1
|
Song TT, Lin F, Xu ST, Zhou BC, Zhang LM, Guo SY, Zhang X, Chen QA. Divergent Construction of Cyclobutane-Fused Pentacyclic Scaffolds via Double Dearomative Photocycloaddition. Angew Chem Int Ed Engl 2025:e202505906. [PMID: 40356073 DOI: 10.1002/anie.202505906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/01/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
Cyclobutane-fused polycyclic scaffolds are structurally interesting cores in natural product synthesis and drug discovery. The construction of these skeletons often requires elaborate synthetic effort and gives low efficiency. We herein demonstrated the divergent construction of various cyclobutane-fused 2D/3D pentacyclic scaffolds by a photocatalytic intermolecular double dearomative cycloaddition of arenes. These skeletons, typically unattainable under thermal conditions, could be accessed with exclusive diastereoselectivity under mild photochemical conditions. Combined experimental and computational mechanistic studies elucidate that the reaction proceeds through a cascade sequence involving photocatalytic 1,4-hydroalkylation, alkene isomerization, and [2 + 2] cycloaddition via an intertwined single electron transfer (SET)/energy transfer (EnT) nature. This protocol provided a divergent synthetic approach for constructing (pseudo)-dimeric cyclobutane-fused 2D/3D pentacyclic scaffolds. The visible light induced intermolecular double dearomative cycloaddition between naphthalenes and benzothiophenes was also realized, providing indispensable methods for unprecedented structurally diverse polycyclic molecules that were difficult to access by conventional transformations.
Collapse
Affiliation(s)
- Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Fan Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Shan-Tong Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Bo-Chao Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Ming Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xinglong Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Rai P, Naik S, Gupta K, Maji K, Jindal G, Maji B. Visible light-driven dearomative meta-cycloadditions of 2-acetonaphthalenes via triplet energy transfer cascade. Nat Commun 2025; 16:2991. [PMID: 40148336 PMCID: PMC11950210 DOI: 10.1038/s41467-025-58285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Dearomative cycloadditions (DACs) with ortho- and para-variants have been well documented under visible light-mediated triplet-triplet energy transfer (VLEnT) catalysis. The prospective [3 + 2] or the meta-DACs propelled via VLEnT catalysis remains elusive. Classically, meta-DACs are known under harsher UV irradiations and are symmetry allowed in the excited singlet potential energy surface. Herein, we report formal meta-DACs of 2-acetonaphthalenes propagated via a two-step VLEnT cascade circumventing the attainment of energetically higher singlet excited states. The photosensitizer selectively promotes the [4 + 2] cycloaddition followed by a contra-thermodynamic di-π-methane type skeleton rearrangement cascade. The DFT studies in conjugation with electrochemical, photoluminescence, kinetic, quadratic dependency, and control experiments support the VLEnT cascade. The described protocol delivers highly sp3-rich polycyclic frameworks in high yields with wide functional group tolerance. The inclusion of bioactive molecules and the establishment of a wide array of post-synthetic derivatizations further underscores the adaptability of the methodology for generating complex three-dimensional molecules.
Collapse
Affiliation(s)
- Pramod Rai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Sanghamitra Naik
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Kriti Gupta
- Department of Organic Chemistry, Chemical Sciences Division, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kakoli Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Garima Jindal
- Department of Organic Chemistry, Chemical Sciences Division, Indian Institute of Science, Bangalore, Karnataka, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
3
|
Tay G, Nishimura S, Oguri H. Direct photochemical intramolecular [4 + 2] cycloadditions of dehydrosecodine-type substrates for the synthesis of the iboga-type scaffold and divergent [2 + 2] cycloadditions employing micro-flow system. Chem Sci 2024:d4sc02597k. [PMID: 39345776 PMCID: PMC11423653 DOI: 10.1039/d4sc02597k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/15/2024] [Indexed: 10/01/2024] Open
Abstract
Photocyclisation reactions offer a convenient and versatile method for constructing complex polycyclic scaffolds, particularly in the synthesis of natural products. While the [2 + 2] photocycloaddition reaction is well-established and extensively reported, the [4 + 2] counterpart via direct photochemical means remains challenging and relatively unexplored. In this work, we devised the rapid assembly of the iboga-type scaffold through photochemical intramolecular Diels-Alder reaction using a common biomimetic dehydrosecodine-type intermediate having vinyl indole and dihydropyridine (DHP) sub-units. Exploiting a micro-flow system, the medicinally important iboga-type scaffold was obtained up to 77% yield under mild, neutral conditions at room temperature. This study demonstrated the site-selective activation of the DHP moiety by direct UV-LED irradiation, eliminating the need for external photocatalysts or photosensitisers and showing good tolerance to a wide range of stabilised dehydrosecodine-type substrates. By adjusting the spatial arrangement of the DHP ring and the vinyl indole group, this versatile photochemical approach efficiently facilitates both [4 + 2] and [2 + 2] cyclisations, assembling architecturally complex multicyclic scaffolds. Precise photoactivation of the DHP subunit, generating short-lived biradical species, enabled the new way of harnessing the hidden but innately pre-encoded reactivity of the polyunsaturated dehydrosecodine-type intermediate. These photo-mediated [4 + 2] cyclisation and divergent [2 + 2] cycloadditions are distinct from biosynthetic processes, which are mainly mediated through concerted thermal cycloadditions.
Collapse
Affiliation(s)
- Gavin Tay
- Department of Chemistry, Graduate School of Science, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Soushi Nishimura
- Department of Chemistry, Graduate School of Science, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroki Oguri
- Department of Chemistry, Graduate School of Science, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
4
|
Das S. Visible-Light-Induced Dearomative Annulation of Indoles toward Stereoselective Formation of Fused- and Spiro Indolines. ACS OMEGA 2024; 9:36023-36042. [PMID: 39220487 PMCID: PMC11360027 DOI: 10.1021/acsomega.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Dearomatization approaches are attractive for their abilities to transform simple, planar arenes into complex, three-dimensional architectures. In particular, visible-light driven dearomatization strategies are significant because of their mild, green, and sustainable nature, enabling the fabrication of new chemical bonds via an electron transfer or energy transfer process. Indole compounds, being potentially bioactive and readily accessible, can be employed efficiently as building blocks for constructing diverse annulated frameworks under photocatalysis. Highly stereoselective radical cascade reactions of appropriate indole systems can provide complex cyclic scaffolds bearing multiple stereocenters. In fact, the past few years have witnessed the renaissance of dearomative cycloadditions of indoles via visible-light-induced photocatalysis. The present review highlights recent advances (2019-mid 2024) in visible-light-driven dearomative annulation of indoles leading to formation of polycyclic indolines, including angularly fused and spiro indolines. Most of the reactions described in this review are simple, providing quick access to the desired products. Additionally, characteristic reaction mechanisms are offered to provide an understand of how indole scaffolds show distinctive reactivity under photocatalytic conditions.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, North 24 Parganas, West Bengal 743165, India
| |
Collapse
|
5
|
Solé-Daura A, Maseras F. Straightforward computational determination of energy-transfer kinetics through the application of the Marcus theory. Chem Sci 2024:d4sc03352c. [PMID: 39149213 PMCID: PMC11322899 DOI: 10.1039/d4sc03352c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
Energy transfer (EnT) photocatalysis holds the potential to revolutionize synthetic chemistry, unlocking the excited-state reactivity of non-chromophoric compounds via indirect sensitization. This strategy gives access to synthetic routes to valuable molecular scaffolds that are otherwise inaccessible through ground-state pathways. Despite the promising nature of this chemistry, it still represents a largely uncharted area for computational chemistry, hindering the development of structure-activity relationships and design rules to rationally exploit the potential of EnT photocatalysis. Here, we examined the application of the classical Marcus theory in combination with DFT calculations as a convenient strategy to estimate the kinetics of EnT processes, focusing on the indirect sensitization of alkenes recently reported by Gilmour, Kerzig and co-workers for subsequent isomerization [Zähringer et al., J. Am. Chem. Soc., 2023, 145, 21576]. Our results demonstrate a remarkable capability of this approach to estimate free-energy barriers for EnT processes with high accuracy, yielding precise qualitative assessments and quantitative predictions with typical discrepancies of less than 2 kcal mol-1 compared to experimental values and a small mean average error (MAE) of 1.2 kcal mol-1.
Collapse
Affiliation(s)
- Albert Solé-Daura
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology Avgda. Països Catalans, 16 43007 Tarragona Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology Avgda. Països Catalans, 16 43007 Tarragona Spain
| |
Collapse
|
6
|
Ji P, Duan K, Li M, Wang Z, Meng X, Zhang Y, Wang W. Photochemical dearomative skeletal modifications of heteroaromatics. Chem Soc Rev 2024; 53:6600-6624. [PMID: 38817197 PMCID: PMC11181993 DOI: 10.1039/d4cs00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 06/01/2024]
Abstract
Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Kuaikuai Duan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Menglong Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yueteng Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| |
Collapse
|
7
|
Merski I, Yin J, VanderLinden RT, Rainier JD. The Role of N-Substitution in Regio- and Stereoselective Vinylogous Imidonaphthoquinone (VINAquinone) [2 + 2] Photocycloadditions. Org Lett 2024; 26:4921-4925. [PMID: 38814707 DOI: 10.1021/acs.orglett.4c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Described in this manuscript are intramolecular [2 + 2] photocycloadditions of readily available vinylogous imidonaphthoquinones whose regio- and diastereoselectivity is dependent on the substitution on the vinylogous imide. When exposed to 419 nm light, 2° vinylogous imidonaphthoquinones give novel bridged tetracyclic aza-anthraquinones from a rare crossed [2 + 2] cycloaddition reaction. In contrast, exposure of the corresponding 3° substrates to white light leads to linear adducts. Also outlined here are auxiliary controlled diastereoselective reactions and cyclobutane fragmentations as a means of generating the spirofused γ-lactam moiety present in the ansalactam family of natural product.
Collapse
Affiliation(s)
- Ian Merski
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84108, United States
| | - Jinya Yin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84108, United States
| | - Ryan T VanderLinden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84108, United States
| | - Jon D Rainier
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84108, United States
| |
Collapse
|
8
|
Liao ZY, Gao F, Ye YH, Yu QH, Yang C, Luo QY, Du F, Pan B, Zhong WW, Liang W. Construction of cyclobutane-fused tetracyclic skeletons via substrate-dependent EnT-enabled dearomative [2+2] cycloaddition of benzofurans (benzothiophenes)/maleimides. Chem Commun (Camb) 2024; 60:4455-4458. [PMID: 38563643 DOI: 10.1039/d4cc00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, a novel and facile organic photosensitizer (thioxanthone)-mediated energy-transfer-enabled (EnT-enabled) dearomative [2+2] cycloaddition of aromatic heterocycles/maleimides for green synthesis of cyclobutane-fused polycyclic skeletons is reported. Mechanistic investigations revealed that different EnT pathways by triplet thioxanthone were initiated when different aromatic heterocycles participated in the reaction, giving the corresponding excited intermediates, which underwent the subsequent intermolecular [2+2] cycloaddition to access the desired highly functionalized cyclobutane-fused polycyclic skeletons.
Collapse
Affiliation(s)
- Zhi-Yu Liao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Fan Gao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Yu-Hang Ye
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Qian-Hui Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Cui Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Qing-Yu Luo
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Fei Du
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| | - Bin Pan
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Wen-Wu Zhong
- Department of Pharmacy, Chongqing Medical and Pharmaceutical College, Shapingba, Chongqing 401334, China.
| | - Wu Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Zhu M, Gao YJ, Huang XL, Li M, Zheng C, You SL. Photo-induced intramolecular dearomative [5 + 4] cycloaddition of arenes for the construction of highly strained medium-sized-rings. Nat Commun 2024; 15:2462. [PMID: 38503749 PMCID: PMC10951311 DOI: 10.1038/s41467-024-46647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Medium-sized-ring compounds have been recognized as challenging synthetic targets in organic chemistry. Especially, the difficulty of synthesis will be augmented if an E-olefin moiety is embedded. Recently, photo-induced dearomative cycloaddition reactions that proceed via energy transfer mechanism have witnessed significant developments and provided powerful methods for the organic transformations that are not easily realized under thermal conditions. Herein, we report an intramolecular dearomative [5 + 4] cycloaddition of naphthalene-derived vinylcyclopropanes under visible-light irradiation and a proper triplet photosensitizer. The reaction affords dearomatized polycyclic molecules possessing a nine-membered-ring with an E-olefin moiety in good yields (up to 86%) and stereoselectivity (up to 8.8/1 E/Z). Detailed computational studies reveal the origin behind the favorable formation of the thermodynamically less stable isomers. Diverse derivations of the dearomatized products have also been demonstrated.
Collapse
Affiliation(s)
- Min Zhu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Yuan-Jun Gao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
| | - Xu-Lun Huang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China
| | - Muzi Li
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China
| | - Chao Zheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China.
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, China.
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, China.
| |
Collapse
|
10
|
Cerveri A, Scarica G, Sparascio S, Hoch M, Chiminelli M, Tegoni M, Protti S, Maestri G. Boosting Energy-Transfer Processes via Dispersion Interactions. Chemistry 2024:e202304010. [PMID: 38224554 DOI: 10.1002/chem.202304010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The generation of open-shell intermediates under mild conditions has opened broad synthetic opportunities during this century. However, these reactive species often require a case specific and tailored tuning of experimental parameters in order to efficiently convert substrates into products. We report a general approach that can overcome these ubiquitous limitations for several visible-light promoted energy-transfer processes. The use of either naphthalene (5-20 equiv.) or simple binaphthyl derivatives (10-30 mol %) greatly increases their efficiency, giving rise to a new strategy for catalysis. The trend is consistent among different media, photocatalysts, light sources and substrates, allowing one to improve existing methods, to more easily optimize conditions for new ones, and, moreover, to disclose otherwise inaccessible reaction pathways.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gabriele Scarica
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Sara Sparascio
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Hoch
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, Università di Pavia, Via Taramelli 10, 27100, Pavia, Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
11
|
Wang L, Shi M, Chen X, Su N, Luo W, Zhang X. Generation of Aromatic N-Heterocyclic Radicals for Functionalization of Unactivated Alkenes. Angew Chem Int Ed Engl 2023; 62:e202314312. [PMID: 37946626 DOI: 10.1002/anie.202314312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Nitrogen-centered radicals (NCRs) have been widely recognized as versatile synthetic intermediates for the construction of nitrogen containing molecules of high value. As such, there has been a long-standing interest in the field of organic synthesis to develop novel nitrogen-based radicals and explore their inherent reactivity. In this study, we present the generation of aromatic N-heterocyclic radicals and their application in a novel and diverse functionalization of unactivated alkenes. Bench-stable aromatic N-heterocyclic pyridinium salts were employed as crucial NCR precursors, which enabled the efficient conversion of various unactivated alkenes into medicinally relevant alkylated N-heterocyclic amines. This approach offers an unexplored retrosynthetic disconnection for the synthesis of related molecules that commonly possess therapeutic value. Furthermore, this platform can be extended to the synthesis of densely functionalized heterocyclic amines by utilizing disulfides and diethyl bromomalonate as radical quenchers. Mechanistic investigations indicate an energy transfer (EnT) pathway involving the formation of a transient aromatic N-heterocyclic radical, radical addition to unactivated alkenes, and subsequent generation of the amination product through either hydrogen atom transfer (HAT) or radical addition processes.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Minxu Shi
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xiaoping Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Nicholas Su
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Weili Luo
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
12
|
Palai A, Rai P, Maji B. Rejuvenation of dearomative cycloaddition reactions via visible light energy transfer catalysis. Chem Sci 2023; 14:12004-12025. [PMID: 37969572 PMCID: PMC10631258 DOI: 10.1039/d3sc04421a] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
Dearomative cycloaddition is a powerful technique to access sp3-rich three-dimensional structural motifs from simple flat, aromatic feedstock. The building-up of unprecedentedly diverse polycyclic scaffolds with increased saturation and stereochemical information having various applications ranging from pharmaceutical to material sciences, is an essential goal in organic chemistry. However, the requirement of large energy inputs to disrupt the aromaticity of an arene moiety necessitates harsh reaction conditions for ground state dearomative cycloaddition. The photochemical requirement encompasses use of ultraviolet (UV) light to enable the reaction on an excited potential energy surface. The microscopic reversibility under thermal conditions and the use of high energy harmful UV irradiation in photochemical manoeuvres, however, constrain their widespread use from a synthetic point of view. In this context, the recent renaissance of visible light energy transfer (EnT) catalysis has become a powerful tool to initiate dearomative cycloaddition as a greener and more sustainable approach. The excited triplet state population is achieved by triplet energy transfer from the appropriate photosensitizer to the substrate. While employing mild visible light energy as fuel, the process leverages an enormous potential of excited state reactivity. The discovery of an impressive portfolio of organic and inorganic photosensitizers with a range of triplet energies facilitates visible light photosensitized dearomative cycloaddition of various substrates to form sp3-rich fused polycyclic architectures with diverse applications. The tutorial review comprehensively surveys the reawakening of dearomative cycloadditions via visible light-mediated energy transfer catalysis in the past five years. The progress ranges from intra- and intermolecular [2π + 2π] to [4π + 2π], and ends at intermolecular [2π + 2σ] cycloadditions. Furthermore, the review provides potential possibilities for future growth in the growing field of visible light energy transfer catalysis.
Collapse
Affiliation(s)
- Angshuman Palai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Pramod Rai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 West Bengal India
| |
Collapse
|
13
|
Zhang H, Guo X, Zhou D, Wen J, Tang Y, Wang J, Liu Y, Chen G, Li N. Design, Synthesis of (±)-Millpuline A, and Biological Evaluation for the Lung Cell Protective Effects through SRC. ChemMedChem 2023; 18:e202300219. [PMID: 37704587 DOI: 10.1002/cmdc.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
In this study, a visible-light-induced intermolecular [2+2] photocycloaddition reaction based on flavonoids was constructed to address the problems of low yield, poor physicochemical properties, and lack of target definition in total synthesis of (±)-millpuline A whose bioactivity remains unknown. As a result, 20 derivatives were synthesized for bioactivity evaluation. Consequently, lung cell protective effects of (±)-millpuline A and compound B13 a were revealed for the first time and the crucial role of stereoconfiguration of the cyclobutane moiety in their protective effects against NNK in normal lung cells was demonstrated. Moreover, through target prediction and experimental verification in MLE-12 cells, SRC was determined to be the target of (±)-millpuline A regarding its protective effect in NNK-induced lung cell injury. Results from RT-Q-PCR and HTRF experiments verified that (±)-millpuline A could repress SRC activity through a transcriptional mechanism but not acting as an inhibitor to directly bind to and thereby inhibit SRC protein. The results in this paper are informative for the further development of visible light-catalyzed cycloaddition of flavonoids and lay a scientific foundation for understanding the bioactivity and underlying mechanism of (±)-millpuline A and other structurally similar natural skeletons.
Collapse
Affiliation(s)
- Heng Zhang
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Xiao Guo
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Di Zhou
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Jiatong Wen
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Yingzhan Tang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Jian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Yang Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Gang Chen
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Ning Li
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| |
Collapse
|
14
|
Hojo R, Bergmann K, Elgadi SA, Mayder DM, Emmanuel MA, Oderinde MS, Hudson ZM. Imidazophenothiazine-Based Thermally Activated Delayed Fluorescence Materials with Ultra-Long-Lived Excited States for Energy Transfer Photocatalysis. J Am Chem Soc 2023; 145:18366-18381. [PMID: 37556344 DOI: 10.1021/jacs.3c04132] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Triplet-triplet energy transfer (EnT) is a powerful activation pathway in photocatalysis that unlocks new organic transformations and improves the sustainability of organic synthesis. Many current examples, however, still rely on platinum-group metal complexes as photosensitizers, with associated high costs and environmental impacts. Photosensitizers that exhibit thermally activated delayed fluorescence (TADF) are attractive fully organic alternatives in EnT photocatalysis. However, TADF photocatalysts incorporating heavy atoms remain rare, despite their utility in inducing efficient spin-orbit-coupling, intersystem-crossing, and consequently a high triplet population. Here, we describe the synthesis of imidazo-phenothiazine (IPTZ), a sulfur-containing heterocycle with a locked planar structure and a shallow LUMO level. This acceptor is used to prepare seven TADF-active photocatalysts with triplet energies up to 63.9 kcal mol-1. We show that sulfur incorporation improves spin-orbit coupling and increases triplet lifetimes up to 3.64 ms, while also allowing for tuning of photophysical properties via oxidation at the sulfur atom. These IPTZ materials are applied as photocatalysts in five seminal EnT reactions: [2 + 2] cycloaddition, the disulfide-ene reaction, and Ni-mediated C-O and C-N cross-coupling to afford etherification, esterification, and amination products, outcompeting the industry-standard TADF photocatalyst 2CzPN in four of the five studied scenarios. Detailed photophysical and theoretical studies are used to understand structure-activity relationships and to demonstrate the key role of the heavy atom effect in the design of TADF materials with superior photocatalytic performance.
Collapse
Affiliation(s)
- Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katrina Bergmann
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Seja A Elgadi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Megan A Emmanuel
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Martins S Oderinde
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
15
|
Bhakat M, Khatua B, Biswas P, Guin J. Brønsted Acid-Promoted Intermolecular Dearomative Photocycloaddition of Bicyclic Azaarenes with Olefins under Aerobic Conditions. Org Lett 2023; 25:3089-3093. [PMID: 37096800 DOI: 10.1021/acs.orglett.3c00917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein, we present a simplified reaction protocol for the dearomatization of bicyclic azaarenes via photochemical cycloaddition with alkenes using an Ir(III) photosensitizer, trifluoroacetic acid (TFA), dichloroethane, and a blue light-emitting diode. An efficient protonation of azaarenes with TFA enhances the reactivity of triplet azaarene toward olefins, enabling the photocycloaddition under aerobic conditions. The protocol applies to a broad range of substrates. Control experiments indicate a strong correlation between the degree of protonation of azaarene and the product yield.
Collapse
Affiliation(s)
- Manotosh Bhakat
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Bitasik Khatua
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Promita Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
16
|
Abstract
The first vinylogous dearomatization is reported. Under a photoinduced platform, various benzothiophenes functionalized by ketones at the 3-position could react with 3-methylenechroman-4-ones efficiently, leading to a variety of valuable products that contain the pharmaceutically significant chromones and 2,3-dihydrobenzo[b]thiophenes concurrently. The transformations were revealed to experience hydrogen-atom transfer, dearomatization, olefin migration, and radical cross coupling.
Collapse
Affiliation(s)
- Xinxin Lv
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University; Pingyuan Laboratory, Xinxiang 453007, Henan, P. R. China
| | - Ya-Nan Qi
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University; Pingyuan Laboratory, Xinxiang 453007, Henan, P. R. China
| | - Jiahao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University; Pingyuan Laboratory, Xinxiang 453007, Henan, P. R. China
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Zhiyong Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University; Pingyuan Laboratory, Xinxiang 453007, Henan, P. R. China
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
17
|
Zhen G, Zeng G, Jiang K, Wang F, Cao X, Yin B. Visible-Light-Induced Diradical-Mediated ipso-Cyclization towards Double Dearomative [2+2]-Cycloaddition or Smiles-Type Rearrangement. Chemistry 2023; 29:e202203217. [PMID: 36460618 DOI: 10.1002/chem.202203217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
When mono-radical ipso-cyclization of aryl sulfonamides tend to undergo Smiles-type rearrangement through aromatization-driven C-S bond cleavage, diradical-mediated cyclization must perform in a distinct reaction pathway. It is interesting meanwhile challenging to tune the rate of C-S bond cleavage to achieve a chemically divergent reaction of (hetero) aryl sulfonamides in a visible-light induced energy transfer (EnT) reaction pathway involving diradical species. Herein a chemically divergent reaction based on the designed indole-tethered (hetero)arylsulfonamides is reported which involves a diradical-mediated ipso-cyclization and a controllable cleavage of an inherent C-S bond. The combined experimental and computational results have revealed that the cleavage of the C-S bond in these substrates can be controlled by tuning the heteroaryl moieties: a) If the (hetero)aryl is thienyl, furyl, phenanthryl, etc., the radical coupling of double dearomative diradicals (DDDR) precedes over C-S bond cleavage to afford cyclobutene fused indolines by double dearomative [2+2]-cycloaddition; b) if the (hetero)aryl is phenyl, naphthyl, pyridyl, indolyl etc., the cleavage of C-S bond in DDDR is favored over radical coupling to afford biaryl products.
Collapse
Affiliation(s)
- Guangjin Zhen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guohui Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Furong Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
18
|
Wang W, Cai Y, Guo R, Brown MK. Synthesis of complex bicyclic scaffolds by intermolecular photosensitized dearomative cycloadditions of activated alkenes and naphthalenes. Chem Sci 2022; 13:13582-13587. [PMID: 36507189 PMCID: PMC9682912 DOI: 10.1039/d2sc04789f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The rapid buildup of molecular complexity from simple precursors is a key goal in organic chemistry. One strategy to achieve this is through a dearomative cycloaddition wherein a 2D arene and alkene is converted to a 3D structure. In many cases this type of reactivity has been achieved with photochemistry. Despite the prospect of such a reaction, most known variants are intramolecular, which greatly limits the scope of chemical space that can be accessed. Intermolecular variants are known but are generally limited to heterocyclic systems such as indoles or quinolines. Herein, a method for intermolecular dearomative cycloaddition of simple naphthalenes with alkenes is presented. The reactions operate by a photoinduced sensitization of the arene. The bridged bicyclic products are generated with control of regiochemistry and function for a range of alkenes. In addition, the products can serve as useful intermediates as demonstrated in the synthesis of a biologically active benzazapine analog. Mechanistic studies are also included, which support reaction via a triplet excited state and that the selectivity can be rationalized by spin-density calculations.
Collapse
Affiliation(s)
- Wang Wang
- Department of Chemistry, Indiana University800 E. Kirkwood AveBloomingtonIN 47405USA
| | - Yanyao Cai
- Department of Chemistry, Indiana University800 E. Kirkwood AveBloomingtonIN 47405USA
| | - Renyu Guo
- Department of Chemistry, Indiana University800 E. Kirkwood AveBloomingtonIN 47405USA
| | - M. Kevin Brown
- Department of Chemistry, Indiana University800 E. Kirkwood AveBloomingtonIN 47405USA
| |
Collapse
|
19
|
Gall BK, Smith AK, Ferreira EM. Dearomative (3+2) Cycloadditions between Indoles and Vinyldiazo Species Enabled by a Red-Shifted Chromium Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202212187. [PMID: 36063422 PMCID: PMC9828771 DOI: 10.1002/anie.202212187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/12/2023]
Abstract
A direct dearomative photocatalyzed (3+2) cycloaddition between indoles and vinyldiazo reagents is described. The transformation is enabled by the development of a novel oxidizing CrIII photocatalyst, its specific reactivity attributed to increased absorptive properties over earlier Cr analogs and greater stability than Ru counterparts. A variety of fused indoline compounds are synthesized using this method, including densely functionalized ring systems that are feasible due to base-free conditions. Experimental insights corroborate a cycloaddition initiated by nucleophilic attack at C3 of the indole radical cation by the vinyldiazo species.
Collapse
Affiliation(s)
- Bradley K. Gall
- Department of ChemistryUniversity of GeorgiaAthensGA 30602USA
| | - Avery K. Smith
- Department of ChemistryUniversity of GeorgiaAthensGA 30602USA
| | | |
Collapse
|
20
|
Guo R, Adak S, Bellotti P, Gao X, Smith WW, Le SN, Ma J, Houk KN, Glorius F, Chen S, Brown MK. Photochemical Dearomative Cycloadditions of Quinolines and Alkenes: Scope and Mechanism Studies. J Am Chem Soc 2022; 144:17680-17691. [PMID: 36106902 PMCID: PMC9840784 DOI: 10.1021/jacs.2c07726] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Photochemical dearomative cycloaddition has emerged as a useful strategy to rapidly generate molecular complexity. Within this context, stereo- and regiocontrolled intermolecular para-cycloadditions are rare. Herein, a method to achieve photochemical cycloaddition of quinolines and alkenes is shown. Emphasis is placed on generating sterically congested products and reaction of highly substituted alkenes and allenes. In addition, the mechanistic details of the process are studied, which revealed a reversible radical addition and a selectivity-determining radical recombination. The regio- and stereochemical outcome of the reaction is also rationalized.
Collapse
Affiliation(s)
- Renyu Guo
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Souvik Adak
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - Xinfeng Gao
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - W Walker Smith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| | - Sam Ngan Le
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio44074, United States
| | - Jiajia Ma
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California90095, United States
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149Münster, Germany
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio44074, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana47405, United States
| |
Collapse
|
21
|
Wang H, Tian YM, König B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat Rev Chem 2022; 6:745-755. [PMID: 37117495 DOI: 10.1038/s41570-022-00421-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Endergonic photocatalysis is the use of light to perform catalytic reactions that are thermodynamically unfavourable. While photocatalysis has become a powerful tool in facilitating chemical transformations, the light-energy efficiency of these processes has not gathered much attention. Exergonic photocatalysis does not take full advantage of the light energy input, producing low-energy products and heat, whereas endergonic photocatalysis incorporates a portion of the photon energy into the reaction, yielding products that are higher in free energy than the reactants. Such processes can enable catalytic, atom-economic syntheses of reactive compounds from bench-stable materials. With respect to environmental friendliness and carbon neutrality, endergonic photocatalysis is also of interest to large-scale industrial manufacturing, where better energy efficiency, less waste and value addition are highly sought. We therefore assess here the thermochemistry of several classes of reported photocatalytic transformations to showcase current advances in endergonic photocatalysis and point to their industrial potential.
Collapse
|
22
|
Arai N. Formation of
anti‐Bredt
‐type Azabicyclo[4.2.0]octene Frameworks through Photochemical Intramolecular [2+2] Cycloaddition between Indole and a Distal Double Bond of Allene. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Noriyoshi Arai
- Division of Applied Chemistry, Faculty of Engineering Hokkaido University, Sapporo Hokkaido Japan
| |
Collapse
|
23
|
Zhu M, Zhang X, Zheng C, You SL. Energy-Transfer-Enabled Dearomative Cycloaddition Reactions of Indoles/Pyrroles via Excited-State Aromatics. Acc Chem Res 2022; 55:2510-2525. [PMID: 35943728 DOI: 10.1021/acs.accounts.2c00412] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Exploring the enormous chemical space through an expedient building-up of molecular diversity is an important goal of organic chemistry. The development of synthetic methods toward molecules with unprecedented structural motifs lays the foundation for wide applications ranging from pharmaceutical chemistry to materials science. In this regard, the dearomatization of arenes has been recognized as a unique strategy since it provides novel retrosynthetic disconnections for various spiro or fused polycyclic molecules with increased saturation and stereoisomerism. However, inherent thermodynamic challenges are associated with dearomatization processes. The disruption of the aromaticity of arene substrates usually requires large energy inputs, which makes harsh conditions necessary for many ground-state dearomatization reactions. Therefore, further expansion of the scope of dearomatization reactions remains a major problem not fully solved in organic chemistry.The past decade has witnessed tremendous progress on photocatalytic reactions under visible light. Particularly, reactions via an energy transfer mechanism have unlocked new opportunities for dearomatization reactions. Mediated by appropriately chosen photosensitizers, aromatic substrates can be excited. This kind of precise energy input might make feasible some dearomatization reactions that are otherwise unfavorable under thermal conditions because of the significant energy increases of the substrates. Nevertheless, the lifetimes of key intermediates in energy-transfer-enabled reactions, such as excited-state aromatics and downstream biradical species, are quite short. How to regulate the reactivities of these transient intermediates to achieve exclusive selectivity toward a certain reaction pathway among many possibilities is a crucial issue to be addressed.Since 2019, our group has reported a series of visible-light-induced dearomative cycloaddition reactions for indole and pyrrole derivatives. It was found that the aromatic units in substrates can be excited under the irradiation of visible light in the presence of a suitable photosensitizer. These excited aromatics readily undergo various [m + n] cycloaddition reactions with appropriately tethered unsaturated functionalities including alkenes, alkynes, N-alkoxy oximes, (hetero)arenes, and vinylcyclopropanes. The reactions yield polycyclic indolines and pyrrolines with highly strained small- and/or medium-sized rings embedded, some of which possess unique bridge- or cagelike topologies. Systematic mechanistic studies confirmed the involvement of an energy transfer process. Density functional theory (DFT) calculations revealed the correlation between the substrate structure and the excitation efficiency, which accelerated the optimization of the reaction parameters. Meanwhile, DFT calculations demonstrated the competition between kinetically and thermodynamically controlled pathways for the open-shell singlet biradical intermediates, which allowed the complete switches from [2 + 2] cycloaddition to 1,5-hydrogen atom transfer in reactions with N-alkoxy oximes and to [4 + 2] cycloaddition in reactions with naphthalene. Furthermore, ab initio molecular dynamics (AIMD) simulations uncovered post-spin crossing dynamic effects, which determine the regioselectivity for the open-shell singlet biradical recombination step in the reactions of pyrrole-derived vinylcyclopropanes.An increasing number of scientists have joined in the research on visible-light-induced dearomative cycloaddition reactions and contributed to more elegant examples in this area. The visible-light-induced dearomatization reaction via energy transfer mechanism, although still in its infancy, has exhibited great potential in the synthesis of molecules that can hardly be accessed by other methods. We believe that future development will further push the boundary of organic chemistry and find applications in the synthesis of functional molecules and related disciplines.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
24
|
Bellotti P, Rogge T, Paulus F, Laskar R, Rendel N, Ma J, Houk KN, Glorius F. Visible-Light Photocatalyzed peri-(3 + 2) Cycloadditions of Quinolines. J Am Chem Soc 2022; 144:15662-15671. [PMID: 35984989 DOI: 10.1021/jacs.2c05687] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cycloaddition reactions─epitomized by the Diels-Alder reaction─offer an arguably unmatched springboard for achieving chemical complexity, often with excellent selectivity, in a modular single step. We report the synthesis of aza-acenaphthenes in a single step by an unprecedented formal peri-(3 + 2) cycloaddition of simple quinolines with alkynes. A commercially available iridium complex exerts a dual role of photosensitizer and photoredox catalyst, fostering a cyclization/rearomatization cascade. The initial energy-transfer phase leads to the acenaphthene skeleton, while the ensuing redox shuttling step leads to aromatization. We applied this technology to 8-substituted quinolines and phenanthrolines, which smoothly reacted with both terminal and internal alkynes with excellent levels of regio- and diastereoselectivity. Density functional theory calculations revealed the intertwined EnT/SET nature of the process and offered guiding design principles for the synthesis of new aza-acenaphthenes.
Collapse
Affiliation(s)
- Peter Bellotti
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Fritz Paulus
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Ranjini Laskar
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Nils Rendel
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Jiajia Ma
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
25
|
Wang X, Liu F, Xu T. Catalytic diastereoselective construction of multiple contiguous quaternary carbon stereocenters via [2 + 2] cycloaddition and mechanistic insight. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Luo J, Zeng G, Cao X, Yin B. Visible‐Light‐Induced [2+2+1] Dearomative Cascade Cyclization of Indole/Furan Alkynes to Synthesize Sulfonyl Polycycles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiajun Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Guohui Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Xiaohui Cao
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| |
Collapse
|
27
|
Dai QS, Li JL, Wang QW, Yang SL, Tao YM, He MH, Li QZ, Han B, Zhang X. Sulphur ylide-mediated cyclopropanation and subsequent spirocyclopropane rearrangement reactions. Org Biomol Chem 2022; 20:3486-3490. [PMID: 35388864 DOI: 10.1039/d2ob00466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient construction of cyclopropyl spiroindoline skeletons and the exploration of related follow-up synthetic transformations have elicited considerable interest amongst members of the chemistry community. Here, we describe a formal (2 + 1) annulation and three-component (1 + 1 + 1) cascade cyclisation via sulphur ylide cyclopropanation under mild conditions. The spiro-cyclopropyl iminoindoline moiety can be readily transformed into another medicinally interesting pyrrolo[3,4-c]quinoline framework through a novel rearrangement process.
Collapse
Affiliation(s)
- Qing-Song Dai
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Long Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Qi-Wei Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Institute for Advanced Study, Chengdu University, Chengdu 610106, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Si-Lin Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Ying-Mao Tao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Mei-Hao He
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Qing-Zhu Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. .,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Xiang Zhang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China. .,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
28
|
Xiong Y, Großkopf J, Jandl C, Bach T. Visible Light-Mediated Dearomative Hydrogen Atom Abstraction/ Cyclization Cascade of Indoles. Angew Chem Int Ed Engl 2022; 61:e202200555. [PMID: 35213774 PMCID: PMC9314014 DOI: 10.1002/anie.202200555] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 11/24/2022]
Abstract
The photochemical synthesis of yet unknown 2‐oxospiro[azetidine‐3,3′‐indolines] (17 examples, 80–95 % yield), 2,4‐dioxospiro[azetidine‐3,3′‐indolines] (eight examples, 87–97 % yield), and 1‐oxo‐1,3‐dihydrospiro[indene‐2,3′‐indolines] (17 examples, 85–97 % yield) is described. Starting from readily accessible 3‐substituted indoles, a dearomatization of the indole core was accomplished upon irradiation at λ=420 nm in the presence of thioxanthen‐9‐one (10 mol%) as the sensitizer. Based on mechanistic evidence (triplet energy determination, deuteration experiments, by‐product analysis) it is proposed that the reaction proceeds by energy transfer via a 1,4‐ or 1,5‐diradical intermediate. The latter intermediates are formed by excited state hydrogen atom transfer from suitable alkyl groups within the C3 substituent to the indole C2 carbon atom. Subsequent ring closure proceeds with pronounced diastereoselectivity to generate a 4‐ or 5‐membered spirocyclic dearomatized product with several options for further functionalization.
Collapse
Affiliation(s)
- Yang Xiong
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|
29
|
Mei H, Liu A, He J, Yu Y, Han J. Visible-Light-Irradiated Cascade Reaction of Indole-Tethered Alkenes to Access Tetracyclic Tetrahydro-γ-carbolines. Org Lett 2022; 24:2630-2635. [PMID: 35354314 DOI: 10.1021/acs.orglett.2c00626] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of indole-derived alkenes have been designed and applied in a photocatalytic cascade reaction with bromodifluoroacetate esters, affording an unknown type of tetracyclic tetrahydro-γ-carboline derivative in up to 90% yields. Mechanistic studies suggest that the reaction proceeds with tetrahydro-γ-carboline as a key intermediate. The reaction tolerates a diverse pool of substrates, which provides an efficient method for the construction of tetracyclic tetrahydro-γ-carboline compounds.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Aiyao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingrui He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yingjie Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
30
|
Yang R, Yi D, Shen K, Fu Q, Wei J, Lu J, Yang L, Wang L, Wei S, Zhang Z. Indole and Pyrrole Derivatives as Pre-photocatalysts and Substrates in the Sulfonyl Radical-Triggered Relay Cyclization Leading to Sulfonylated Heterocycles. Org Lett 2022; 24:2014-2019. [DOI: 10.1021/acs.orglett.2c00472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ran Yang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dong Yi
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Kunrong Shen
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qiang Fu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jun Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ji Lu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lin Yang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Li Wang
- Department of Nuclear Medicine, Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Siping Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zhijie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
31
|
Li H, He Y, Zhang D, Yang L, Zhang J, Long RL, Lu J, Wei J, Yang L, Wei S, Yi D, Zhang Z, Fu Q. Hydrogen bond serving as a protecting group to enable the photocatalytic [2+2] cycloaddition of redox-active aliphatic-amine-containing indole derivatives. Chem Commun (Camb) 2022; 58:3194-3197. [PMID: 35171972 DOI: 10.1039/d1cc06935g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox-sensitive functionalities such as aliphatic amines with low oxidation potentials and easily oxidized by photocatalysts are generally not compatible with photocatalytic reactions. We describe a hydrogen-bond-assisted visible-light-mediated [2+2] cycloaddition of redox-sensitive aliphatic-amine-containing indole derivatives providing a range of cyclobutane-fused polycyclic indoline derivatives, especially bridged-cyclic indolines. Mechanistic studies indicated that the success of the reaction was based on on the formation of H-bonds between the N-atom and alcohol proton of TFE or HFIP, with this formation preventing or blocking the single-electron transfer from the aliphatic amine functionality to the excited photocatalyst.
Collapse
Affiliation(s)
- Hao Li
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yishu He
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Di Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Li Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China. .,Department of Pharmacy, Chengdu Seventh People's Hospital, Chengdu 610000, China
| | - Jiarui Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Rui-Ling Long
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Ji Lu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jun Wei
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Lin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Siping Wei
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Dong Yi
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhijie Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Qiang Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China. .,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
32
|
Cheng YZ, Feng Z, Zhang X, You SL. Visible-light induced dearomatization reactions. Chem Soc Rev 2022; 51:2145-2170. [PMID: 35212320 DOI: 10.1039/c9cs00311h] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dearomatization reactions provide rapid access to structurally complex three-dimensional molecules from simple aromatic compounds. Plenty of reports have demonstrated their utilities in the synthesis of natural products, medicinal chemistry, and materials science in the last decades. Recently, visible-light mediated photocatalysis has emerged as a powerful tool to promote many kinds of transformations. The dearomatization reactions induced by visible-light have also made significant progress during the past several years. This review provides an overview of visible-light induced dearomatization reactions classified based on the manner in which aromaticity is disrupted.
Collapse
Affiliation(s)
- Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
33
|
Xiong Y, Großkopf J, Jandl C, Bach T. Visible Light‐Mediated Dearomative Hydrogen Atom Abstraction/ Cyclization Cascade of Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Xiong
- Technische Universität München: Technische Universitat Munchen Chemistry GERMANY
| | - Johannes Großkopf
- Technische Universität München: Technische Universitat Munchen Chemistry GERMANY
| | - Christian Jandl
- Technische Universität München: Technische Universitat Munchen Chemistry GERMANY
| | - Thorsten Bach
- Technische Universität München Lehrstuhl für Organische Chemie I Lichtenbergstr. 4 85747 Garching GERMANY
| |
Collapse
|
34
|
Zhu M, Zheng C. Post-spin crossing dynamics determine the regioselectivity in open-shell singlet biradical recombination. Org Chem Front 2022. [DOI: 10.1039/d1qo01757h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Comprehensive computational studies reveal unique dynamic effects in a multi-spin-state reaction that determine the regioselectivity of a biradical recombination process.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
35
|
Advances in the synthesis of three-dimensional molecular architectures by dearomatizing photocycloadditions. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Stereoselective construction of cycloheptene-fused indoline frameworks through photosensitised formal [5+2] cycloaddition. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Rai P, Maji K, Jana SK, Maji B. Intermolecular dearomative [4 + 2] cycloaddition of naphthalenes via visible-light energy-transfer-catalysis. Chem Sci 2022; 13:12503-12510. [PMID: 36349268 PMCID: PMC9628934 DOI: 10.1039/d2sc04005k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
The dearomative cycloaddition reaction serves as a blueprint for creating sp3-rich three-dimensional molecular topology from flat-aromatic compounds. However, severe reactivity and selectivity issues make this process arduous. Herein, we describe visible-light energy-transfer catalysis for the intermolecular dearomative [4 + 2] cycloaddition reaction of feedstock naphthalene molecules with vinyl benzenes. Tolerating a wide range of functional groups, structurally diverse 2-acyl naphthalenes and styrenes could easily be converted to a diverse range of bicyclo[2.2.2]octa-2,5-diene scaffolds in high yields and moderate endo-selectivities. The late-stage modification of the derivatives of pharmaceutical agents further demonstrated the broad potentiality of this methodology. The efficacy of the introduced methods was further highlighted by the post-synthetic diversification of the products. Furthermore, photoluminescence, electrochemical, kinetic, control experiments, and density-functional theory calculations support energy-transfer catalysis. Constructing 3D molecular scaffolds from aromatic hydrocarbons is challenging. Herein, we report dearomative [4 + 2] cycloaddition reaction of naphthalenes via visible-light EnT catalysis which overcomes issues of unfavorable thermodynamics, low yields, and selectivity.![]()
Collapse
Affiliation(s)
- Pramod Rai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Kakoli Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Sayan K. Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India
| |
Collapse
|
38
|
Zhang J, Xia W, Qu M, Huda S, Ward JS, Rissanen K, Albrecht M. Synthesis of Polycyclic Indolines by Utilizing a Reduction/Cyclization Cascade Reaction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingyu Zhang
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| | - Wei Xia
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| | - Meilin Qu
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| | - Saskia Huda
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| | - Jas S. Ward
- University of Jyvaskyla Department of Chemistry P.O. Box 35 Jyväskylä Finland
| | - Kari Rissanen
- University of Jyvaskyla Department of Chemistry P.O. Box 35 Jyväskylä Finland
| | - Markus Albrecht
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 Aachen 52074 Germany
| |
Collapse
|
39
|
Gao L, Bu Y. Molecular dynamics insights into electron-catalyzed dissociation repair of cyclobutane pyrimidine dimer. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Liang Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
40
|
Yu D, To WP, Liu Y, Wu LL, You T, Ling J, Che CM. Direct photo-induced reductive Heck cyclization of indoles for the efficient preparation of polycyclic indolinyl compounds. Chem Sci 2021; 12:14050-14058. [PMID: 34760188 PMCID: PMC8565399 DOI: 10.1039/d1sc04258k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
The photo-induced cleavage of C(sp2)-Cl bonds is an appealing synthetic tool in organic synthesis, but usually requires the use of high UV light, photocatalysts and/or photosensitizers. Herein is described a direct photo-induced chloroarene activation with UVA/blue LEDs that can be used in the reductive Heck cyclization of indoles and without the use of a photocatalyst or photosensitizer. The indole compounds examined display room-temperature phosphorescence. The photochemical reaction tolerates a panel of functional groups including esters, alcohols, amides, cyano and alkenes (27 examples, 50-88% yields), and can be used to prepare polycyclic compounds and perform the functionalization of natural product analogues in moderate to good yields. Mechanistic experiments, including time-resolved absorption spectroscopy, are supportive of photo-induced electron transfer between the indole substrate and DIPEA, with the formation of radical intermediates in the photo-induced dearomatization reaction.
Collapse
Affiliation(s)
- Daohong Yu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Tingjie You
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Jesse Ling
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation Shenzhen Guangdong 518057 China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| |
Collapse
|
41
|
Wang L, Shi F, Qi C, Xu W, Xiong W, Kang B, Jiang H. Stereodivergent synthesis of β-iodoenol carbamates with CO 2 via photocatalysis. Chem Sci 2021; 12:11821-11830. [PMID: 34659721 PMCID: PMC8442729 DOI: 10.1039/d1sc03366b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 01/24/2023] Open
Abstract
Photocatalytic conversion of carbon dioxide (CO2) into value-added chemicals is of great significance from the viewpoint of green chemistry and sustainable development. Here, we report a stereodivergent synthesis of β-iodoenol carbamates through a photocatalytic three-component coupling of ethynylbenziodoxolones, CO2 and amines. By choosing appropriate photocatalysts, both Z- and E-isomers of β-iodoenol carbamates, which are difficult to prepare using existing methods, can be obtained stereoselectively. This transformation featured mild conditions, excellent functional group compatibility and broad substrate scope. The potential synthetic utility of this protocol was demonstrated by late-stage modification of bioactive molecules and pharmaceuticals as well as by elaborating the products to access a wide range of valuable compounds. More importantly, this strategy could provide a general and practical method for stereodivergent construction of trisubstituted alkenes such as triarylalkenes, which represents a fascinating challenge in the field of organic chemistry research. A series of mechanism investigations revealed that the transformation might proceed through a charge-transfer complex which might be formed through a halogen bond.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Wenjie Xu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Bangxiong Kang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
42
|
Morofuji T, Nagai S, Chitose Y, Abe M, Kano N. Protonation-Enhanced Reactivity of Triplet State in Dearomative Photocycloaddition of Quinolines to Olefins. Org Lett 2021; 23:6257-6261. [PMID: 34324819 DOI: 10.1021/acs.orglett.1c02026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The intermolecular dearomative cycloaddition of acidified bicyclic azaarenes with olefins was recently reported. We report here the crucial role of the acid in the dearomative photocycloaddition of quinolines to olefins. Experimental and theoretical results show that the key role of the protonation of quinolines is not to promote the energy transfer but to enhance the reactivity of the triplet state of quinolines toward olefins.
Collapse
Affiliation(s)
- Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Shota Nagai
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Youhei Chitose
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
43
|
Zhu M, Huang XL, Sun S, Zheng C, You SL. Visible-Light-Induced Dearomatization of Indoles/Pyrroles with Vinylcyclopropanes: Expedient Synthesis of Structurally Diverse Polycyclic Indolines/Pyrrolines. J Am Chem Soc 2021; 143:13441-13449. [PMID: 34398603 DOI: 10.1021/jacs.1c07082] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visible-light-induced cycloaddition reactions initiated via energy-transfer processes have recently evolved as powerful methods for the construction of strained cyclic molecules that are not easily accessed using known ground-state synthetic methods. Particularly, the reactions initiated by the excitation of aromatic rings provide an alternative solution to the direct transformations of aromatic feedstocks under the scheme of dearomatization. Vinylcyclopropanes (VCPs) are well-known reagents in radical clock experiments, working as a probe to detect transient radical intermediates. However, the synthetic applications in this regard still remain limited due to uncontrollable selectivities. Herein, we report visible-light-induced dearomatization of indole- or pyrrole-tethered VCPs, in which several competitive reaction pathways, including [5 + 2], [2 + 2], interrupted [5 + 2], and [5 + 4] cycloadditions, can be well regulated by engineering substrate structures and tuning reaction conditions. The reaction mechanism has been explored by combined experimental and computational investigations. These reactions provide a convenient method to synthesize structurally diverse polycyclic molecules with high efficiency and good selectivity.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xu-Lun Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Shuo Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
44
|
Mu X, Li Y, Zheng N, Long J, Chen S, Liu B, Zhao C, Yang Z. Stereoselective Synthesis of Cyclohepta[
b
]indoles by Visible‐Light‐Induced [2+2]‐Cycloaddition/retro‐Mannich‐type Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin‐Peng Mu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Yuan‐He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Jian‐Yu Long
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Si‐Jia Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Bing‐Yan Liu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Chun‐Bo Zhao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| |
Collapse
|
45
|
Mu XP, Li YH, Zheng N, Long JY, Chen SJ, Liu BY, Zhao CB, Yang Z. Stereoselective Synthesis of Cyclohepta[b]indoles by Visible-Light-Induced [2+2]-Cycloaddition/retro-Mannich-type Reactions. Angew Chem Int Ed Engl 2021; 60:11211-11216. [PMID: 33683807 DOI: 10.1002/anie.202101104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/27/2021] [Indexed: 12/12/2022]
Abstract
A novel method for the concise synthesis of cyclohepta[b]indoles in high yields was developed. The method involves a visible-light-induced, photocatalyzed [2+2]-cycloaddition/ retro-Mannich-type reaction of enaminones. Experimental and computational studies suggested that the reaction is a photoredox process initiated by single-electron oxidation of an enaminone moiety, which undergoes subsequent cyclobutane formation and rapidly fragmentation in a radical-cation state to form cyclohepta[b]indoles.
Collapse
Affiliation(s)
- Xin-Peng Mu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yuan-He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jian-Yu Long
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Si-Jia Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Bing-Yan Liu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Chun-Bo Zhao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China.,Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. China
| |
Collapse
|
46
|
Zhang J, Xia W, Huda S, Ward JS, Rissanen K, Albrecht M. Synthesis of N‐Fused Indolines via Copper (II)‐Catalyzed Dearomatizing Cyclization of Indoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingyu Zhang
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Wei Xia
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Saskia Huda
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Jas S. Ward
- University of Jyvaskyla Department of Chemistry Survontie 9 B FIN-40014 Jyväskylä Finland
| | - Kari Rissanen
- University of Jyvaskyla Department of Chemistry Survontie 9 B FIN-40014 Jyväskylä Finland
| | - Markus Albrecht
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| |
Collapse
|
47
|
Pan G, Qin S, Xu D, Kühn FE, Guo H. Visible Light-Induced Pericyclic Cascade Reaction for the Synthesis of Quinolinone Derivatives with an Oxabicyclo[4.2.0]octene Skeleton. Org Lett 2021; 23:2959-2963. [PMID: 33783210 DOI: 10.1021/acs.orglett.1c00642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoinduced pericyclic cascade reaction has been developed to afford oxabicyclo[4.2.0]octenes. Mechanistic studies show that this reaction undergoes [2 + 2]-photocycloaddition, base-promoted elimination, retro-4π-electrocyclization, [1,5]-H shift, and 4π-electrocyclization procedures. This reaction features wide substrate scope, good functional group tolerance, and excellent diastereoselectivity.
Collapse
Affiliation(s)
- Guangxing Pan
- Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Shaoheng Qin
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Dawen Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Fritz E Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Hao Guo
- Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China.,Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| |
Collapse
|
48
|
Ma J, Chen S, Bellotti P, Guo R, Schäfer F, Heusler A, Zhang X, Daniliuc C, Brown MK, Houk KN, Glorius F. Photochemical intermolecular dearomative cycloaddition of bicyclic azaarenes with alkenes. Science 2021; 371:1338-1345. [PMID: 33766881 PMCID: PMC7610643 DOI: 10.1126/science.abg0720] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Dearomative cycloaddition reactions represent an ideal means of converting flat arenes into three-dimensional architectures of increasing interest in medicinal chemistry. Quinolines, isoquinolines, and quinazolines, despite containing latent diene and alkene subunits, are scarcely applied in cycloaddition reactions because of the inherent low reactivity of aromatic systems and selectivity challenges. Here, we disclose an energy transfer-mediated, highly regio- and diastereoselective intermolecular [4 + 2] dearomative cycloaddition reaction of these bicyclic azaarenes with a plethora of electronically diverse alkenes. This approach bypasses the general reactivity and selectivity issues, thereby providing various bridged polycycles that previously have been inaccessible or required elaborate synthetic efforts. Computational studies with density functional theory elucidate the mechanism and origins of the observed regio- and diastereoselectivities.
Collapse
Affiliation(s)
- Jiajia Ma
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Shuming Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Renyu Guo
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Felix Schäfer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Arne Heusler
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Xiaolong Zhang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - M Kevin Brown
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany.
| |
Collapse
|
49
|
Zhu M, Xu H, Zhang X, Zheng C, You S. Visible‐Light‐Induced Intramolecular Double Dearomative Cycloaddition of Arenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Hao Xu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Fujian Key Laboratory of Polymer Science Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Materials Science Fujian Normal University 8 Shangsan Lu Fuzhou 350007 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|
50
|
Zhu M, Xu H, Zhang X, Zheng C, You S. Visible‐Light‐Induced Intramolecular Double Dearomative Cycloaddition of Arenes. Angew Chem Int Ed Engl 2021; 60:7036-7040. [DOI: 10.1002/anie.202016899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Hao Xu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Fujian Key Laboratory of Polymer Science Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Materials Science Fujian Normal University 8 Shangsan Lu Fuzhou 350007 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|