1
|
Li J, Zhang Y, Zhu S, Chu L. Photocatalyzed Dicyanation of Alkenes Enabled by Phosphorus Radical Cation Addition. Chemistry 2025:e202501154. [PMID: 40331884 DOI: 10.1002/chem.202501154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/08/2025]
Abstract
While notable progress has been made in alkene cyanation for the synthesis of alkyl nitriles, catalytic strategies enabling the direct dicyanation of simple alkenes remain relatively under-explored. In this study, we introduce a synergistic phosphine-photoredox catalytic system that facilitates the direct dicyanation of styrenes using TMSCN in the presence of oxidant. This approach utilizes a phosphorus radical cation to initiate an oxidative radical-polar crossover with alkenes, followed by sequential nucleophilic cyanation. This protocol allows for the efficient synthesis of alkyl 1,2-dinitriles from alkenes under mild conditions. Notably, the method exhibits broad substrate scope and commendable efficiency, serving as a valuable complement to existing cyanation methodologies. The synthetic utility of the dinitrile products is further demonstrated through diverse derivatization reactions, highlighting their applicability in constructing nitrogen-rich molecular architectures. Mechanistic studies provide further insight into the reaction pathway and underscore the potential of phosphorus radical cations in alkene functionalization.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Yanyan Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Shengqing Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Lingling Chu
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Lim S, Kim T, Lee Y. Regioselective formal hydrocyanation of allenes: synthesis of β,γ-unsaturated nitriles with α-all-carbon quaternary centers. Beilstein J Org Chem 2025; 21:800-806. [PMID: 40276280 PMCID: PMC12018896 DOI: 10.3762/bjoc.21.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
This study introduces a highly selective hydrocyanation method based on copper-catalyzed hydroalumination of allenes with diisobutylaluminum hydride, followed by the regio- and stereoselective allylation with p-toluenesulfonyl cyanide. The proposed methodology is efficient for accessing acyclic β,γ-unsaturated nitriles with α-all-carbon quaternary centers and achieves yields up to 99% and excellent regio- and E-selectivity. The reaction proceeds under mild conditions and shows broad applicability to di- and trisubstituted allenes. Its practicality is demonstrated through the gram-scale synthesis and functional group transformations of amines, amides, and lactams, emphasizing its versatility and synthetic significance.
Collapse
Affiliation(s)
- Seeun Lim
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Teresa Kim
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
3
|
Gu G, Sun Y, Wang C, Zeng Y, Peng T, Koo B, Zhao Y. Exploring the Chiral Match-Mismatch Effect in the Chiral Discrimination of Nitriles. Anal Chem 2025; 97:1909-1916. [PMID: 39809546 DOI: 10.1021/acs.analchem.4c06117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study tackles the challenge of enantiodifferentiation of nitrile compounds, which is typically difficult to resolve using nuclear magnetic resonance (NMR) due to the significant distance between the chiral center and the nitrogen atom involved in molecular interactions. We have developed novel chiral 19F-labeled probes, each featuring two chiral centers, to exploit the "match-mismatch" effect, thereby enhancing enantiodiscrimination. This strategy effectively differentiates chiral analytes with quaternary chiral carbon centers as well as those with similar substituents at the chiral center. Our approach not only provides a novel method for precise probe performance optimization but also offers a rapid and efficient technique for screening reaction conditions in asymmetric synthesis.
Collapse
Affiliation(s)
- Guangxing Gu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yining Sun
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenyang Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yilin Zeng
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tianci Peng
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Byungjin Koo
- Department of Polymer Science and Engineering, Dankook University, Yongin, Gyeonggi 16890, Republic of Korea
| | - Yanchuan Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Li C, Song J, Wang T, Fang X. Enantioselective Synthesis of Axially Chiral Allylic Nitriles via Nickel-Catalyzed Desymmetric Cyanation of Biaryl Diallylic Alcohols. Angew Chem Int Ed Engl 2025; 64:e202417208. [PMID: 39422541 DOI: 10.1002/anie.202417208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/19/2024]
Abstract
Axially chiral nitriles are common motifs in organic photoelectric materials, biological compounds, and agrochemicals. Unfortunately, the limited synthetic approaches to axially chiral nitriles have impeded their availability. Herein, we report the first nickel-catalyzed desymmetric allylic cyanation of biaryl allylic alcohols for the synthesis of axially chiral nitrile structures in high yields with excellent enantioselectivities (up to 90 % yield and >99 % ee). This process enables the synthesis of a diverse range of axially chiral allylic nitriles bearing β,γ-unsaturated alcohol moieties. Leveraging the allylic alcohol and cyano groups as versatile functionalization handles allow for further derivatization of these axially chiral frameworks. Density functional theory (DFT) calculations suggest that both steric and electronic interactions play crucial roles in determining the enantioselectivity of this transformation. Moreover, this mild and facile protocol is also applicable for gram-scale preparation of the chiral nitriles.
Collapse
Affiliation(s)
- Can Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jian Song
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ting Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Xianjie Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
5
|
Wu X, Zang R, Ma L, Zi G, Hou G. Asymmetric Hydrogenation of Exocyclic α,β-Unsaturated Nitriles: An Access to Chiral 2-Benzocyclic Acetonitriles and Ramelteon. Org Lett 2024; 26:10740-10745. [PMID: 39651536 DOI: 10.1021/acs.orglett.4c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
A highly efficient and enantioselective hydrogenation of exocyclic α,β-unsaturated nitriles catalyzed by the Rh-JosiPhos complex for synthesis of the chiral 2-benzocyclic acetonitriles has been developed. Both (Z)- and (E)-isomers of exocyclic α,β-unsaturated nitriles with various benzocyclic structures, including heterocyclic (chroman and tetrahydroquinoline) scaffolds, were hydrogenated successfully, achieving excellent enantioselectivities (up to 97% ee) and high turnover numbers (TON up to 4000). Furthermore, this methodology provides an efficient, concise, and practical synthetic route to the sleep agent (S)-Ramelteon.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rui Zang
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ling Ma
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Zhou B, Huang Z, Gao Z, Hu Y. Formal 1,1-Hydrocyanation Reaction of Alkynyl Halides with Isocyanides Enabled by Dual Nickel/Base Catalysis Relay. Org Lett 2024; 26:10511-10516. [PMID: 39630112 DOI: 10.1021/acs.orglett.4c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
We herein describe a formal 1,1-hydrocyanation reaction of alkynyl halides with isocyanides enabled by a dual nickel/base catalysis relay. tert-Butyl isocyanide serves as a "HCN" precursor that is introduced to the α-position of alkynyl halides, and the halogen atom is moved to the β-position. As a result, a series of (Z)-3-bromo/iodo acrylonitrile derivatives could be obtained in moderate yields. Mechanistic experiments were carried out, and the collective data could support our proposal of the mechanism details.
Collapse
Affiliation(s)
- Bingwei Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengzhe Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhao Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
7
|
Yan Z, Huang M, Wang C, Zhang X, Tang S, Sun J. Geminal Aminocyanation Enabled by Ylide Mediated Rearrangement. Org Lett 2024; 26:10273-10279. [PMID: 39585758 DOI: 10.1021/acs.orglett.4c03797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Herein, we describe experimental and computational studies to understand the features of oxycyanopyridinium ylides generated in situ from oxy-cyanopyridines and rhodium carbene. This chemistry has enabled the concomitant formation of both C-N and C-C bonds, providing a complementary approach for cyanation reactions. Density functional theory calculations indicate the sequential metal-bound ylide formation, rhodium-associated five-membered transition state, and 1,4-cyano group relocation. Moreover, the enantioselective rearrangement has been realized by using chiral dirhodium complexes as the catalysts.
Collapse
Affiliation(s)
- Zichun Yan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chuang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
8
|
Vu J, Haug GC, Li Y, Zhao B, Chang CJ, Paton RS, Dong Y. Enantioconvergent Cross-Nucleophile Coupling: Copper-Catalyzed Deborylative Cyanation. Angew Chem Int Ed Engl 2024; 63:e202408745. [PMID: 39264815 DOI: 10.1002/anie.202408745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 09/14/2024]
Abstract
Organoboron compounds are widely utilized in organic synthesis for their diverse reactivity, modular preparation, and stability compared to other classes of organometallic reagents. While organoboron species are commonly employed as nucleophiles in cross-coupling reactions, their potential as racemic building blocks in enantioconvergent transformations remains largely untapped. Herein, we demonstrate the direct utilization of alkylboronic pinacol esters in intermolecular enantioconvergent transformations. Specifically, this work describes the development and mechanistic study of an enantioconvergent deborylative cyanation enabled by Cu catalysis. This method imparts a high degree of enantioselectivity and tolerates a wide range of common functional groups and heterocycles. The reaction is proposed to proceed through a radical-relay mechanism. Aniline-assisted homolysis of the carbon-boron bond results in prochiral alkyl radicals that are functionalized by in situ generated Cu(II)(CN)2 species in an enantioselective fashion. The Cu(II)(CN)2 intermediate was characterized by electron paramagnetic resonance (EPR) spectroscopy, and its electronic structure was probed using density functional theory (DFT) calculations. Computational studies were carried out to corroborate the proposed radical-relay mechanism.
Collapse
Affiliation(s)
- Jonathan Vu
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Graham C Haug
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Yongxian Li
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Biyu Zhao
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Christopher J Chang
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Robert S Paton
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| | - Yuyang Dong
- Department of Chemistry, Colorado State University, 1301 Center Ave, Fort Collins, CO 80523-1872
| |
Collapse
|
9
|
Chen S, Ding D, Yin L, Wang X, Krause JA, Liu W. Overcoming Copper Reduction Limitation in Asymmetric Substitution: Aryl-Radical-Enabled Enantioconvergent Cyanation of Alkyl Iodides. J Am Chem Soc 2024; 146:31982-31991. [PMID: 39505711 PMCID: PMC11955248 DOI: 10.1021/jacs.4c11888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cu-catalyzed enantioconvergent cross-coupling of alkyl halides has emerged as a powerful strategy for synthesizing enantioenriched molecules. However, this approach is intrinsically limited by the weak reducing power of copper(I) species, which restricts the scope of compatible nucleophiles and necessitates extensive ligand optimization or the use of complex chiral scaffolds. To overcome these challenges, we introduce an aryl-radical-enabled strategy that decouples the alkyl halide activation step from the chiral Cu center. We demonstrate that merging aryl-radical-enabled iodine abstraction with Cu-catalyzed asymmetric radical functionalization enables the conversion of racemic α-iodoamides to enantioenriched alkyl nitrile products with good yield and enantioselectivity. The rational design of chiral ligands identified a new class of carboxamide-containing BOX ligands. Mechanistic studies support an aryl-radical-enabled pathway and the unique hydrogen-bonding ability in the newly designed BOX ligands. This aryl-radical-enabled asymmetric substitution reaction has the potential to significantly expand the scope of Cu-catalyzed enantioconvergent cross-coupling reactions.
Collapse
Affiliation(s)
- Su Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Decai Ding
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Xiao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
10
|
Tian JS, Yi-Gong, Wu ZW, Yu JS, Zhou J. H-Bond Donor-Directed Switch of Diastereoselectivity in the Enantioselective Intramolecular Aza-Henry Reaction of Ketimines. Chemistry 2024; 30:e202402488. [PMID: 39120485 DOI: 10.1002/chem.202402488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/10/2024]
Abstract
We report an H-bond donor controlled diastereoselective switchable intramolecular aza-Henry reaction of ketimines derived from α-ketoesters and 2-(2-nitroethyl)anilines, allowing facile access to chiral tetrahydroquinolines bearing an aza-quaternary carbon stereocenter, which are privileged scaffold for medicinal researches. While newly developed cinchona alkaloid derived phosphoramide-bearing quaternary ammonium salt C2 selectively give cis-adducts in up to 20 : 1 dr and 99 % ee, the corresponding urea-bearing analogue C8 preferentially give trans-adducts in up to 20 : 1 dr and 99 % ee.
Collapse
Affiliation(s)
- Jun-Song Tian
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi-Gong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Zhong-Wei Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jin-Sheng Yu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jian Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
11
|
Bhunia S, Karan G, Snehil S, Maji MS. Direct Asymmetric Synthesis of α-Aminoimines from 1,2-Bis-N-Sulfinylimines by Using Allyl Boronic Acids. Angew Chem Int Ed Engl 2024; 63:e202408886. [PMID: 39078686 DOI: 10.1002/anie.202408886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
A unique direct asymmetric synthesis of α-aminoimines is realized, through rapid and exclusive mono-allylation of chiral bis-N-sulfinylimines using allylboronic acids. The highly selective allylation was possible as electrophilic imine functional group in the product α-aminoimines remained unreactive towards allyl boronic acid nucleophiles. Notably, by varying the geometry and chiral auxiliary, all four isomers of the α-aminoimines were accessed from readily available precursors. A range of allyl nucleophiles, which are tricky to generate by other means possessing highly reactive functional groups also took part in this reaction, expanding the scope further. The applicability of the products α-aminoimines were further demonstrated by accessing a range of structurally diverse chiral cyclic and acyclic 1,2-diamines bearing adjacent stereocenters through addition of a second nucleophile or Prins-type cyclization by exploiting the nucleophilicity of the tethered alkene moiety. Moreover, the leaving group aptitude of sulfinyl auxiliary attached to imine, was exploited to access valuable chiral α-aminonitriles under thermal conditions without employing any reagents. Detailed DFT calculation revealed a chair-like transition state, arising from corresponding allylboroxine species, likely operating for the allylboration reaction across imine.
Collapse
Affiliation(s)
- Susanta Bhunia
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ganesh Karan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Shubham Snehil
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
12
|
Formen JSSK, Wolf C. Optical Enantiodifferentiation of Chiral Nitriles. Org Lett 2024; 26:7644-7649. [PMID: 39229874 PMCID: PMC11406584 DOI: 10.1021/acs.orglett.4c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chiroptical sensing of nitriles is achieved with excellent functional group tolerance by hydrozirconation and subsequent transmetalation of the corresponding iminate to a chromophoric palladium complex. A one-pot workflow that uses the Schwartz reagent and [(η3-1-tert-butylindenyl)(μ-Cl)Pd]2 as sensor generates a palladium complex displaying red-shifted CD inductions and characteristic UV changes. These chiroptical responses are accurately correlated to the enantiomeric ratio and total concentration of the original nitrile.
Collapse
Affiliation(s)
- Jeffrey S S K Formen
- Chemistry Department, Georgetown University, Washington D.C. 20057, United States
| | - Christian Wolf
- Chemistry Department, Georgetown University, Washington D.C. 20057, United States
| |
Collapse
|
13
|
Zheng Y, Dong QX, Wen SY, Ran H, Huang HM. Di-π-ethane Rearrangement of Cyano Groups via Energy-Transfer Catalysis. J Am Chem Soc 2024; 146:18210-18217. [PMID: 38788197 DOI: 10.1021/jacs.4c04370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Molecular rearrangement occupies a pivotal position among fundamental transformations in synthetic chemistry. Radical translocation has emerged as a prevalent synthetic tool, efficiently facilitating the migration of diverse functional groups. In contrast, the development of di-π-methane rearrangement remains limited, particularly in terms of the translocation of cyano functional groups. This is primarily attributed to the energetically unfavorable three-membered-ring transition state. Herein, we introduce an unprecedented di-π-ethane rearrangement enabled by energy-transfer catalysis under visible light conditions. This innovative open-shell rearrangement boasts broad tolerance toward a range of functional groups, encompassing even complex drug and natural product derivatives. Overall, the reported di-π-ethane rearrangement represents a complementary strategy to the development of radical translocation enabled by energy-transfer catalysis.
Collapse
Affiliation(s)
- Yu Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qi-Xin Dong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shu-Ya Wen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hui Ran
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
14
|
Yisimayili N, Lu CD. Stereoselective Construction of Less-Accessible Acyclic α,α-Disubstituted β-Ketiminonitriles via Electrophilic Cyanation of β,β-Disubstituted Enesulfinamides. Org Lett 2024; 26:4371-4376. [PMID: 38752686 DOI: 10.1021/acs.orglett.4c01409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The metalloenamines, formed by NH-deprotonation of β,β-disubstituted enesulfinamides, can undergo reactions with commercially available electrophilic cyanating reagents such as tosyl cyanide (TsCN) or 3-oxo-1,2-benziodoxole-1(3H)-carbonitrile (CBX). Through the utilization of appropriate stereoisomers of enesulfinamides, this method enables the selective synthesis of any of the four stereoisomers of α,α-disubstituted β-sulfinylimino nitriles, which feature acyclic quaternary stereocenters and are typically more challenging to synthesize. These compounds can then undergo stereoselective nucleophilic addition, leading to the creation of valuable enantioenriched multisubstituted β-amino carbonyl surrogates with a high degree of structural diversity.
Collapse
Affiliation(s)
| | - Chong-Dao Lu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
15
|
Li C, Cai SZ, Ye J, Fang X. Enantioselective Synthesis of Axially and Centrally Chiral Styrenes via Nickel-Catalyzed Desymmetric Hydrocyanation of Biaryl Dienes. Org Lett 2024; 26:3867-3871. [PMID: 38691097 DOI: 10.1021/acs.orglett.4c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Herein, a highly regio-, enantio-, and diastereoselective nickel-catalyzed desymmetric hydrocyanation of biaryl dienes for the simultaneous construction of axial and central chiralities is presented, which offers a convenient approach to a variety of tirenes containing the union of an axially chiral biaryl and a centrally α-chiral nitrile under mild conditions using a commercially available catalyst. The synthetic utility is highlighted by the development of a novel axially chiral phosphine ligand and biphenyl-based chiral diene ligand and their potential applications in the field of asymmetric catalytic reactions.
Collapse
Affiliation(s)
- Can Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Song-Zhou Cai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| |
Collapse
|
16
|
Xin H, Yang M, Guan C, Li J, Gao P, Yang X, Duan XH, Guo LN. Iron-Catalyzed Cyanide-Free Synthesis of Alkyl Nitriles: Oxidative Deconstruction of Cycloalkanones with Ammonium Salts and Aerobic Oxidation. Org Lett 2024; 26:2266-2270. [PMID: 38451860 DOI: 10.1021/acs.orglett.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A sustainable, cyanide-free synthesis of alkyl nitriles via the aerobic oxidative deconstruction of unstrained cycloalkanones with ammonium salts has been developed. Using inexpensive and stable ammonium salts as the nitrogen source, a variety of alkyl nitriles containing a distal carbonyl group were obtained in good yields under visible-light-promoted iron catalysis. This protocol is characterized by mild conditions, abundant and environmentally benign materials, and high atom and step economy with minimal waste generation. The primary mechanism study revealed that 1O2 is likely to be involved in this reaction.
Collapse
Affiliation(s)
- Hong Xin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyu Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cheng Guan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jialong Li
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pin Gao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xu Yang
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Li-Na Guo
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
17
|
Lee H, Nam H, Lee SY. Enantio- and Diastereoselective Variations on α-Iminonitriles: Harnessing Chiral Cyclopropenimine-Thiourea Organocatalysts. J Am Chem Soc 2024; 146:3065-3074. [PMID: 38281151 DOI: 10.1021/jacs.3c09911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Chiral 1-pyrrolines containing a nitrile motif serve as crucial structural scaffolds in biologically active molecules and exhibit diversity as building blocks owing to their valuable functional groups; however, the asymmetric synthesis of such compounds remains largely unexplored. Herein, we present an enantio- and diastereoselective method for the synthesis of α-chiral nitrile-containing 1-pyrroline derivatives bearing vicinal stereocenters through the design and introduction of chiral cyclopropenimine-based bifunctional catalysts featuring a thiourea moiety. This synthesis entails a highly stereoselective conjugate addition of α-iminonitriles to a wide array of enones, followed by cyclocondensation, thereby affording a series of cyanopyrroline derivatives, some of which contain all-carbon quaternary centers. Moreover, we demonstrate the synthetic utility of this strategy by performing a gram-scale reaction with 1% catalyst loading, along with a variety of chemoselective transformations of the product, including the synthesis of a vildagliptin analogue. Finally, we showcase the selective synthesis of all four stereoisomers of the cyanopyrroline products through trans-to-cis isomerization, highlighting the versatility of our approach.
Collapse
Affiliation(s)
- Hooseung Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeongwoo Nam
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
18
|
Yurino T, Wu Z, Suzuki K, Nitta R, Sakaguchi Y, Ohkuma T. Asymmetric Cyanation of α-Ketimino Ester Derivatives with Chiral Ru-Li Combined Catalysts. Org Lett 2024; 26:900-905. [PMID: 38251826 DOI: 10.1021/acs.orglett.3c04175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Asymmetric cyanation of α-ketimino esters catalyzed by combined systems of amino acid/BINAP derivative/Ru(II) complexes and lithium compounds was examined. The use of an appropriate combination of amino acid and BINAP ligands achieved high enantioselectivity for a variety of α-alkynyl (Val/XylBINAP/Ru), α-alkenyl (Val/TolBINAP/Ru), and α-aryl imino esters (Val/XylBINAP/Ru) as well as an isatin-derived cyclic imino amide (t-Leu/BINAP/Ru) to afford the α-cyano-α-amino esters and the amide with an α-nitrogen-substituted quaternary chiral center with up to 98% ee.
Collapse
Affiliation(s)
- Taiga Yurino
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Zhen Wu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kazuaki Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Rino Nitta
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yusuke Sakaguchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takeshi Ohkuma
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
19
|
Zhao Y, Luo Y, Liu J, Zheng C, Zhao G. Multiple Hydrogen-Bonding Catalysts Enhance the Asymmetric Cyanation of Ketimines and Aldimines. Chemistry 2023; 29:e202302061. [PMID: 37463871 DOI: 10.1002/chem.202302061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
A highly enantioselective cyanation of imines (up to >99 % ee) has been developed using well-designed C2 -symmetric hydrogen bonding catalysts. The catalytic strategy was characterized with low catalyst loading (0.1-1 mol %), easily accessible catalysts with diverse functional groups, and catalytic base additives. A wide range of imines, including the challenging N-Boc and N-Cbz protected ketimines and aldimines, as well as fluoroalkylated ketimines, were investigated under mild conditions to afford the products with good to excellent yields (up to 99 % yield) and high enantioselectivity (up to >99 % ee). Control experiments revealed that the multiple hydrogen bonding catalysts enhanced the reactivity and enantioselectivity of the Strecker reaction initiated by the base.
Collapse
Affiliation(s)
- Yunhui Zhao
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, P. R. China
| | - Yueyang Luo
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, P. R. China
| | - Jun Liu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
20
|
Lai XL, Xu HC. Photoelectrochemical Asymmetric Catalysis Enables Enantioselective Heteroarylcyanation of Alkenes via C-H Functionalization. J Am Chem Soc 2023; 145:18753-18759. [PMID: 37581933 DOI: 10.1021/jacs.3c07146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The asymmetric difunctionalization of alkenes, a method transforming readily accessible alkenes into enantioenriched chiral structures of high value, has long been a focal point of organic synthesis. Despite tremendous efforts in this domain, it remains a considerable challenge to devise enantioselective oxidative dicarbofunctionalization of alkenes, even though these transformations can utilize stable and unfunctionalized functional group donors. In this context, we report herein a photoelectrocatalytic method for the enantioselective heteroarylcyanation of aryl alkenes, which employs unfunctionalized heteroarenes through C-H functionalization. The photoelectrochemical asymmetric catalysis (PEAC) method combines photoredox catalysis and asymmetric electrocatalysis to facilitate the formation of two C-C bonds operating via hydrogen (H2) evolution and obviating the need for external chemical oxidants.
Collapse
Affiliation(s)
- Xiao-Li Lai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
21
|
Chen K, Zeng Q, Xie L, Xue Z, Wang J, Xu Y. Functional-group translocation of cyano groups by reversible C-H sampling. Nature 2023; 620:1007-1012. [PMID: 37364765 DOI: 10.1038/s41586-023-06347-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Chemical transformations that introduce, remove or manipulate functional groups are ubiquitous in synthetic chemistry1. Unlike conventional functional-group interconversion reactions that swap one functionality for another, transformations that alter solely the location of functional groups are far less explored. Here, by photocatalytic, reversible C-H sampling, we report a functional-group translocation reaction of cyano (CN) groups in common nitriles, allowing for the direct positional exchange between a CN group and an unactivated C-H bond. The reaction shows high fidelity for 1,4-CN translocation, frequently contrary to inherent site selectivity in conventional C-H functionalizations. We also report the direct transannular CN translocation of cyclic systems, providing access to valuable structures that are non-trivial to obtain by other methods. Making use of the synthetic versatility of CN and a key CN translocation step, we showcase concise syntheses of building blocks of bioactive molecules. Furthermore, the combination of C-H cyanation and CN translocation allows access to unconventional C-H derivatives. Overall, the reported reaction represents a way to achieve site-selective C-H transformation reactions without requiring a site-selective C-H cleavage step.
Collapse
Affiliation(s)
- Ken Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qingrui Zeng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Longhuan Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zisheng Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jianbo Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yan Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
22
|
Gu G, Yue Y, Wang C, Zhang W, Wu J, Li Y, Zhao Y. Chiral Discrimination of Nitrile Compounds Using a 19F-Labeled Palladium Probe. Org Lett 2023. [PMID: 37378527 DOI: 10.1021/acs.orglett.3c01525] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
This study presents a 19F-labeled cyclopalladium probe for the rapid discrimination of chiral nitriles in pharmaceuticals, natural products, and agrochemicals. The probe binds reversibly to chiral nitriles, generating distinct 19F nuclear magnetic resonance signals for each enantiomer and enabling quick determination of enantiocomposition. The method allows for simultaneous detection of seven pairs of enantiomeric nitriles and application in assessing the enantiomeric excess of an asymmetric C-H cyanation reaction.
Collapse
Affiliation(s)
- Guangxing Gu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, People's Republic of China
| | - Yue Yue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, People's Republic of China
| | - Chenyang Wang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, People's Republic of China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Ya Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, People's Republic of China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
23
|
Li Z, Zhang G, Song Y, Li M, Li Z, Ding W, Wu J. Copper-Catalyzed Enantioselective Decarboxylative Cyanation of Benzylic Acids Promoted by Hypervalent Iodine(III) Reagents. Org Lett 2023; 25:3023-3028. [PMID: 37129410 DOI: 10.1021/acs.orglett.3c00816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Copper-catalyzed asymmetric radical cyanation reactions have emerged as a powerful strategy for rapid construction of α-chiral nitriles. However, the directly decarboxylative cyanation reactions of common alkyl carboxylic acids remain largely elusive. Herein, we report a protocol for copper-catalyzed direct and enantioselective decarboxylative cyanation of benzylic acids. The in situ activation of acid substrates by a commercially inexpensive hypervalent iodine(III) reagent promoted the yield of the alkyl radicals under mild reaction conditions without prefunctionalization. The structurally diverse chiral alkyl nitriles were produced in good yields with high enantioselectivities. In addition, the chiral products can be readily converted to other useful chiral compounds via further transformations.
Collapse
Affiliation(s)
- Zhaoxia Li
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Guang'an Zhang
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yue Song
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| | - Miaomiao Li
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhongxian Li
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| | - Wei Ding
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Junliang Wu
- Henan Institute of Advanced Technology, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
24
|
Wang JM, Chen T, Yao CS, Zhang K. Synthesis of β-Ketonitriles via N-Heterocyclic-Carbene-Catalyzed Radical Coupling of Aldehydes and Azobis(isobutyronitrile). Org Lett 2023; 25:3325-3329. [PMID: 37104729 DOI: 10.1021/acs.orglett.3c01168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Herein, an NHC (N-heterocyclic carbene)-catalyzed radical coupling reaction between aldehydes and azobis(isobutyronitrile) (AIBN) has been developed. This method provides an efficient and convenient approach for the synthesis of β-ketonitriles containing a quaternary carbon center (31 examples, up to >99% yield) utilizing commercially available substrates. This protocol features broad substrate scope, good functional group tolerance, and high efficiency under metal-free and mild reaction conditions.
Collapse
Affiliation(s)
- Jiao-Mei Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Teng Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Chang-Sheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
25
|
Shim CH, Oh S, Lee S, Lee G, Oh M. Construction of defected MOF-74 with preserved crystallinity for efficient catalytic cyanosilylation of benzaldehyde. RSC Adv 2023; 13:8220-8226. [PMID: 36922955 PMCID: PMC10009656 DOI: 10.1039/d3ra01222k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Numerous open metal sites and well-developed micropores are the two most significant characteristics that should be imparted to design metal-organic frameworks (MOFs) as effective catalysts. However, the construction of the best MOF catalyst with both these characteristics is challenging because the creation of numerous open metal sites generally triggers some structural collapse of the MOF. Herein, we report the construction of well-structured but defected MOFs through the growth of defected MOFs, where some of the original organic linkers were replaced with analog organic linkers, on the surface of a crystalline MOF template (MOF-on-MOF growth). Additional open metal sites within the MOF-74 structure were generated by replacing some of the 2,5-dihydroxy-1,4-bezenedicarboxylic acid presenting in MOF-74 with 1,4-benzenedicarboxylic acid due to the missing hydroxyl groups. And the resulting additional open metal sites within the MOF-74 structure resulted in enhanced catalytic activity for the cyanosilylation of aldehydes. However, the collapse of some of the well-developed MOF-74 structure was also followed by structural defects. Whereas, the growth of defected MOF-74 (D-MOF-74) on the well-crystallized MOF-74 template led to the production of relatively well-crystallized D-MOF-74. Core-shell type MOF-74@D-MOF-74 having abundant open metal sites with a preserved crystallinity exhibited the efficient catalytic cyanosilylation of several aldehydes. Additionally, MOF-74@D-MOF-74 displayed excellent recyclability during the consecutive catalytic cycles.
Collapse
Affiliation(s)
- Chul Hwan Shim
- Department of Chemistry, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +82-2-364-7050 +82-2-2123-5637
| | - Sojin Oh
- Department of Chemistry, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +82-2-364-7050 +82-2-2123-5637
| | - Sujeong Lee
- Department of Chemistry, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +82-2-364-7050 +82-2-2123-5637
| | - Gihyun Lee
- Department of Chemistry, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +82-2-364-7050 +82-2-2123-5637
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +82-2-364-7050 +82-2-2123-5637
| |
Collapse
|
26
|
Yang K, Wang Y, Luo S, Fu N. Electrophotochemical Metal-Catalyzed Enantioselective Decarboxylative Cyanation. Chemistry 2023; 29:e202203962. [PMID: 36638008 DOI: 10.1002/chem.202203962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/14/2023]
Abstract
In contrast to the rapid growth of electrophotocatalysis in recent years, enantioselective catalytic reactions powered by this unique methodology remain rare. In this work, we report an electrophotochemical metal-catalyzed protocol for direct asymmetric decarboxylative cyanation of aliphatic carboxylic acids. The synergistic merging of electrophotochemical cerium catalysis and asymmetric electrochemical copper catalysis permits mild reaction conditions for the formation and utilization of the key carbon centered radicals by combining the power of light and electrical energy. Electrophotochemical cerium catalysis enables radical decarboxylation to produce alkyl radicals, which could be effectively intercepted by asymmetric electrochemical copper catalysis for the construction of C-CN bonds in a highly stereoselective fashion. This environmentally benign method smoothly converts a diverse array of arylacetic acids into the corresponding alkyl nitriles in good yields and enantioselectivities without using chemical oxidants or pre-functionalization of the acid substrates and can be readily scaled up.
Collapse
Affiliation(s)
- Kai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Yukang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
27
|
Zheng W, Pu Z, Xiao L, Xu G, Yang L, Yu H, Wu J. Mutability-Landscape-Guided Engineering of l-Threonine Aldolase Revealing the Prelog Rule in Mediating Diastereoselectivity of C-C Bond Formation. Angew Chem Int Ed Engl 2023; 62:e202213855. [PMID: 36367520 DOI: 10.1002/anie.202213855] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/13/2022]
Abstract
l-threonine aldolase (LTA) catalyzes C-C bond synthesis with moderate diastereoselectivity. In this study, with LTA from Cellulosilyticum sp (CpLTA) as an object, a mutability landscape was first constructed by performing saturation mutagenesis at substrate access tunnel amino acids. The combinatorial active-site saturation test/iterative saturation mutation (CAST/ISM) strategy was then used to tune diastereoselectivity. As a result, the diastereoselectivity of mutant H305L/Y8H/V143R was improved from 37.2 %syn to 99.4 %syn . Furthermore, the diastereoselectivity of mutant H305Y/Y8I/W307E was inverted to 97.2 %anti . Based on insight provided by molecular dynamics simulations and coevolution analysis, the Prelog rule was employed to illustrate the diastereoselectivity regulation mechanism of LTA, holding that the asymmetric formation of the C-C bond was caused by electrons attacking the carbonyl carbon atom of the substrate aldehyde from the re or si face. The study would be useful to expand LTA applications and guide engineering of other C-C bond-forming enzymes.
Collapse
Affiliation(s)
- Wenlong Zheng
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, Zhejiang, China
| | - Zhongji Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, Zhejiang, China
| | - Lanxin Xiao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, Zhejiang, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, Zhejiang, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, Zhejiang, China
| |
Collapse
|
28
|
Mo Y, Chen Q, Li J, Ye D, Zhou Y, Dong S, Liu X, Feng X. Asymmetric Catalytic Conjugate Addition of Cyanide to Chromones and β-Substituted Cyclohexenones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuhao Mo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qiyou Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dong Ye
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
29
|
Yan F, Bai JF, Dong Y, Liu S, Li C, Du CX, Li Y. Catalytic Cyanation of C-N Bonds with CO 2/NH 3. JACS AU 2022; 2:2522-2528. [PMID: 36465537 PMCID: PMC9709945 DOI: 10.1021/jacsau.2c00392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Cyanation of benzylic C-N bonds is useful in the preparation of important α-aryl nitriles. The first general catalytic cyanation of α-(hetero)aryl amines, analogous to the Sandmeyer reaction of anilines, was developed using reductive cyanation with CO2/NH3. A broad array of α-aryl nitriles was obtained in high yields and regioselectivity by C-N cleavage of intermediates as ammonium salts. Good tolerance of functional groups such as ethers, CF3, F, Cl, esters, indoles, and benzothiophenes was achieved. Using 13CO2, a 13C-labeled tryptamine homologue (five steps, 31% yield) and Cysmethynil (six steps, 37% yield) were synthesized. Both electronic and steric effects of ligands influence the reactivity of alkyl nickel species with electrophilic silyl isocyanates and thus determine the reactivity and selectivity of the cyanation reaction. This work contributes to the understanding of the controllable activation of CO2/NH3 and provides the promising potential of the amine cyanation reaction in the synthesis of bio-relevant molecules.
Collapse
Affiliation(s)
- Fachao Yan
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Jian-Fei Bai
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yanan Dong
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| | - Shaoli Liu
- College
of Chemistry and Chemical Engineering, Yantai
University, Yantai 264005, P. R. China
| | - Chen Li
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| | - Chen-Xia Du
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yuehui Li
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), Chinese
Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
30
|
Lai XL, Chen M, Wang Y, Song J, Xu HC. Photoelectrochemical Asymmetric Catalysis Enables Direct and Enantioselective Decarboxylative Cyanation. J Am Chem Soc 2022; 144:20201-20206. [DOI: 10.1021/jacs.2c09050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao-Li Lai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yuqi Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jinshuai Song
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
31
|
Xu P, Shen C, Xu A, Low K, Huang Z. Desymmetric Cyanosilylation of Acyclic 1,3‐Diketones. Angew Chem Int Ed Engl 2022; 61:e202208443. [DOI: 10.1002/anie.202208443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pan Xu
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Chang Shen
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Aiqing Xu
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Kam‐Hung Low
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| |
Collapse
|
32
|
Kumar GS, Shinde PS, Chen H, Muralirajan K, Kancherla R, Rueping M. Paired Electrolysis for Decarboxylative Cyanation: 4-CN-Pyridine, a Versatile Nitrile Source. Org Lett 2022; 24:6357-6363. [PMID: 36036921 DOI: 10.1021/acs.orglett.2c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A decarboxylative cyanation of amino acids under paired electrochemical reaction conditions has been developed. 4-CN-pyridine was found to be a new and effective cyanation reagent under catalyst-free conditions. Mechanistic studies support a nucleophilic reaction pathway, and the cyanation protocol can be applied to diverse substrates including N,N-dialkyl aniline and indole derivatives.
Collapse
Affiliation(s)
- Gadde Sathish Kumar
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Prashant S Shinde
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Haifeng Chen
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
33
|
Wang Z, Hao J, Lv Y, Qu C, Yue H, Wei W. Additive‐Free Visible‐Light‐Initiated Three‐Component Cyanation and Azidation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhiwei Wang
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Jindong Hao
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yufen Lv
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Chengming Qu
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Huilan Yue
- Qufu Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wei Wei
- Qufu Normal University Chemistry Jingxuan west road 57 number 273165 Qufu CHINA
| |
Collapse
|
34
|
Liu H, Lau VHM, Xu P, Chan TH, Huang Z. Diverse synthesis of α-tertiary amines and tertiary alcohols via desymmetric reduction of malonic esters. Nat Commun 2022; 13:4759. [PMID: 35963867 PMCID: PMC9376102 DOI: 10.1038/s41467-022-32560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022] Open
Abstract
Amines and alcohols with a fully substituted α-carbon are structures of great value in organic synthesis and drug discovery. While conventional methods towards these motifs often rely on enantioselective carbon-carbon or carbon-heteroatom bond formation reactions, a desymmetric method is developed here by selectively hydrosilylating one of the esters of easily accessible α-substituted α-amino- and -oxymalonic esters. The desymmetrization is enabled by a suite of dinuclear zinc catalysts with pipecolinol-derived tetradentate ligands and can accommodate a diverse panel of heteroatom substituents, including secondary amides, tertiary amines, and ethers of different sizes. The polyfunctionalized reduction products, in return, have provided expeditious approaches to enantioenriched nitrogen- and oxygen-containing molecules, including dipeptides, vitamin analogs, and natural metabolites. Chiral α-tertiary amines and tertiary alcohols are prevalent in bioactive molecules yet challenging targets to access. Here, the authors provide a dinuclear zinc-catalyzed desymmetric approach based on readily available malonic esters.
Collapse
Affiliation(s)
- Haichao Liu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Vincent Ho Man Lau
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Pan Xu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Tsz Hin Chan
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
35
|
Xu P, Shen C, Xu A, Low KH, Huang Z. Desymmetric Cyanosilylation of Acyclic 1,3‐Diketones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pan Xu
- University of Hong Kong Department of Chemistry HONG KONG
| | - Chang Shen
- University of Hong Kong Department of Chemistry HONG KONG
| | - Aiqing Xu
- University of Hong Kong Department of Chemistry HONG KONG
| | - Kam-Hung Low
- University of Hong Kong Department of Chemistry HONG KONG
| | - Zhongxing Huang
- University of Hong Kong Chemistry RM 608 Chong Yuet Ming Chemistry Building na Hong Kong HONG KONG
| |
Collapse
|
36
|
Zheng C, Cui X, Wu J, Wu P, Yu Y, Liu H, Wu F. Synthesis and Application of Monofluoroalkyl Building Blocks: α‐Halo‐α‐fluoroketones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Zheng
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Xuhui Cui
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Jingjing Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 200032 Shanghai P.R.China
| | - Pingjie Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Yanyan Yu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Hanwen Liu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Fanhong Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| |
Collapse
|
37
|
Solís A, Cano A, Martínez-Casares RM, Solís-Oba M, Castro-Rivera R, Velázquez Flores O. Preparation of optically active cyanohydrins from 2-substituted benzaldehydes using a hydroxynitrile lyase from Pouteria sapota seeds immobilized on celite. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Aida Solís
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, México
| | - Abraham Cano
- Universidad Autónoma Metropolitana, Unidad Xochimilco, Maestría en Ciencias Farmacéuticas, Ciudad de México, México
| | - R. Marlen Martínez-Casares
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, México
| | - Myrna Solís-Oba
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tlaxcala, México
| | - Rigoberto Castro-Rivera
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tlaxcala, México
| | - Oscar Velázquez Flores
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, México
| |
Collapse
|
38
|
Organocatalytic stereoselective cyanosilylation of small ketones. Nature 2022; 605:84-89. [PMID: 35508776 PMCID: PMC9068509 DOI: 10.1038/s41586-022-04531-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/08/2022] [Indexed: 12/31/2022]
Abstract
Enzymatic stereoselectivity has typically been unrivalled by most chemical catalysts, especially in the conversion of small substrates. According to the ‘lock-and-key theory’1,2, enzymes have confined active sites to accommodate their specific reacting substrates, a feature that is typically absent from chemical catalysts. An interesting case in this context is the formation of cyanohydrins from ketones and HCN, as this reaction can be catalysed by various classes of catalysts, including biological, inorganic and organic ones3–7. We now report the development of broadly applicable confined organocatalysts for the highly enantioselective cyanosilylation of aromatic and aliphatic ketones, including the challenging 2-butanone. The selectivity (98:2 enantiomeric ratio (e.r.)) obtained towards its pharmaceutically relevant product is unmatched by any other catalyst class, including engineered biocatalysts. Our results indicate that confined chemical catalysts can be designed that are as selective as enzymes in converting small, unbiased substrates, while still providing a broad scope. The development of confined organocatalysts for the enantioselective cyanosilylation of small, unbiased substrates, including 2-butanone, is shown to lead to catalysts that are as selective as enzymes, with excellent levels of control.
Collapse
|
39
|
Tao Y, She S, Wang X, Wang F, Ji X, Yan B, Chu C, Wang S. Synthesis, structure of dinuclear o-phenylene linked bis(amidinate) rare-earth metal complexes and their catalytic activity towards Strecker reaction. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Ano Y, Higashino M, Yamada Y, Chatani N. Palladium-catalyzed synthesis of nitriles from N-phthaloyl hydrazones. Chem Commun (Camb) 2022; 58:3799-3802. [PMID: 35229860 DOI: 10.1039/d2cc00342b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pd-catalyzed transformation of N-phthaloyl hydrazones into nitriles involving the cleavage of an N-N bond is reported. The use of N-heterocyclic carbene as a ligand is essential for the success of the reaction. N-Phthaloyl hydrazones prepared from aromatic aldehydes or cyclobutanones are applicable to this transformation, which gives aryl or alkenyl nitriles, respectively.
Collapse
Affiliation(s)
- Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan. .,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masaya Higashino
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yuki Yamada
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
41
|
Yuan YC, Mellah M, Schulz E, David ORP. Making Chiral Salen Complexes Work with Organocatalysts. Chem Rev 2022; 122:8841-8883. [PMID: 35266711 DOI: 10.1021/acs.chemrev.1c00912] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bisimine derivatives of salicylaldehyde with chiral diamines (salens) are privileged ligands in asymmetric organometallic catalysis, which can be used in cooperation with organocatalysts as additives. The latter can be a modifier of the metal reactivity by liganding or a true co-catalyst working in tandem or in a dual system. All scenarios encountered in the literature are reviewed and classified according to the organocatalyst. In each case, mechanistic and physical-organic chemistry considerations are discussed to better understand the gears of these complex catalytic settings.
Collapse
Affiliation(s)
- Yu-Chao Yuan
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France.,Institut Lavoisier de Versailles, 45 avenue des Etats-Unis, 78035 Versailles, France
| | - Mohamed Mellah
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| | - Emmanuelle Schulz
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| | - Olivier R P David
- Institut Lavoisier de Versailles, 45 avenue des Etats-Unis, 78035 Versailles, France
| |
Collapse
|
42
|
Weng ZZ, Xie J, Huang KX, Li JP, Long LS, Kong XJ, Zheng LS. Asymmetric Cyanosilylation of Aldehydes by a Lewis Acid/Base Synergistic Catalyst of Chiral Metal Clusters. Inorg Chem 2022; 61:4121-4129. [PMID: 35201748 DOI: 10.1021/acs.inorgchem.1c03916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal clusters with well-defined crystal structures are extremely useful for studying the synergistic catalytic effects and associated catalytic mechanisms. In this study, two pairs of chiral lanthanide-transition metal clusters (R)/(S)-Co3Ln2 (Ln = Tb or Dy) were synthesized using Schiff-base ligands [(R)- or (S)-H3L] with multiple Lewis base sites (O sites). The as-prepared (R)/(S)-Co3Ln2 chiral metal clusters exhibited good catalytic functionality in the asymmetric synthesis of chiral cyanohydrins, with high conversions of up to 99% and medium-to-high enantiomeric excess values of up to 78%. The catalysis process followed a mechanism in which the bifunctional metal clusters of (R)/(S)-Co3Ln2, containing Lewis acid sites and Lewis base sites, simultaneously activated the aldehydes and trimethylsilyl cyanide, respectively. Consequently, synergistic catalysis was realized. The enantioselectivity of the different aldehydes and stereochemical configuration of the resulting products are attributed to the formation of a steric chiral pocket via the external chiral ligands on the clusters. In addition, heterogeneous asymmetric cyanosilylation using (R)/(S)-Co3Ln2 chiral metal clusters achieved high chemoselectivity and regioselectivity under mild conditions.
Collapse
Affiliation(s)
- Zhen-Zhang Weng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Xie
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kai-Xin Huang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun-Ping Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
43
|
Fang M, Wu P, Wang X, Xie Z, Hou Y, Liu Y, Wu J, Wu F. Enantioselective Copper-Catalyzed Intermolecular Cyanobenzoyldifluoromethylation of Alkenes: Access to Chiral β-Difluoroacyl Nitriles. J Org Chem 2022; 87:4107-4111. [PMID: 35209716 DOI: 10.1021/acs.joc.1c02908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel asymmetric copper-catalyzed intermolecular cyanobenzoyldifluoromethylation of alkenes with iododifluoromethyl ketones and TMSCN has been reported, which provides a particularly valuable route to access chiral β-difluoroacyl nitriles with excellent enantioselectivities. The method permits the efficient cyanation of varied β-difluoroacyl-benzylic radicals in mild conditions with high functional group tolerance. The reaction proceeds through a radical pathway. In order to get insight into the stereochemical outcome, computational mechanistic studies were conducted.
Collapse
Affiliation(s)
- Mougui Fang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Pingjie Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xia Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Ziyue Xie
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yali Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingjing Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.,Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.,Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
44
|
Wang G, Shen C, Ren X, Dong K. Ni-Catalyzed enantioselective reductive arylcyanation/cyclization of N-(2-iodo-aryl) acrylamide. Chem Commun (Camb) 2022; 58:1135-1138. [PMID: 34981092 DOI: 10.1039/d1cc04996h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ni/(S,S)-BDPP-catalyzed intramolecular Heck cyclization of N-(2-iodo-aryl) acrylamide with 2-methyl-2-phenylmalononitrile was developed to give oxindoles with good enantioselectivities. We found that utilizing such an electrophilic cyanation reagent could tackle the deleterious effect of the coordinative cyanide ion in the asymmetric alkene arylcyanation.
Collapse
Affiliation(s)
- Guangzhu Wang
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Chaoren Shen
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Xinyi Ren
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Kaiwu Dong
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| |
Collapse
|
45
|
Wu WB, Mu BS, Yu JS, Zhou J. Me 2(CH 2CH)SiCN: a bifunctional ethylene equivalent for Diels–Alder reaction based controllable tandem synthesis. Chem Sci 2022; 13:3519-3525. [PMID: 35432855 PMCID: PMC8943849 DOI: 10.1039/d2sc00147k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/24/2022] [Indexed: 01/06/2023] Open
Abstract
A bifunctional silyl reagent Me2(CH2CH)SiCN has been developed as a novel ethylene equivalent for the Diels–Alder (DA) reaction. The use of this reagent enables the controllable synthesis of value-added cyclohexenyl ketones or 2-acyl cyclohexancarbonitrile derivatives through a five- or six-step tandem sequence based on a Wittig/cyanosilylation/DA reaction/retro-cyanosilylation/isomerization sequence that involves a temporary silicon-tethered intramolecular DA reaction. We report an unprecedented tandem Wittig/cyanosilylation/DA reaction/retro-cyanosilylation/isomerization sequence by using our designed bifunctional ethylene equivalent Me2(CH2CH)SiCN.![]()
Collapse
Affiliation(s)
- Wen-Biao Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Bo-Shuai Mu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
46
|
Ren X, Wang G, Ji X, Dong K. Synthesis of Two Types of Nitriles Both Bearing Quaternary Carbon Centers in One-Pot Manner. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Xu PW, Cui XY, Chen C, Zhou F, Yu JS, Ao YF, Zhou J. Enantioselective Synthesis of C α-Tetrasubstituted N-Hydroxyl-α-amino Nitriles via Cyanation of Ketonitrones Using Me 2(CH 2Cl)SiCN. Org Lett 2021; 23:8471-8476. [PMID: 34644098 DOI: 10.1021/acs.orglett.1c03176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here, we report an unprecedented catalytic enantioselective cyanation of ketonitrones enabled by the bifunctional cyanating reagent Me2(CH2Cl)SiCN. This approach allows facile access to optically active N-hydroxyl-α-amino nitriles that are of high synthetic value but difficult to acquire by other methods. The use of bifunctional cyanating reagent Me2(CH2Cl)SiCN not only achieves an enantioselectivity higher than that with TMSCN but also enables various diversification reactions of the resulting silylated adducts. This represents the first enantioselective catalytic nucleophilic addition reaction of unactivated ketone-derived nitrones, exhibiting the potential of such tetrasubstituted C═N bonds for asymmetric synthesis of N-hydroxy α-amino acids and other N-hydroxy tertiary amines.
Collapse
Affiliation(s)
- Peng-Wei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Xiao-Yuan Cui
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Chen Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Jin-Sheng Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
48
|
Long J, Xia S, Wang T, Cheng GJ, Fang X. Nickel-Catalyzed Regiodivergent Cyanation of Allylic Alcohols: Scope, Mechanism, and Application to the Synthesis of 1, n-Dinitriles. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jinguo Long
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaomiao Xia
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Ting Wang
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
49
|
Zheng M, Gao K, Qin H, Li G, Lu H. Metal-to-Ligand Ratio-Dependent Chemodivergent Asymmetric Synthesis. Angew Chem Int Ed Engl 2021; 60:22892-22899. [PMID: 34405932 DOI: 10.1002/anie.202108617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Indexed: 11/05/2022]
Abstract
Chemodivergent asymmetric synthesis was achieved by tuning the metal-to-ligand ratio in an organometallic catalytic system. Using N-(aroyloxy)phthalimide as the precursor of either an oxygen-centered aroyloxy radical or a nitrogen-centered phthalimidyl radical, enantioselective oxocyanation or aminocyanation of alkenes was achieved separately through a dual photoredox and copper catalysis. The metal-to-ligand ratio can exert chemoselective control while retaining the high enantiopurity of divergent products. Both reactions proceed efficiently with catalyst loading as low as 0.2 mol % and can be performed on a gram scale without loss of chemoselectivity or enantioselectivity. Chemodivergent asymmetric 1,5-aminocyanation or 1,5-oxocyanation of vinylcyclopropane can also be realized by this protocol. Mechanistic investigations involving electron paramagnetic resonance (EPR) experiments were performed to shed light on the stereochemical and chemodivergent results.
Collapse
Affiliation(s)
- Min Zheng
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Ke Gao
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Haitao Qin
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
50
|
Zheng M, Gao K, Qin H, Li G, Lu H. Metal‐to‐Ligand Ratio‐Dependent Chemodivergent Asymmetric Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Min Zheng
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Ke Gao
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Haitao Qin
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas 79409-1061 USA
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|