1
|
Lee JE, Lim JY, Song SY, Park SH, Choi JH, Lim HK, Kim SW, Yang SH. Intranasal Administration of Human Neural Crest-Derived Nasal Turbinate Stem Cells Attenuates Microglia Activity in Mild Head Trauma Models. Tissue Eng Regen Med 2025; 22:327-337. [PMID: 40045144 PMCID: PMC11925815 DOI: 10.1007/s13770-025-00702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUND Mild head trauma often leads to long-term cognitive and neurological deficits. PLX3397, an inhibitor of colony-stimulating factor 1 receptor (CSF1R), offers promise as a therapeutic agent for traumatic brain injury (TBI) by targeting neuro-inflammation. Stem cell-based approaches are widely studied for neurological disorders. The objective of this study was to investigate therapeutic effect of intranasal administration of human neural crest-derived nasal turbinate stem cells (hNTSCs) on mild TBI in comparison with that of PLX3397. METHODS We developed a model of mice with repetitive and mild TBI following a weight-drop once a day for 5 days. PLX3397 (50 mg/kg, p. o.) was administered for 21 days. Intranasal administration of hNTSCs (1 × 106) was performed once. RESULTS Iba1 + and GFAP + cells were increased in the cortex and hippocampus of TBI models. Iba1 + cells and GFAP + cells were remarkably decreased in PLX3397 or hNTSC-treated TBI models. Administration of PLX3397 attenuated the decrease in neurobehavioral activity. Similar effects were observed in a TBI model with a single dose of hNTSC. CONCLUSION Intranasal administration of hNTSCs had a microglia-depleting effect. Administered hNTSCs were found around the cortex and hippocampus of TBI brains. This investigation may provide a promising path for therapeutic initiatives for repetitive and mild TBI.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbudaero, Paldal-Gu, Suwon, 16247, Republic of Korea
| | - Jung Yeon Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 065591, Republic of Korea
| | - Seung Yoon Song
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbudaero, Paldal-Gu, Suwon, 16247, Republic of Korea
| | - Sun Hwa Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 065591, Republic of Korea
| | - Jai Ho Choi
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 065591, Republic of Korea.
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbudaero, Paldal-Gu, Suwon, 16247, Republic of Korea.
| |
Collapse
|
2
|
Lim MH, Jeon JH, Park SH, Yun BG, Kim SW, Cho DW, Lee JH, Kim DH, Kim SW. Stem Cells Within Three-Dimensional-Printed Scaffolds Facilitate Airway Mucosa and Bone Regeneration and Reconstruction of Maxillary Defects in Rabbits. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2111. [PMID: 39768990 PMCID: PMC11678718 DOI: 10.3390/medicina60122111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model. Materials and Methods: hNTSCs were induced to differentiate into either mucosal epithelial or osteogenic cells in vitro. hNTSCs were seeded into polycaprolactone scaffold (three-dimensionally printed) that were implanted into rabbits with maxillary defects. Four weeks later, tissue regeneration was analyzed via histological evaluation and immunofluorescence staining. Results: In vitro, hNTSCs differentiated into both mucosal epithelial and osteogenic cells. hNTSC differentiation into respiratory epithelial cells was confirmed by Alcian Blue staining, cilia in SEM, and increased expression levels of FOXJ1 and E-cadherin through quantitative RT-PCR. hNTSC differentiation into bone was confirmed by Alizarin Red staining, increased mRNA expression levels of BMP2 (6.1-fold) and RUNX2 (2.3-fold) in the hNTSC group compared to the control. Four weeks post-transplantation, the rabbit maxilla was harvested, and H&E, SEM, and immunohistofluorescence staining were performed. H&E staining and SEM showed that new tissue and cilia around the maxillary defect were more prominent in the hNTSC group. Also, the hNTSCs group showed positive immunohistofluorescence staining for acetylated α-tubulin and cytokerin-5 compared to the control group. Conclusions: hNTSCs combined with PCL scaffold enhanced the regeneration of mucosal tissue and bone in vitro and promoted mucosal tissue regeneration in the in vivo rabbit model.
Collapse
Affiliation(s)
- Mi Hyun Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.H.L.); (J.H.J.); (S.H.P.)
| | - Jung Ho Jeon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.H.L.); (J.H.J.); (S.H.P.)
| | - Sun Hwa Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.H.L.); (J.H.J.); (S.H.P.)
| | | | - Seok-Won Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (S.-W.K.); (D.-W.C.)
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (S.-W.K.); (D.-W.C.)
| | - Jeong Hak Lee
- Yullin St. Mary’s ENT Clinic, Seoul 07639, Republic of Korea;
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.H.L.); (J.H.J.); (S.H.P.)
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.H.L.); (J.H.J.); (S.H.P.)
| |
Collapse
|
3
|
Abbadessa A, Ronca A, Salerno A. Integrating bioprinting, cell therapies and drug delivery towards in vivo regeneration of cartilage, bone and osteochondral tissue. Drug Deliv Transl Res 2024; 14:858-894. [PMID: 37882983 DOI: 10.1007/s13346-023-01437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
The biological and biomechanical functions of cartilage, bone and osteochondral tissue are naturally orchestrated by a complex crosstalk between zonally dependent cells and extracellular matrix components. In fact, this crosstalk involves biomechanical signals and the release of biochemical cues that direct cell fate and regulate tissue morphogenesis and remodelling in vivo. Three-dimensional bioprinting introduced a paradigm shift in tissue engineering and regenerative medicine, since it allows to mimic native tissue anisotropy introducing compositional and architectural gradients. Moreover, the growing synergy between bioprinting and drug delivery may enable to replicate cell/extracellular matrix reciprocity and dynamics by the careful control of the spatial and temporal patterning of bioactive cues. Although significant advances have been made in this direction, unmet challenges and open research questions persist. These include, among others, the optimization of scaffold zonality and architectural features; the preservation of the bioactivity of loaded active molecules, as well as their spatio-temporal release; the in vitro scaffold maturation prior to implantation; the pros and cons of each animal model and the graft-defect mismatch; and the in vivo non-invasive monitoring of new tissue formation. This work critically reviews these aspects and reveals the state of the art of using three-dimensional bioprinting, and its synergy with drug delivery technologies, to pattern the distribution of cells and/or active molecules in cartilage, bone and osteochondral engineered tissues. Most notably, this work focuses on approaches, technologies and biomaterials that are currently under in vivo investigations, as these give important insights on scaffold performance at the implantation site and its interaction/integration with surrounding tissues.
Collapse
Affiliation(s)
- Anna Abbadessa
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), IDIS Research Institute, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain.
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials, National Research Council, 80125, Naples, Italy.
| | - Aurelio Salerno
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125, Naples, Italy.
| |
Collapse
|
4
|
Kim DH, Kim SH, Park SH, Kwon MY, Lim CY, Park SH, Gwon K, Hwang SH, Kim SW. Characteristics of Human Nasal Turbinate Stem Cells under Hypoxic Conditions. Cells 2023; 12:2360. [PMID: 37830573 PMCID: PMC10571865 DOI: 10.3390/cells12192360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
This study investigated the influence of hypoxic culture conditions on human nasal inferior turbinate-derived stem cells (hNTSCs), a subtype of mesenchymal stem cells (MSCs). It aimed to discern how hypoxia affected hNTSC characteristics, proliferation, and differentiation potential compared to hNTSCs cultured under normal oxygen levels. After obtaining hNTSCs from five patients, the samples were divided into hypoxic and normoxic groups. The investigation utilized fluorescence-activated cell sorting (FACS) for surface marker analysis, cell counting kit-8 assays for proliferation assessment, and multiplex immunoassays for cytokine secretion study. Differentiation potential-osteogenic, chondrogenic, and adipogenic-was evaluated via histological examination and gene expression analysis. Results indicated that hNTSCs under hypoxic conditions preserved their characteristic MSC phenotype, as confirmed by FACS analysis demonstrating the absence of hematopoietic markers and presence of MSC markers. Proliferation of hNTSCs remained unaffected by hypoxia. Cytokine expression showed similarity between hypoxic and normoxic groups throughout cultivation. Nevertheless, hypoxic conditions reduced the osteogenic and promoted adipogenic differentiation potential, while chondrogenic differentiation was relatively unchanged. These insights contribute to understanding hNTSC behavior in hypoxic environments, advancing the development of protocols for stem cell therapies and tissue engineering.
Collapse
Affiliation(s)
- Do Hyun Kim
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.K.); (S.H.K.)
| | - Sun Hong Kim
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.K.); (S.H.K.)
| | - Sang Hi Park
- Institute of Clinical Medicine Research, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea; (S.H.P.); (M.Y.K.); (C.-Y.L.)
| | - Mi Yeon Kwon
- Institute of Clinical Medicine Research, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea; (S.H.P.); (M.Y.K.); (C.-Y.L.)
| | - Chae-Yoon Lim
- Institute of Clinical Medicine Research, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea; (S.H.P.); (M.Y.K.); (C.-Y.L.)
| | - Sun Hwa Park
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA;
| | - Se Hwan Hwang
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.K.); (S.H.K.)
| | - Sung Won Kim
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (D.H.K.); (S.H.K.)
| |
Collapse
|
5
|
Three-dimensional kagome structures in a PCL/HA-based hydrogel scaffold to lead slow BMP-2 release for effective bone regeneration. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
High throughput screening of mesenchymal stem cell lines using deep learning. Sci Rep 2022; 12:17507. [PMID: 36266301 PMCID: PMC9584889 DOI: 10.1038/s41598-022-21653-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are increasingly used as regenerative therapies for patients in the preclinical and clinical phases of various diseases. However, the main limitations of such therapies include functional heterogeneity and the lack of appropriate quality control (QC) methods for functional screening of MSC lines; thus, clinical outcomes are inconsistent. Recently, machine learning (ML)-based methods, in conjunction with single-cell morphological profiling, have been proposed as alternatives to conventional in vitro/vivo assays that evaluate MSC functions. Such methods perform in silico analyses of MSC functions by training ML algorithms to find highly nonlinear connections between MSC functions and morphology. Although such approaches are promising, they are limited in that extensive, high-content single-cell imaging is required; moreover, manually identified morphological features cannot be generalized to other experimental settings. To address these limitations, we propose an end-to-end deep learning (DL) framework for functional screening of MSC lines using live-cell microscopic images of MSC populations. We quantitatively evaluate various convolutional neural network (CNN) models and demonstrate that our method accurately classifies in vitro MSC lines to high/low multilineage differentiating stress-enduring (MUSE) cells markers from multiple donors. A total of 6,120 cell images were obtained from 8 MSC lines, and they were classified into two groups according to MUSE cell markers analyzed by immunofluorescence staining and FACS. The optimized DenseNet121 model showed area under the curve (AUC) 0.975, accuracy 0.922, F1 0.922, sensitivity 0.905, specificity 0.942, positive predictive value 0.940, and negative predictive value 0.908. Therefore, our DL-based framework is a convenient high-throughput method that could serve as an effective QC strategy in future clinical biomanufacturing processes.
Collapse
|
7
|
Lim JY, Lee JE, Park SA, Park SI, Yon JM, Park JA, Jeun SS, Kim SJ, Lee HJ, Kim SW, Yang SH. Protective Effect of Human-Neural-Crest-Derived Nasal Turbinate Stem Cells against Amyloid-β Neurotoxicity through Inhibition of Osteopontin in a Human Cerebral Organoid Model of Alzheimer’s Disease. Cells 2022; 11:cells11061029. [PMID: 35326480 PMCID: PMC8947560 DOI: 10.3390/cells11061029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to validate the use of human brain organoids (hBOs) to investigate the therapeutic potential and mechanism of human-neural-crest-derived nasal turbinate stem cells (hNTSCs) in models of Alzheimer’s disease (AD). We generated hBOs from human induced pluripotent stem cells, investigated their characteristics according to neuronal markers and electrophysiological features, and then evaluated the protective effect of hNTSCs against amyloid-β peptide (Aβ1–42) neurotoxic activity in vitro in hBOs and in vivo in a mouse model of AD. Treatment of hBOs with Aβ1–42 induced neuronal cell death concomitant with decreased expression of neuronal markers, which was suppressed by hNTSCs cocultured under Aβ1–42 exposure. Cytokine array showed a significantly decreased level of osteopontin (OPN) in hBOs with hNTSC coculture compared with hBOs only in the presence of Aβ1–42. Silencing OPN via siRNA suppressed Aβ-induced neuronal cell death in cell culture. Notably, compared with PBS, hNTSC transplantation significantly enhanced performance on the Morris water maze, with reduced levels of OPN after transplantation in a mouse model of AD. These findings reveal that hBO models are useful to evaluate the therapeutic effect and mechanism of stem cells for application in treating AD.
Collapse
Affiliation(s)
- Jung Yeon Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Kyonggi-do, Korea
| | - Soon A Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sang In Park
- Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Jung-Min Yon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeong-Ah Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Joon Kim
- Division of Pulmonology, Critical Care and Allergy, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Kyonggi-do, Korea
| |
Collapse
|
8
|
Ravoor J, Thangavel M, Elsen S R. Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction. ACS APPLIED BIO MATERIALS 2021; 4:8129-8158. [PMID: 35005929 DOI: 10.1021/acsabm.1c00949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bio-scaffolds are synthetic entities widely employed in bone and soft-tissue regeneration applications. These bio-scaffolds are applied to the defect site to provide support and favor cell attachment and growth, thereby enhancing the regeneration of the defective site. The progressive research in bio-scaffold fabrication has led to identification of biocompatible and mechanically stable materials. The difficulties in obtaining grafts and expenditure incurred in the transplantation procedures have also been overcome by the implantation of bio-scaffolds. Drugs, cells, growth factors, and biomolecules can be embedded with bio-scaffolds to provide localized treatments. The right choice of materials and fabrication approaches can help in developing bio-scaffolds with required properties. This review mostly focuses on the available materials and bio-scaffold techniques for bone and soft-tissue regeneration application. The first part of this review gives insight into the various classes of biomaterials involved in bio-scaffold fabrication followed by design and simulation techniques. The latter discusses the various additive, subtractive, hybrid, and other improved techniques involved in the development of bio-scaffolds for bone regeneration applications. Techniques involving multimaterial printing and multidimensional printing have also been briefly discussed.
Collapse
Affiliation(s)
- Jishita Ravoor
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mahendran Thangavel
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen S
- School of Mechanical Engineering Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
9
|
Abstract
AbstractThe multidisciplinary research field of bioprinting combines additive manufacturing, biology and material sciences to create bioconstructs with three-dimensional architectures mimicking natural living tissues. The high interest in the possibility of reproducing biological tissues and organs is further boosted by the ever-increasing need for personalized medicine, thus allowing bioprinting to establish itself in the field of biomedical research, and attracting extensive research efforts from companies, universities, and research institutes alike. In this context, this paper proposes a scientometric analysis and critical review of the current literature and the industrial landscape of bioprinting to provide a clear overview of its fast-changing and complex position. The scientific literature and patenting results for 2000–2020 are reviewed and critically analyzed by retrieving 9314 scientific papers and 309 international patents in order to draw a picture of the scientific and industrial landscape in terms of top research countries, institutions, journals, authors and topics, and identifying the technology hubs worldwide. This review paper thus offers a guide to researchers interested in this field or to those who simply want to understand the emerging trends in additive manufacturing and 3D bioprinting.
Graphic abstract
Collapse
|
10
|
Jeon S, Park SH, Kim E, Kim J, Kim SW, Choi H. A Magnetically Powered Stem Cell-Based Microrobot for Minimally Invasive Stem Cell Delivery via the Intranasal Pathway in a Mouse Brain. Adv Healthc Mater 2021; 10:e2100801. [PMID: 34160909 DOI: 10.1002/adhm.202100801] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/03/2021] [Indexed: 12/12/2022]
Abstract
Targeted stem cell delivery with microrobots has emerged as a potential alternative therapeutic strategy in regenerative medicine, and intranasal administration is an effective approach for minimally invasive delivery of therapeutic agents into the brain. In this study, a magnetically powered stem cell-based microrobot ("Cellbot") is used for minimally invasive targeted stem cell delivery to the brain through the intranasal passage. The Cellbot is developed by internalizing superparamagnetic iron oxide nanoparticles (SPIONs) into human nasal turbinate stem cells. The SPIONs have no influence on hNTSC characteristics, including morphology, cell viability, and neuronal differentiation. The Cellbots are capable of proliferation and differentiation into neurons, neural precursor cells, and neurogliocytes. The Cellbots in the microfluidic channel can be reliably manipulated by an external magnetic field for orientation and position control. Using an ex vivo model based on brain organoids, it is determined that the Cellbots can be transplanted into brain tissue. Using a murine model, it is demonstrated that the Cellbots can be intranasally administered and magnetically guided to the target tissue in vivo. This approach has the potential to effectively treat central nervous system disorders in a minimally invasive manner.
Collapse
Affiliation(s)
- Sungwoong Jeon
- Department of Robotics Engineering DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Sun Hwa Park
- Department of Otolaryngology‐Head and Neck Surgery Seoul St. Mary's Hospital The Catholic University Seoul 06591 Republic of Korea
| | - Eunhee Kim
- Department of Robotics Engineering DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Jin‐young Kim
- Department of Robotics Engineering DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology‐Head and Neck Surgery Seoul St. Mary's Hospital The Catholic University Seoul 06591 Republic of Korea
| | - Hongsoo Choi
- Department of Robotics Engineering DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- Robotics Research Center DGIST Daegu 42988 Republic of Korea
| |
Collapse
|
11
|
Lim JY, In Park S, Park SA, Jeon JH, Jung HY, Yon JM, Jeun SS, Lim HK, Kim SW. Potential application of human neural crest-derived nasal turbinate stem cells for the treatment of neuropathology and impaired cognition in models of Alzheimer's disease. Stem Cell Res Ther 2021; 12:402. [PMID: 34256823 PMCID: PMC8278635 DOI: 10.1186/s13287-021-02489-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background Stem cell transplantation is a fascinating therapeutic approach for the treatment of many neurodegenerative disorders; however, clinical trials using stem cells have not been as effective as expected based on preclinical studies. The aim of this study is to validate the hypothesis that human neural crest-derived nasal turbinate stem cells (hNTSCs) are a clinically promising therapeutic source of adult stem cells for the treatment of Alzheimer’s disease (AD). Methods hNTSCs were evaluated in comparison with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) according to the effect of transplantation on AD pathology, including PET/CT neuroimaging, immune status indicated by microglial numbers and autophagic capacity, neuronal survival, and cognition, in a 5 × FAD transgenic mouse model of AD. Results We demonstrated that hNTSCs showed a high proliferative capacity and great neurogenic properties in vitro. Compared with hBM-MSC transplantation, hNTSC transplantation markedly reduced Aβ42 levels and plaque formation in the brains of the 5 × FAD transgenic AD mice on neuroimaging, concomitant with increased survival of hippocampal and cortex neurons. Moreover, hNTSCs strongly modulated immune status by reducing the number of microglia and the expression of the inflammatory cytokine IL-6 and upregulating autophagic capacity at 7 weeks after transplantation in AD models. Notably, compared with transplantation of hBM-MSCs, transplantation of hNTSCs significantly enhanced performance on the Morris water maze, with an increased level of TIMP2, which is necessary for spatial memory in young mice and neurons; this difference could be explained by the high engraftment of hNTSCs after transplantation. Conclusion The reliable evidence provided by these findings reveals a promising therapeutic effect of hNTSCs and indicates a step forward the clinical application of hNTSCs in patients with AD.
Collapse
Affiliation(s)
- Jung Yeon Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Sang In Park
- Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, 56 Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Soon A Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jung Ho Jeon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ho Yong Jung
- Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, 56 Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Jung-Min Yon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, The Catholic University of Korea, 63-ro 10, Yeoungdeungpo-gu, Seoul, 07345, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
12
|
Cosmetic, Biomedical and Pharmaceutical Applications of Fish Gelatin/Hydrolysates. Mar Drugs 2021; 19:md19030145. [PMID: 33800149 PMCID: PMC8000627 DOI: 10.3390/md19030145] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
There are several reviews that separately cover different aspects of fish gelatin including its preparation, characteristics, modifications, and applications. Its packaging application in food industry is extensively covered but other applications are not covered or covered alongside with those of collagen. This review is comprehensive, specific to fish gelatin/hydrolysate and cites recent research. It covers cosmetic applications, intrinsic activities, and biomedical applications in wound dressing and wound healing, gene therapy, tissue engineering, implants, and bone substitutes. It also covers its pharmaceutical applications including manufacturing of capsules, coating of microparticles/oils, coating of tablets, stabilization of emulsions and drug delivery (microspheres, nanospheres, scaffolds, microneedles, and hydrogels). The main outcomes are that fish gelatin is immunologically safe, protects from the possibility of transmission of bovine spongiform encephalopathy and foot and mouth diseases, has an economic and environmental benefits, and may be suitable for those that practice religious-based food restrictions, i.e., people of Muslim, Jewish and Hindu faiths. It has unique rheological properties, making it more suitable for certain applications than mammalian gelatins. It can be easily modified to enhance its mechanical properties. However, extensive research is still needed to characterize gelatin hydrolysates, elucidate the Structure Activity Relationship (SAR), and formulate them into dosage forms. Additionally, expansion into cosmetic applications and drug delivery is needed.
Collapse
|
13
|
Effect of Bone Morphogenic Protein-2-Loaded Mesoporous Strontium Substitution Calcium Silicate/Recycled Fish Gelatin 3D Cell-Laden Scaffold for Bone Tissue Engineering. Processes (Basel) 2020. [DOI: 10.3390/pr8040493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone has a complex hierarchical structure with the capability of self-regeneration. In the case of critical-sized defects, the regeneration capabilities of normal bones are severely impaired, thus causing non-union healing of bones. Therefore, bone tissue engineering has since emerged to solve problems relating to critical-sized bone defects. Amongst the many biomaterials available on the market, calcium silicate-based (CS) cements have garnered huge interest due to their versatility and good bioactivity. In the recent decade, scientists have attempted to modify or functionalize CS cement in order to enhance the bioactivity of CS. Reports have been made that the addition of mesoporous nanoparticles onto scaffolds could enhance the bone regenerative capabilities of scaffolds. For this study, the main objective was to reuse gelatin from fish wastes and use it to combine with bone morphogenetic protein (BMP)-2 and Sr-doped CS scaffolds to create a novel BMP-2-loaded, hydrogel-based mesoporous SrCS scaffold (FGSrB) and to evaluate for its composition and mechanical strength. From this study, it was shown that such a novel scaffold could be fabricated without affecting the structural properties of FGSr. In addition, it was proven that FGSrB could be used for drug delivery to allow stable localized drug release. Such modifications were found to enhance cellular proliferation, thus leading to enhanced secretion of alkaline phosphatase and calcium. The above results showed that such a modification could be used as a potential alternative for future bone tissue engineering research.
Collapse
|