.4 to 5.0 at 37 °C, the decreased interactions between IR780 and PCPNs due to the increased protonation of phenolic hydroxyl residues within PDA and primary amine groups of chitosan accelerated the release of IR780 species from IR780@PCPNs. Importantly, the cellular uptake of IR780@PCPNs by B16F10 melanoma was remarkably promoted in a weakly acidic milieu upon PEG detachment driven by the disintegration of acid-labile benzoic imine. With NIR irradiation, the internalized IR780@PCPNs generated hyperthermia and 1O2 to damage mitochondria, thereby effectively inhibiting the proliferation of B16F10 cells. Collectively, our findings present a practical strategy for amplifying the anticancer efficacy of PTT combined with PDT using PEG-detachable IR780@PCPNs.
Collapse
Affiliation(s)
- Min-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Lun-Yuan Hsiao
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Yen-Hsuan Chang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Hsin Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chun-Yu Hung
- Department of Orthopedic Surgery, Jen-Ai Hospital, Taichung 402, Taiwan
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
2
|
Song J, Hu J, Li H, Xiang P, Wang Z, Wang X, Qi S, Yang M, Zhu L. Targeting and structural engineering of light-responsive nanoprobes for hierarchical therapy: construction, optimization, and applications in cancer stem cells. J Mater Chem B 2025; 13:3528-3539. [PMID: 39925229 DOI: 10.1039/d4tb02508c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Cancer stem cells (CSCs) possess the ability to self-renew and exhibit high differentiation potential, and they have been proven to be responsible for the maintenance, growth, and metastasis of tumors. As such, accurate identification and targeted therapy for CSCs are of great importance in clinical treatment. Here, a dual-targeted and light-responsive nanoprobe is presented, utilizing the reconstructed mesoporous SiO2 of a binary fatty acid eutectic mixture and a gold porous shell. The gold shell in the nanoprobe sustains a large absorption cross-section, providing a robust photothermal treatment effect against CSCs upon NIR irradiation. The photothermal effect simultaneously melts the eutectic mixture, which acted as the gating material, triggering the release of nuclear-targeted photosensitizers for photodynamic therapy (PDT). Additionally, to improve the hypoxic environment during PDT, hemoglobin (Hb) is conjugated to the nanoprobe using disulfide as a cross-linker, which can consume cellular glutathione while releasing Hb to deliver oxygen for PDT. Under the synergistic effect of photothermal therapy (PTT) and PDT, cytoplasmic organelles and intranuclear genetic materials are hierarchically damaged, initiating a cascade of reactions, including evident endoplasmic reticulum stress and inflammation. These responses, in turn, promote stem cell death and inhibit tumorigenicity. Furthermore, machine learning models, including random forest (FR), CatBoost, XGBoost, and LightGBM, were employed to optimize the reaction conditions for maximizing the synergistic effect, with CatBoost achieving the best performance. Additionally, antibody-conjugated nanoprobes effectively targeted colon cancer stem cells, demonstrating enhanced phototoxicity and the potential to suppress tumorsphere formation. Therefore, this dual-targeting nanoprobe demonstrates outstanding therapeutic integration performance and shows promise as a platform for synergistic PTT/PDT therapy of CSCs.
Collapse
Affiliation(s)
- Jiangluqi Song
- School of Physics, Xidian University, Xi'an 710071, China.
| | - Jinhang Hu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Huan Li
- School of Physics, Xidian University, Xi'an 710071, China.
| | - Pei Xiang
- School of Physics, Xidian University, Xi'an 710071, China.
| | - Zhiqiang Wang
- School of Physics, Xidian University, Xi'an 710071, China.
| | - Xiaofang Wang
- School of Physics, Xidian University, Xi'an 710071, China.
| | - Shuxia Qi
- School of Physics, Xidian University, Xi'an 710071, China.
| | - Mingya Yang
- Department of Hematology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Lixin Zhu
- Department of Hematology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
3
|
Babu A, Padmanaban S, Chahal S, Mohapatra A, Sundaram A, Cho CS, Park IK. Targeted nanoparticle delivery unleashes synergistic photothermal and immunotherapeutic effects against hepatocellular carcinoma. J Nanobiotechnology 2024; 22:778. [PMID: 39702259 DOI: 10.1186/s12951-024-03030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
The substantial mortality and morbidity of hepatocellular carcinoma, representing 90% of liver cancers, poses a significant health burden. The effectiveness of traditional hepatocellular carcinoma treatments such as surgical resection, radiotherapy, and chemotherapy is limited, underscoring the need for innovative therapeutic strategies. To this end, we synthesized phthalyl-pullulan nanoparticles encapsulating IR780 (an NIR-responsive heptamethine cyanine dye) and R848 (resiquimod; a TLR7/8 agonist) (PIR NPs). Characterization confirmed the size and loading capacity of PIR NPs, and controlled release of R848 therefrom upon NIR irradiation, thereby establishing the potential of this versatile therapeutic tool. PIR NPs were readily taken up by Hepa 1-6 cells in vitro by targeting asialoglycoprotein receptors present on its cellular surface. In in vivo experiments combining photothermal therapy and immunotherapy, following the local near-infrared irradiation, the PIR NPs accumulated in tumor sites induced immunogenic cell death and activated a tumor-specific T-cell immune response, thus highlighting their potent antitumor efficacy. The combined efficacy of photothermal therapy and immunotherapy presents a promising avenue for addressing the shortcomings of traditional hepatocellular carcinoma interventions. This study contributes valuable insights into the development of more effective and targeted therapeutic approaches for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Amal Babu
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Sathiyamoorthy Padmanaban
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Sahil Chahal
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Adityanarayan Mohapatra
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
- DRCure Inc., Hwasun, 58128, Republic of Korea
| | - Aravindkumar Sundaram
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
- DRCure Inc., Hwasun, 58128, Republic of Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
- DRCure Inc., Hwasun, 58128, Republic of Korea.
| |
Collapse
|
4
|
Qiu Y, Yuan B, Cao Y, He X, Akakuru OU, Lu L, Chen N, Xu M, Wu A, Li J. Recent progress on near-infrared fluorescence heptamethine cyanine dye-based molecules and nanoparticles for tumor imaging and treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1910. [PMID: 37305979 DOI: 10.1002/wnan.1910] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
Recenly, near-infrared fluorescence heptamethine cyanine dyes have shown satisfactory values in bioengineering, biology, and pharmacy especially in cancer diagnosis and treatment, owing to their excellent fluorescence property and biocompatibility. In order to achieve broad application prospects, diverse structures, and chemical properties of heptamethine cyanine dyes have been designed to develop novel functional molecules and nanoparticles over the past decade. For fluorescence and photoacoustic tumor imaging properties, heptamethine cyanine dyes are equipped with good photothermal performance and reactive oxygen species production properties under near-infrared light irradiation, thus holding great promise in photodynamic and/or photothermal cancer therapies. This review offers a comprehensive scope of the structures, comparisons, and applications of heptamethine cyanine dyes-based molecules as well as nanoparticles in tumor treatment and imaging in current years. Therefore, this review may drive the development and innovation of heptamethine cyanine dyes, significantly offering opportunities for improving tumor imaging and treatment in a precise noninvasive manner. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yue Qiu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Bo Yuan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yi Cao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuelu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Ozioma Udochukwu Akakuru
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Liheng Lu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Nengwen Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Mengting Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, China
| |
Collapse
|
5
|
Yu H, Wang Y, Chen Y, Cui M, Yang F, Wang P, Ji M. Transmissible H-aggregated NIR-II fluorophore to the tumor cell membrane for enhanced PTT and synergistic therapy of cancer. NANO CONVERGENCE 2023; 10:3. [PMID: 36609947 PMCID: PMC9823176 DOI: 10.1186/s40580-022-00352-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Photothermal therapy (PTT) combined with second near-infrared (NIR-II) fluorescence imaging (FI) has received increasing attention owing to its capacity for precise diagnosis and real-time monitoring of the therapeutic effects. It is of great clinical value to study organic small molecular fluorophores with both PTT and NIR-II FI functions. In this work, we report a skillfully fluorescent lipid nanosystem, the RR9 (RGDRRRRRRRRRC) peptide-coated anionic liposome loaded with organic NIR-II fluorophore IR-1061 and chemotherapeutic drug carboplatin, which is named RRIALP-C4. According to the structural interaction between IR-1061 and phospholipid bilayer demonstrated by molecular dynamics simulations, IR-1061 is rationally designed to possess the H-aggregated state versus the free state, thus rendering RRIALP-C4 with the activated dual-channel integrated function of intravital NIR-II FI and NIR-I PTT. Functionalization of RRIALP-C4 with RR9 peptide endows the specifically targeting capacity for αvβ3-overexpressed tumor cells and, more importantly, allows IR-1061 to transfer the H-aggregated state from liposomes to the tumor cell membrane through enhanced membrane fusion, thereby maintaining its PTT effect in tumor tissues. In vivo experiments demonstrate that RRIALP-C4 can effectively visualize tumor tissues and systemic blood vessels with a high sign-to-background ratio (SBR) to realize the synergistic treatment of thermochemotherapy by PTT synergistically with temperature-sensitive drug release. Therefore, the strategy of enhanced PTT through H-aggregation of NIR-II fluorophore in the tumor cell membrane has great potential for developing lipid nanosystems with integrated diagnosis and treatment function.
Collapse
Affiliation(s)
- Haoli Yu
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuesong Wang
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yan Chen
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Mengyuan Cui
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Min Ji
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
6
|
Zhu K, Qian S, Guo H, Wang Q, Chu X, Wang X, Lu S, Peng Y, Guo Y, Zhu Z, Qin T, Liu B, Yang YW, Wang B. pH-Activatable Organic Nanoparticles for Efficient Low-Temperature Photothermal Therapy of Ocular Bacterial Infection. ACS NANO 2022; 16:11136-11151. [PMID: 35749223 DOI: 10.1021/acsnano.2c03971] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-temperature photothermal therapy (PTT) systems constructed by integrating organic photothermal agents with other bactericidal components that initiate bacterial apoptosis at low hyperthermia possess a promising prospect. However, these multicomponent low-temperature PTT nanoplatforms have drawbacks in terms of the tedious construction process, suboptimal synergy effect of diverse antibacterial therapies, and high laser dose needed, compromising their biosafety in ocular bacterial infection treatment. Herein, a mild PTT nanotherapeutic platform is formulated via the self-assembly of a pH-responsive phenothiazinium dye. These organic nanoparticles with photothermal conversion efficiency up to 84.5% necessitate only an ultralow light dose of 36 J/cm2 to achieve efficient low-temperature photothermal bacterial inhibition at pH 5.5 under 650 nm laser irradiation. In addition, this intelligent mild photothermal nanoplatform undergoes negative to positive charge reversion in acid biofilms, exhibiting good penetration and highly efficient elimination of drug-resistant E. coli biofilms under photoirradiation. Further in vivo animal tests demonstrated efficient bacterial elimination and inflammatory mitigation as well as superior biocompatibility and biosafety of the photothermal nanoparticles in ocular bacterial infection treatment. Overall, this efficient single-component mild PTT system featuring simple construction processes holds great potential for wide application and clinical transformation.
Collapse
Affiliation(s)
- Kangning Zhu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Siyuan Qian
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Hanwen Guo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Qingying Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaoying Chu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Xinyi Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Si Lu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Yaou Peng
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Yishun Guo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongqiang Zhu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
| | - Tianyi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun 130012, China
| | - Bailiang Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
7
|
Shan X, Zhang X, Wang C, Zhao Z, Zhang S, Wang Y, Sun B, Luo C, He Z. Molecularly engineered carrier-free co-delivery nanoassembly for self-sensitized photothermal cancer therapy. J Nanobiotechnology 2021; 19:282. [PMID: 34544447 PMCID: PMC8454134 DOI: 10.1186/s12951-021-01037-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Photothermal therapy (PTT) has been extensively investigated as a tumor-localizing therapeutic modality for neoplastic disorders. However, the hyperthermia effect of PTT is greatly restricted by the thermoresistance of tumor cells. Particularly, the compensatory expression of heat shock protein 90 (HSP90) has been found to significantly accelerate the thermal tolerance of tumor cells. Thus, a combination of HSP90 inhibitor and photothermal photosensitizer is expected to significantly enhance antitumor efficacy of PTT through hyperthermia sensitization. However, it remains challenging to precisely co-deliver two or more drugs into tumors. METHODS A carrier-free co-delivery nanoassembly of gambogic acid (GA, a HSP90 inhibitor) and DiR is ingeniously fabricated based on a facile and precise molecular co-assembly technique. The assembly mechanisms, photothermal conversion efficiency, laser-triggered drug release, cellular uptake, synergistic cytotoxicity of the nanoassembly are investigated in vitro. Furthermore, the pharmacokinetics, biodistribution and self-enhanced PTT efficacy were explored in vivo. RESULTS The nanoassembly presents multiple advantages throughout the whole drug delivery process, including carrier-free fabrication with good reproducibility, high drug co-loading efficiency with convenient dose adjustment, synchronous co-delivery of DiR and GA with long systemic circulation, as well as self-tracing tumor accumulation with efficient photothermal conversion. As expected, HSP90 inhibition-augmented PTT is observed in a 4T1 tumor BALB/c mice xenograft model. CONCLUSION Our study provides a novel and facile dual-drug co-assembly strategy for self-sensitized cancer therapy.
Collapse
Affiliation(s)
- Xinzhu Shan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xuanbo Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Chen Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
8
|
Augustine R, Uthaman S, Kalva N, Eom KH, Huh KM, Pillarisetti S, Park IK, Kim I. Two-tailed tadpole-shaped synthetic polymer polypeptide bioconjugate nanomicelles for enhanced chemo-photothermal therapy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Zhang Y, Zheng X, Zhang L, Yang Z, Chen L, Wang L, Liu S, Xie Z. Red fluorescent pyrazoline-BODIPY nanoparticles for ultrafast and long-term bioimaging. Org Biomol Chem 2020; 18:707-714. [PMID: 31907494 DOI: 10.1039/c9ob02373a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fluorescence bioimaging is very significant in studying biological processes. Fluorescent nanoparticles (NPs) manufactured from aggregation-induced emission (AIE) materials, as promising candidates, have attracted more attention. However, it is still a challenge to explore suitable AIE NPs for bioimaging. Herein, we synthesized pyrazoline-BODIPY (PZL-BDP) with a donor and acceptor (D-A) structure by a condensation reaction, cultured its single crystal, and studied its twisted intramolecular charge transfer (TICT) and AIE effects. PZL-BDP could self-assemble to form red fluorescent nanoparticles (PZL-BDP NPs) which showed a good fluorescence quantum yield of 15.8% in water. PZL-BDP NPs with excellent stability and biocompatibility exhibited a large Stokes shift (Δλ = 111 nm) which resulted in the reduction of external interference and enhancement of the fluorescence contrast. Furthermore, these nanoparticles could be readily internalized by HeLa cells and they stain the cells in just five seconds, indicating an ultrafast bioimaging protocol. Moreover, long-term tracking fluorescence signals in vivo for about 12 days were obtained. The bright red fluorescence, ultrafast cell staining ability, and long-term in vivo tracking competence outline the great potential of rational design nanomaterials with AIE characteristics for monitoring biological processes.
Collapse
Affiliation(s)
- Yuandong Zhang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P. R. China.
| | - Xiaohua Zheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
| | - Liping Zhang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P. R. China.
| | - Zhiyu Yang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P. R. China.
| | - Li Chen
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P. R. China.
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.
| |
Collapse
|
10
|
Zhang Y, Yang Z, Zheng X, Chen L, Xie Z. Highly efficient near-infrared BODIPY phototherapeutic nanoparticles for cancer treatment. J Mater Chem B 2020; 8:5305-5311. [DOI: 10.1039/d0tb00991a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly efficient NIR BODIPY nano-photosensitizer constructed by multi-intersection effects provides beneficial guidance for photodynamic and photothermal therapy.
Collapse
Affiliation(s)
- Yuandong Zhang
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Zhiyu Yang
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Xiaohua Zheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Li Chen
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
11
|
Bera A, Bagchi D, Pal SK. Improvement of Photostability and NIR Activity of Cyanine Dye through Nanohybrid Formation: Key Information from Ultrafast Dynamical Studies. J Phys Chem A 2019; 123:7550-7557. [PMID: 31402654 DOI: 10.1021/acs.jpca.9b04100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Near-infrared (NIR) light harvesting has enormous importance for different potential applications in the modern era of research. Some NIR cyanine dyes such as IR820 have achieved great success in energy harvesting and cancer therapy. However, their action is limited for low photostability, considerable thermal degradation, short circulation times, and nonspecific biodistribution. Our present study is an attempt to overcome such limitations by attaching a model cyanine dye IR820 with ZnO nanoparticles. We prepared an IR820-ZnO nanohybrid and characterized it using microscopic and optical spectroscopic tools. Thermogravimetric analysis depicted greater thermal stability of the IR820-ZnO nanohybrid compared to free dye. We explored the enhancement in the photostability of IR820 upon nanohybrid formation. We detected generation of photoinduced reactive oxygen species (ROS) such as superoxide, singlet oxygen, and so forth using appropriate molecular probes. The formation of IR820-ZnO nanohybrid reduced production of photoinduced singlet oxygen. However, it revealed an alternative trend in overall ROS formation (increases total ROS) under red light illumination. To correlate the enhanced photostability of IR820 on the ZnO surface, we explored excited-state dynamical processes at the interface in nanohybrids. We illustrated the photoinduced excited-state electron-transfer process from the lowest unoccupied molecular orbital of IR820 to the conduction band of ZnO. This photoelectron-transfer process enhances the production of ROS and decreases the formation of singlet oxygen that altogether leads to improvement in photostability and overall activity. A quencher of singlet oxygen sodium azide (NaN3) was used to further confirm the direct association of singlet oxygen generation with the photostability issue of IR820. Also, ZnO is able to deliver the dye selectively in acidic environment, which suggests its diseased site-specific targeted activity. Our results provide promising improvement for potential use of IR820 through formation of a nanohybrid that could be translated for other NIR cyanine dyes.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| | - Damayanti Bagchi
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| |
Collapse
|
12
|
Pan Y, Qi Y, Shao N, Tadle AC, Huang Y. Amino-Modified Polymer Nanoparticles as Adjuvants to Activate the Complement System and to Improve Vaccine Efficacy in Vivo. Biomacromolecules 2019; 20:3575-3583. [DOI: 10.1021/acs.biomac.9b00887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Yanbian University Medical College, Yanji 133002, P. R. China
| | - Nannan Shao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Abegail C. Tadle
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
13
|
Zhang Y, Song N, Li Y, Yang Z, Chen L, Sun T, Xie Z. Comparative study of two near-infrared coumarin–BODIPY dyes for bioimaging and photothermal therapy of cancer. J Mater Chem B 2019; 7:4717-4724. [DOI: 10.1039/c9tb01165j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, two novel NIR coumarin BODIPYs with different conjugation degrees were comparatively investigated for photothermal therapy and fluorescence bioimaging.
Collapse
Affiliation(s)
- Yuandong Zhang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Nan Song
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Yuanyuan Li
- The First Hospital of Jilin University
- Changchun
- P. R. China
| | - Zhiyu Yang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Li Chen
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|