1
|
Sweetlove LJ, Ratcliffe RG, Fernie AR. Non-canonical plant metabolism. NATURE PLANTS 2025; 11:696-708. [PMID: 40164785 DOI: 10.1038/s41477-025-01965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/01/2025] [Indexed: 04/02/2025]
Abstract
Metabolism is essential for plant growth and has become a major target for crop improvement by enhancing nutrient use efficiency. Metabolic engineering is also the basis for producing high-value plant products such as pharmaceuticals, biofuels and industrial biochemicals. An inherent problem for such engineering endeavours is the tendency to view metabolism as a series of distinct metabolic pathways-glycolysis, the tricarboxylic acid cycle, the Calvin-Benson cycle and so on. While these canonical pathways may represent a dominant or frequently occurring flux mode, systematic analyses of metabolism via computational modelling have emphasized the inherent flexibility of the metabolic network to carry flux distributions that are distinct from the canonical pathways. Recent experimental estimates of metabolic network fluxes using 13C-labelling approaches have revealed numerous instances in which non-canonical pathways occur under different conditions and in different tissues. In this Review, we bring these non-canonical pathways to the fore, summarizing the evidence for their occurrence and the context in which they operate. We also emphasize the importance of non-canonical pathways for metabolic engineering. We argue that the introduction of a high-flux pathway to a desired metabolic product will, by necessity, require non-canonical supporting fluxes in central metabolism to provide the necessary carbon skeletons, energy and reducing power. We illustrate this using the overproduction of isoprenoids and fatty acids as case studies.
Collapse
Affiliation(s)
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
2
|
Hanamghar S, Mellor SB, Mikkelsen L, Crocoll C, Motawie MS, Russo DA, Jensen PE, Zedler JAZ. Thylakoid Targeting Improves Stability of a Cytochrome P450 in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 2025; 14:867-877. [PMID: 40114516 PMCID: PMC11934225 DOI: 10.1021/acssynbio.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Plants produce a large array of natural products of biotechnological interest. In many cases, these compounds are naturally produced at low titers and involve complex biosynthetic pathways, which often include cytochrome P450 enzymes. P450s are known to be difficult to express in traditional heterotrophic chassis. However, cyanobacteria have shown promise as a sustainable alternative for the heterologous expression of P450s and light-driven product biosynthesis. In this study, we explore strategies for improving plant P450 stability and membrane insertion in cyanobacteria. The widely used model cyanobacterium Synechocystis sp. PCC 6803 was chosen as the host, and the well-studied P450 CYP79A1 from the dhurrin pathway of Sorghum bicolor was chosen as the model enzyme. Combinations of the P450 fused with individual elements (e.g., signal peptide, transmembrane domain) or the full length cyanobacterial, thylakoid-localized, protein PetC1 were designed. All generated CYP79A1 variants led to oxime production. Our data show that strains producing CYP79A1 variants with elements of PetC1 improved thylakoid targeting. In addition, chlorophyll-normalized oxime levels increased, on average, up to 18 times compared to the unmodified CYP79A1. These findings offer promising strategies to improve heterologous P450 expression in cyanobacteria and can ultimately contribute to advancing light-driven biocatalysis in cyanobacterial chassis.
Collapse
Affiliation(s)
- Sayali
S. Hanamghar
- Synthetic
Biology of Photosynthetic Organisms, Matthias Schleiden Institute
for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Silas Busck Mellor
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - Lisbeth Mikkelsen
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - Christoph Crocoll
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - Mohammed Saddik Motawie
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - David A. Russo
- Bioorganic
Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Poul Erik Jensen
- Department
of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Julie A. Z. Zedler
- Synthetic
Biology of Photosynthetic Organisms, Matthias Schleiden Institute
for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
3
|
Malihan-Yap L, Liang Q, Valotta A, Alphand V, Gruber-Woelfler H, Kourist R. Light-Driven Photobiocatalytic Oxyfunctionalization in a Continuous Reactor System without External Oxygen Supply. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025; 13:3939-3950. [PMID: 40115393 PMCID: PMC11921032 DOI: 10.1021/acssuschemeng.4c08560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 03/23/2025]
Abstract
Oxygenases catalyze C-H oxyfunctionalization under mild reaction conditions and often display outstanding selectivity. However, their utilization is hampered by the difficulty of transporting oxygen across the gas-liquid interface, which is particularly problematic for continuous reactor systems and can only be alleviated by high pressure or the use of complex oxygen-permeable materials. Herein, oxygen is directly released into the medium by the phototrophic cyanobacterium Synechocystis sp. PCC 6803 expressing the genes of a Baeyer-Villiger Monooxygenase from Burkholderia xenovorans to drive the oxidation of cyclohexanone for the production of the polymer precursor, ε-caprolactone. The rates at which photosynthetic oxygen can solely drive the oxidation were determined by performing the reaction in a continuous coil reactor with a very limited external oxygen supply. In heterotrophic nonoxygen-producing Escherichia coli expressing the same gene, a 10-fold lower specific activity was observed when the oxidation was performed in the coil reactor compared with batch mode underlining the impact of oxygen-limitation on the volumetric productivity. In contrast, cyanobacterial whole cells showed activities of 16.7 and 13.5 U gDCW -1 in nonoxygen-limited batch and oxygen-limited continuous flow, respectively. Net oxygen production of the whole-cell biocatalyst during the reaction led to a steady-state oxygen concentration allowing volumetric productivities as high as 3 mmol L-1 h-1 highlighting the advantages of photoautotrophic production systems for oxyfunctionalization under oxygen-limiting conditions. Moreover, the space-time yield of the reaction was improved 7-fold (2.8 vs 0.4 g L-1 h-1) by utilizing the continuous coil reactor compared to the batch mode. The combination of flow catalysis and photosynthetic oxygen production can overcome current limitations in photo(bio)oxidation and achieve significant improvements in terms of volumetric productivity enabling more sustainable chemical synthesis. This approach using whole-cells of cyanobacteria achieves a notably lower ratio of waste to product (E-factor) and higher atom economy compared with oxidation mediated by Escherichia coli .
Collapse
Affiliation(s)
- Lenny Malihan-Yap
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Qian Liang
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Alessia Valotta
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Véronique Alphand
- CNRS, Cent Marseille, iSm2, Aix Marseille Univ, F-13397 Marseille, France
| | - Heidrun Gruber-Woelfler
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- ACIB GmbH, Krengasse 37, 8010 Graz, Austria
| |
Collapse
|
4
|
Grimm HC, Erlsbacher P, Medipally H, Malihan-Yap L, Sovic L, Zöhrer J, Kosourov SN, Allahverdiyeva Y, Paul CE, Kourist R. Towards high atom economy in whole-cell redox biocatalysis: up-scaling light-driven cyanobacterial ene-reductions in a flat panel photobioreactor. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2025; 27:2907-2920. [PMID: 39850125 PMCID: PMC11749524 DOI: 10.1039/d4gc05686h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Light-driven biotransformations in recombinant cyanobacteria benefit from the atom-efficient regeneration of reaction equivalents like NADPH from water and light by oxygenic photosynthesis. The self-shading of photosynthetic cells throughout the reaction volume, along with the need for extended light paths, limits adequate light supply and significantly restricts the potential for upscaling. Here, we present a flat panel photobioreactor (1 cm optical path length) as a scalable system to provide efficient illumination at high cell densities. The genes of five ene-reductases from different classes were expressed in Synechocystis sp. PCC 6803. The strains were characterised in the light-driven reduction of a set of prochiral substrates. With specific activities up to 150 U gCDW -1 under standard conditions in small-scale reactions, the recombinant strains harbouring the ene-reductases TsOYE C25G I67T and OYE3 showed the highest specific activities observed so far in photobiotransformations and were selected for the up-scale in the flat panel photobioreactor in 120 mL-scale. The strain producing OYE3 exhibited a specific activity as high as 56.1 U gCDW -1. The corresponding volumetric productivity of 1 g L-1 h-1 compares favourably to other photosynthesis-driven processes. This setup facilitated the conversion of 50 mM over approximately 8 hours to an isolated yield of 87%. The atom economy of 88% compares favourably to the use of the sacrificial co-substrates glucose and formic acid with 49% and 78%, respectively. Determination of the complete E-Factor of 203 including water reveals that the volumetric yield and water required for cultivation are crucial for the sustainability. In summary, our results point out key factors for the sustainability of light-driven whole-cell biotransformations, and provide a solid basis for future optimisation and up-scale campaigns of photosynthesis-driven bioproduction.
Collapse
Affiliation(s)
- Hanna C Grimm
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Peter Erlsbacher
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Hitesh Medipally
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Lenny Malihan-Yap
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Lucija Sovic
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Johannes Zöhrer
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Sergey N Kosourov
- Molecular Plant Biology, Department of Life Technologies, University of Turku 20014 Turku Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku 20014 Turku Finland
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Robert Kourist
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
- acib GmbH Krenngasse 37 8010 Graz Austria
| |
Collapse
|
5
|
Arumughan V, Medipally H, Torris A, Levä T, Grimm HC, Tammelin T, Kourist R, Kontturi E. Bioinspired Nanochitin-Based Porous Constructs for Light-Driven Whole-Cell Biotransformations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413058. [PMID: 39901454 DOI: 10.1002/adma.202413058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/05/2025] [Indexed: 02/05/2025]
Abstract
Solid-state photosynthetic cell factories (SSPCFs) are a new production concept that leverages the innate photosynthetic abilities of microbes to drive the production of valuable chemicals. It addresses practical challenges such as high energy and water demand and improper light distribution associated with suspension-based culturing; however, these systems often face significant challenges related to mass transfer. The approach focuses on overcoming these limitations by carefully engineering the microstructure of the immobilization matrix through freeze-induced assembly of nanochitin building blocks. The use of nanochitins with optimized size distribution enabled the formation of macropores with lamellar spatial organization, which significantly improves light transmittance and distribution, crucial for maximizing the efficiency of photosynthetic reactions. The biomimetic crosslinking strategy, leveraging specific interactions between polyphosphate anions and primary amine groups featured on chitin fibers, produced mechanically robust and wet-resilient cryogels that maintained their functionality under operational conditions. Various model biotransformation reactions leading to value-added chemicals are performed in chitin-based matrix. It demonstrates superior or comparable performance to existing state-of-the-art matrices and suspension-based systems. The findings suggest that chitin-based cryogel approach holds significant promise for advancing the development of solid-state photosynthetic cell factories, offering a scalable solution to improve the efficiency and productivity of light-driven biotransformation.
Collapse
Affiliation(s)
- Vishnu Arumughan
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, FI-00076, Finland
| | - Hitesh Medipally
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, Royal Institute of Technology, Tomtebodavägen 23, Stockholm, 17165, Sweden
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Tuukka Levä
- VTT Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, Espoo, FI-02044, Finland
| | - Hanna C Grimm
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, Espoo, FI-02044, Finland
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, Graz, 8010, Austria
- BioTechMed-Graz, Mozartgasse 12/II, Graz, 8010, Austria
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, FI-00076, Finland
| |
Collapse
|
6
|
Bozan M, Berreth H, Lindberg P, Bühler K. Cyanobacterial biofilms: from natural systems to applications. Trends Biotechnol 2025; 43:318-332. [PMID: 39214791 DOI: 10.1016/j.tibtech.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Cyanobacteria are the ancestors of oxygenic photosynthesis. Fueled by light and water, their ability to reduce CO2 to sugar holds potential for carbon-neutral production processes. Due to challenges connected to cultivation and engineering issues, cyanobiotechnology has yet to be able to establish itself broadly in industry. In recent years, applying cyanobacterial biofilms as whole-cell biocatalysts instead of suspension cultures has emerged as a novel concept to counteract low cell densities and low reaction stability, critical challenges in cyanobacterial applications. This review explores the potential of cyanobacterial biofilms for biotechnology and bioremediation. It briefly introduces cyanobacteria as primary producers in natural structured microbial communities; describes various applications in biotechnology and bioremediation; and discusses innovations, challenges, and future trends in this exciting research field.
Collapse
Affiliation(s)
- Mahir Bozan
- Department of Environmental Microbiology, Helmholtz - Center for Environmental Research, Leipzig, Germany
| | - Hannah Berreth
- Department of Environmental Microbiology, Helmholtz - Center for Environmental Research, Leipzig, Germany
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Katja Bühler
- Department of Environmental Microbiology, Helmholtz - Center for Environmental Research, Leipzig, Germany.
| |
Collapse
|
7
|
Jodlbauer J, Schmal M, Waltl C, Rohr T, Mach-Aigner AR, Mihovilovic MD, Rudroff F. Unlocking the potential of cyanobacteria: a high-throughput strategy for enhancing biocatalytic performance through genetic optimization. Trends Biotechnol 2024; 42:1795-1818. [PMID: 39214789 DOI: 10.1016/j.tibtech.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Cyanobacteria show promise as hosts for whole-cell biocatalysis. Their photoautotrophic metabolism can be leveraged for a sustainable production process. Despite advancements, performance still lags behind heterotrophic hosts. A key challenge is the limited ability to overexpress recombinant enzymes, which also hinders their biocatalytic efficiency. To address this, we generated large-scale expression libraries and developed a high-throughput method combining fluorescence-activated cell sorting (FACS) and deep sequencing in Synechocystis sp. PCC 6803 (Syn. 6803) to screen and optimize its genetic background. We apply this approach to enhance expression and biocatalyst performance for three enzymes: the ketoreductase LfSDR1M50, enoate reductase YqjM, and Baeyer-Villiger monooxygenase (BVMO) CHMOmut. Diverse genetic combinations yielded significant improvements: optimizing LfSDR1M50 expression showed a 17-fold increase to 39.2 U gcell dry weight (CDW)-1. In vivo activity of Syn. YqjM was improved 16-fold to 58.7 U gCDW-1 and, for Syn. CHMOmut, a 1.5-fold increase to 7.3 U gCDW-1 was achieved by tailored genetic design. Thus, this strategy offers a pathway to optimize cyanobacteria as expression hosts, paving the way for broader applications in other cyanobacteria strains and larger libraries.
Collapse
Affiliation(s)
- Julia Jodlbauer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Matthias Schmal
- Institute of Chemical, Environmental, and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Christian Waltl
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Thomas Rohr
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical, Environmental, and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.
| |
Collapse
|
8
|
Hubáček M, Wey LT, Kourist R, Malihan-Yap L, Nikkanen L, Allahverdiyeva Y. Strong heterologous electron sink outcompetes alternative electron transport pathways in photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2500-2513. [PMID: 39008444 DOI: 10.1111/tpj.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Improvement of photosynthesis requires a thorough understanding of electron partitioning under both natural and strong electron sink conditions. We applied a wide array of state-of-the-art biophysical and biochemical techniques to thoroughly investigate the fate of photosynthetic electrons in the engineered cyanobacterium Synechocystis sp. PCC 6803, a blueprint for photosynthetic biotechnology, expressing the heterologous gene for ene-reductase, YqjM. This recombinant enzyme catalyses the reduction of an exogenously added substrate into the desired product by utilising photosynthetically produced NAD(P)H, enabling whole-cell biotransformation. Through coupling the biotransformation reaction with biophysical measurements, we demonstrated that the strong artificial electron sink, outcompetes the natural electron valves, the flavodiiron protein-driven Mehler-like reaction and cyclic electron transport. These results show that ferredoxin-NAD(P)H-oxidoreductase is the preferred route for delivering photosynthetic electrons from reduced ferredoxin and the cellular NADPH/NADP+ ratio as a key factor in orchestrating photosynthetic electron flux. These insights are crucial for understanding molecular mechanisms of photosynthetic electron transport and harnessing photosynthesis for sustainable bioproduction by engineering the cellular source/sink balance. Furthermore, we conclude that identifying the bioenergetic bottleneck of a heterologous electron sink is a crucial prerequisite for targeted engineering of photosynthetic biotransformation platforms.
Collapse
Affiliation(s)
- Michal Hubáček
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Laura T Wey
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Robert Kourist
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed, Graz University of Technology, Graz, 8010, Austria
| | - Lenny Malihan-Yap
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed, Graz University of Technology, Graz, 8010, Austria
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| |
Collapse
|
9
|
Sovic L, Malihan-Yap L, Tóth GS, Siitonen V, Alphand V, Allahverdiyeva Y, Kourist R. Sucrose as an electron source for cofactor regeneration in recombinant Escherichia coli expressing invertase and a Baeyer Villiger monooxygenase. Microb Cell Fact 2024; 23:227. [PMID: 39135032 PMCID: PMC11318132 DOI: 10.1186/s12934-024-02474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The large-scale biocatalytic application of oxidoreductases requires systems for a cost-effective and efficient regeneration of redox cofactors. These represent the major bottleneck for industrial bioproduction and an important cost factor. In this work, co-expression of the genes of invertase and a Baeyer-Villiger monooxygenase from Burkholderia xenovorans to E. coli W ΔcscR and E. coli BL21 (DE3) enabled efficient biotransformation of cyclohexanone to the polymer precursor, ε-caprolactone using sucrose as electron source for regeneration of redox cofactors, at rates comparable to glucose. E. coli W ΔcscR has a native csc regulon enabling sucrose utilization and is deregulated via deletion of the repressor gene (cscR), thus enabling sucrose uptake even at concentrations below 6 mM (2 g L-1). On the other hand, E. coli BL21 (DE3), which is widely used as an expression host does not contain a csc regulon. RESULTS Herein, we show a proof of concept where the co-expression of invertase for both E. coli hosts was sufficient for efficient sucrose utilization to sustain cofactor regeneration in the Baeyer-Villiger oxidation of cyclohexanone. Using E. coli W ΔcscR, a specific activity of 37 U gDCW-1 was obtained, demonstrating the suitability of the strain for recombinant gene co-expression and subsequent whole-cell biotransformation. In addition, the same co-expression cassette was transferred and investigated with E. coli BL21 (DE3), which showed a specific activity of 17 U gDCW- 1. Finally, biotransformation using photosynthetically-derived sucrose from Synechocystis S02 with E. coli W ΔcscR expressing BVMO showed complete conversion of cyclohexanone after 3 h, especially with the strain expressing the invertase gene in the periplasm. CONCLUSIONS Results show that sucrose can be an alternative electron source to drive whole-cell biotransformations in recombinant E. coli strains opening novel strategies for sustainable chemical production.
Collapse
Affiliation(s)
- Lucija Sovic
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010, Graz, Austria
| | - Lenny Malihan-Yap
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010, Graz, Austria
| | - Gábor Szilveszter Tóth
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| | - Vilja Siitonen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| | - Véronique Alphand
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014, Turku, Finland
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010, Graz, Austria.
- ACIB GmbH, 8010, Graz, Austria.
| |
Collapse
|
10
|
Barone GD, Rodríguez-Seijo A, Parati M, Johnston B, Erdem E, Cernava T, Zhu Z, Liu X, Axmann IM, Lindblad P, Radecka I. Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100407. [PMID: 38544950 PMCID: PMC10965471 DOI: 10.1016/j.ese.2024.100407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 11/11/2024]
Abstract
Mismanaged plastics, upon entering the environment, undergo degradation through physicochemical and/or biological processes. This process often results in the formation of microplastics (MPs), the most prevalent form of plastic debris (<1 mm). MPs pose severe threats to aquatic and terrestrial ecosystems, necessitating innovative strategies for effective remediation. Some photosynthetic microorganisms can degrade MPs but there lacks a comprehensive review. Here we examine the specific role of photoautotrophic microorganisms in water and soil environments for the biodegradation of plastics, focussing on their unique ability to grow persistently on diverse polymers under sunlight. Notably, these cells utilise light and CO2 to produce valuable compounds such as carbohydrates, lipids, and proteins, showcasing their multifaceted environmental benefits. We address key scientific questions surrounding the utilisation of photosynthetic microorganisms for MPs and nanoplastics (NPs) bioremediation, discussing potential engineering strategies for enhanced efficacy. Our review highlights the significance of alternative biomaterials and the exploration of strains expressing enzymes, such as polyethylene terephthalate (PET) hydrolases, in conjunction with microalgal and/or cyanobacterial metabolisms. Furthermore, we delve into the promising potential of photo-biocatalytic approaches, emphasising the coupling of plastic debris degradation with sunlight exposure. The integration of microalgal-bacterial consortia is explored for biotechnological applications against MPs and NPs pollution, showcasing the synergistic effects in wastewater treatment through the absorption of nitrogen, heavy metals, phosphorous, and carbon. In conclusion, this review provides a comprehensive overview of the current state of research on the use of photoautotrophic cells for plastic bioremediation. It underscores the need for continued investigation into the engineering of these microorganisms and the development of innovative approaches to tackle the global issue of plastic pollution in aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | - Andrés Rodríguez-Seijo
- Área de Edafoloxía, Departamento de Bioloxía Vexetal e Ciencia Do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain
- Agroecology and Food Institute (IAA), University of Vigo – Campus Auga, 32004, Ourense, Spain
| | - Mattia Parati
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
- FlexSea Ltd., London, EC2A4NE, United Kingdom
| | - Brian Johnston
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| | - Elif Erdem
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Xufeng Liu
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine, University Düsseldorf, D-40001, Düsseldorf, Germany
| | - Peter Lindblad
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Iza Radecka
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| |
Collapse
|
11
|
Chang J, Shi X, Kim M, Lee ME, Han SO. Enhancing Phycocyanobilin Production Efficiency in Engineered Corynebacterium glutamicum: Strategies and Potential Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12219-12228. [PMID: 38747135 DOI: 10.1021/acs.jafc.4c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Phycocyanobilin, an algae-originated light-harvesting pigment known for its antioxidant properties, has gained attention as it plays important roles in the food and medication industries and has surged in demand owing to its low-yield extraction from natural resources. In this study, engineered Corynebacterium glutamicum was developed to achieve high PCB production, and three strategies were proposed: reinforcement of the heme biosynthesis pathway with the introduction of two PCB-related enzymes, strengthening of the pentose phosphate pathway to generate an efficient cycle of NADPH, and fed-batch fermentation to maximize PCB production. Each approach increased PCB synthesis, and the final engineered strain successfully produced 78.19 mg/L in a flask and 259.63 mg/L in a 5 L bioreactor, representing the highest bacterial production of PCB reported to date, to our knowledge. The strategies applied in this study will be useful for the synthesis of PCB derivatives and can be applied in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Joonhee Chang
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Xiaoyu Shi
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Minhye Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Myeong-Eun Lee
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Bolay P, Dodge N, Janssen K, Jensen PE, Lindberg P. Tailoring regulatory components for metabolic engineering in cyanobacteria. PHYSIOLOGIA PLANTARUM 2024; 176:e14316. [PMID: 38686633 DOI: 10.1111/ppl.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
The looming climate crisis has prompted an ever-growing interest in cyanobacteria due to their potential as sustainable production platforms for the synthesis of energy carriers and value-added chemicals from CO2 and sunlight. Nonetheless, cyanobacteria are yet to compete with heterotrophic systems in terms of space-time yields and consequently production costs. One major drawback leading to the low production performance observed in cyanobacteria is the limited ability to utilize the full capacity of the photosynthetic apparatus and its associated systems, i.e. CO2 fixation and the directly connected metabolism. In this review, novel insights into various levels of metabolic regulation of cyanobacteria are discussed, including the potential of targeting these regulatory mechanisms to create a chassis with a phenotype favorable for photoautotrophic production. Compared to conventional metabolic engineering approaches, minor perturbations of regulatory mechanisms can have wide-ranging effects.
Collapse
Affiliation(s)
- Paul Bolay
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Nadia Dodge
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Kim Janssen
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Poul Erik Jensen
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| |
Collapse
|
13
|
Cheng J, Zhang C, Zhang K, Li J, Hou Y, Xin J, Sun Y, Xu C, Xu W. Cyanobacteria-Mediated Light-Driven Biotransformation: The Current Status and Perspectives. ACS OMEGA 2023; 8:42062-42071. [PMID: 38024730 PMCID: PMC10653055 DOI: 10.1021/acsomega.3c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Most chemicals are manufactured by traditional chemical processes but at the expense of toxic catalyst use, high energy consumption, and waste generation. Biotransformation is a green, sustainable, and cost-effective process. As cyanobacteria can use light as the energy source to power the synthesis of NADPH and ATP, using cyanobacteria as the chassis organisms to design and develop light-driven biotransformation platforms for chemical synthesis has been gaining attention, since it can provide a theoretical and practical basis for the sustainable and green production of chemicals. Meanwhile, metabolic engineering and genome editing techniques have tremendous prospects for further engineering and optimizing chassis cells to achieve efficient light-driven systems for synthesizing various chemicals. Here, we display the potential of cyanobacteria as a promising light-driven biotransformation platform for the efficient synthesis of green chemicals and current achievements of light-driven biotransformation processes in wild-type or genetically modified cyanobacteria. Meanwhile, future perspectives of one-pot enzymatic cascade biotransformation from biobased materials in cyanobacteria have been proposed, which could provide additional research insights for green biotransformation and accelerate the advancement of biomanufacturing industries.
Collapse
Affiliation(s)
- Jie Cheng
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chaobo Zhang
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Kaidian Zhang
- State
Key Laboratory of Marine Resource Utilization in the South China Sea,
School of Marine Biology and Aquaculture, Hainan University, Haikou, Hainan 570100, China
- Xiamen
Key Laboratory of Urban Sea Ecological Conservation and Restoration,
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiashun Li
- Xiamen
Key Laboratory of Urban Sea Ecological Conservation and Restoration,
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuyong Hou
- Key
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotech-nology, Chinese
Academy of Sciences, Tianjin 300308, China
| | - Jiachao Xin
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yang Sun
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chengshuai Xu
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Wei Xu
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| |
Collapse
|
14
|
Zhang Y, Meng W, He Y, Chen Y, Shao M, Yuan J. Multidimensional optimization for accelerating light-powered biocatalysis in Rhodopseudomonas palustris. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:160. [PMID: 37891652 PMCID: PMC10612212 DOI: 10.1186/s13068-023-02410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Whole-cell biocatalysis has been exploited to convert a variety of substrates into high-value bulk or chiral fine chemicals. However, the traditional whole-cell biocatalysis typically utilizes the heterotrophic microbes as the biocatalyst, which requires carbohydrates to power the cofactor (ATP, NAD (P)H) regeneration. RESULTS In this study, we sought to harness purple non-sulfur photosynthetic bacterium (PNSB) as the biocatalyst to achieve light-driven cofactor regeneration for cascade biocatalysis. We substantially improved the performance of Rhodopseudomonas palustris-based biocatalysis using a highly active and conditional expression system, blocking the side-reactions, controlling the feeding strategy, and attenuating the light shading effect. Under light-anaerobic conditions, we found that 50 mM ferulic acid could be completely converted to vanillyl alcohol using the recombinant strain with 100% efficiency, and > 99.9% conversion of 50 mM p-coumaric acid to p-hydroxybenzyl alcohol was similarly achieved. Moreover, we examined the isoprenol utilization pathway for pinene synthesis and 92% conversion of 30 mM isoprenol to pinene was obtained. CONCLUSIONS Taken together, these results suggested that R. palustris could be a promising host for light-powered biotransformation, which offers an efficient approach for synthesizing value-added chemicals in a green and sustainable manner.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Wenchang Meng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Yuting He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Yuhui Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Mingyu Shao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| |
Collapse
|
15
|
Tüllinghoff A, Djaya‐Mbissam H, Toepel J, Bühler B. Light-driven redox biocatalysis on gram-scale in Synechocystis sp. PCC 6803 via an in vivo cascade. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2074-2083. [PMID: 37439151 PMCID: PMC10502755 DOI: 10.1111/pbi.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 07/14/2023]
Abstract
The photosynthetic light reaction in cyanobacteria constitutes a highly attractive tool for productive biocatalysis, as it can provide redox reactions with high-energy reduction equivalents using sunlight and water as sources of energy and electrons, respectively. Here, we describe the first artificial light-driven redox cascade in Synechocystis sp. PCC 6803 to convert cyclohexanone to the polymer building block 6-hydroxyhexanoic acid (6-HA). Co-expression of a Baeyer-Villiger monooxygenase (BVMO) and a lactonase, both from Acidovorax sp. CHX100, enabled this two-step conversion with an activity of up to 63.1 ± 1.0 U/gCDW without accumulating inhibitory ε-caprolactone. Thereby, one of the key limitations of biocatalytic reactions, that is, reactant inhibition or toxicity, was overcome. In 2 L stirred-tank-photobioreactors, the process could be stabilized for 48 h, forming 23.50 ± 0.84 mm (3.11 ± 0.12 g/L) 6-HA. The high specificity enabling a product yield (YP/S ) of 0.96 ± 0.01 mol/mol and the remarkable biocatalyst-related yield of 3.71 ± 0.21 g6-HA /gCDW illustrate the potential of producing this non-toxic product in a synthetic cascade. The fine-tuning of the energy burden on the catalyst was found to be crucial, which indicates a limitation by the metabolic capacity of the cells possibly being compromised by biocatalysis-related reductant withdrawal. Intriguingly, energy balancing revealed that the biotransformation could tap surplus electrons derived from the photosynthetic light reaction and thereby relieve photosynthetic sink limitation. This study shows the feasibility of light-driven biocatalytic cascade operation in cyanobacteria and highlights respective metabolic limitations and engineering targets to unleash the full potential of photosynthesis.
Collapse
Affiliation(s)
- Adrian Tüllinghoff
- Helmholtz‐Centre for Environmental Research – UFZ, PermoserstrLeipzigGermany
| | | | - Jörg Toepel
- Helmholtz‐Centre for Environmental Research – UFZ, PermoserstrLeipzigGermany
| | - Bruno Bühler
- Helmholtz‐Centre for Environmental Research – UFZ, PermoserstrLeipzigGermany
| |
Collapse
|
16
|
Toepel J, Karande R, Klähn S, Bühler B. Cyanobacteria as whole-cell factories: current status and future prospectives. Curr Opin Biotechnol 2023; 80:102892. [PMID: 36669448 DOI: 10.1016/j.copbio.2023.102892] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023]
Abstract
Cyanobacteria as phototrophic microorganisms bear great potential to produce chemicals from sustainable resources such as light and CO2. Most studies focus on either strain engineering or tackling metabolic constraints. Recently gained knowledge on internal electron and carbon fluxes and their regulation provides new opportunities to efficiently channel cellular resources toward product formation. Concomitantly, novel photobioreactor concepts are developed to ensure sufficient light supply. This review summarizes the newest developments in the field of cyanobacterial engineering to finally establish photosynthesis-based production processes. A holistic approach tackling genetic, metabolic, and biochemical engineering in parallel is considered essential to turn their application into an ecoefficient and economically feasible option for a future green bioeconomy.
Collapse
Affiliation(s)
- Jörg Toepel
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Rohan Karande
- Research and Transfer Center for bioactive Matter b-ACTmatter, University of Leipzig, Germany
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
17
|
Lonardi G, Parolin R, Licini G, Orlandi M. Catalytic Asymmetric Conjugate Reduction. Angew Chem Int Ed Engl 2023; 62:e202216649. [PMID: 36757599 DOI: 10.1002/anie.202216649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
Enantioselective reduction reactions are privileged transformations for the construction of trisubstituted stereogenic centers. While these include established synthetic strategies, such as asymmetric hydrogenation, methods based on the enantioselective addition of hydridic reagents to electrophilic prochiral substrates have also gained importance. In this context, the asymmetric conjugate reduction (ACR) of α,β-unsaturated compounds has become a convenient approach for the synthesis of chiral compounds with trisubstituted stereocenters in α-, β-, or γ-position to electron-withdrawing functional groups. Because such activating groups are diverse and amenable of further derivatizations, ACRs provide a general and powerful synthetic entry towards a variety of valuable chiral building blocks. This Review provides a comprehensive collection of catalytic ACR methods involving transition-metal, organic, and enzymatic catalysis since its first versions dating back to the late 1970s.
Collapse
Affiliation(s)
- Giovanni Lonardi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Riccardo Parolin
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| | - Manuel Orlandi
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy
| |
Collapse
|
18
|
Mellor SB, Behrendorff JBYH, Ipsen JØ, Crocoll C, Laursen T, Gillam EMJ, Pribil M. Exploiting photosynthesis-driven P450 activity to produce indican in tobacco chloroplasts. FRONTIERS IN PLANT SCIENCE 2023; 13:1049177. [PMID: 36743583 PMCID: PMC9890960 DOI: 10.3389/fpls.2022.1049177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/14/2022] [Indexed: 05/28/2023]
Abstract
Photosynthetic organelles offer attractive features for engineering small molecule bioproduction by their ability to convert solar energy into chemical energy required for metabolism. The possibility to couple biochemical production directly to photosynthetic assimilation as a source of energy and substrates has intrigued metabolic engineers. Specifically, the chemical diversity found in plants often relies on cytochrome P450-mediated hydroxylations that depend on reductant supply for catalysis and which often lead to metabolic bottlenecks for heterologous production of complex molecules. By directing P450 enzymes to plant chloroplasts one can elegantly deal with such redox prerequisites. In this study, we explore the capacity of the plant photosynthetic machinery to drive P450-dependent formation of the indigo precursor indoxyl-β-D-glucoside (indican) by targeting an engineered indican biosynthetic pathway to tobacco (Nicotiana benthamiana) chloroplasts. We show that both native and engineered variants belonging to the human CYP2 family are catalytically active in chloroplasts when driven by photosynthetic reducing power and optimize construct designs to improve productivity. However, while increasing supply of tryptophan leads to an increase in indole accumulation, it does not improve indican productivity, suggesting that P450 activity limits overall productivity. Co-expression of different redox partners also does not improve productivity, indicating that supply of reducing power is not a bottleneck. Finally, in vitro kinetic measurements showed that the different redox partners were efficiently reduced by photosystem I but plant ferredoxin provided the highest light-dependent P450 activity. This study demonstrates the inherent ability of photosynthesis to support P450-dependent metabolic pathways. Plants and photosynthetic microbes are therefore uniquely suited for engineering P450-dependent metabolic pathways regardless of enzyme origin. Our findings have implications for metabolic engineering in photosynthetic hosts for production of high-value chemicals or drug metabolites for pharmacological studies.
Collapse
Affiliation(s)
- Silas B. Mellor
- Section for Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - James B. Y. H. Behrendorff
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia
| | - Johan Ø. Ipsen
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Christoph Crocoll
- DynaMo Center, Section for Molecular Plant Biology, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Tomas Laursen
- Section for Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Mathias Pribil
- Section for Molecular Plant Biology, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
19
|
Barone GD, Hubáček M, Malihan-Yap L, Grimm HC, Nikkanen L, Pacheco CC, Tamagnini P, Allahverdiyeva Y, Kourist R. Towards the rate limit of heterologous biotechnological reactions in recombinant cyanobacteria. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:4. [PMID: 36609316 PMCID: PMC9825001 DOI: 10.1186/s13068-022-02237-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/04/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cyanobacteria have emerged as highly efficient organisms for the production of chemicals and biofuels. Yet, the productivity of the cell has been low for commercial application. Cyanobacterial photobiotransformations utilize photosynthetic electrons to form reducing equivalents, such as NADPH-to-fuel biocatalytic reactions. These photobiotransformations are a measure to which extent photosynthetic electrons can be deviated toward heterologous biotechnological processes, such as the production of biofuels. By expressing oxidoreductases, such as YqjM from Bacillus subtilis in Synechocystis sp. PCC 6803, a high specific activity was obtained in the reduction of maleimides. Here, we investigated the possibility to accelerate the NAD(P)H-consuming redox reactions by addition of carbohydrates as exogenous carbon sources such as D-Glucose under light and darkness. RESULTS A 1.7-fold increase of activity (150 µmol min-1 gDCW-1) was observed upon addition of D-Glucose at an OD750 = 2.5 (DCW = 0.6 g L-1) in the biotransformation of 2-methylmaleimide. The stimulating effect of D-Glucose was also observed at higher cell densities in light and dark conditions as well as in the reduction of other substrates. No increase in both effective photosynthetic yields of Photosystem II and Photosystem I was found upon D-Glucose addition. However, we observed higher NAD(P)H fluorescence when D-Glucose was supplemented, suggesting increased glycolytic activity. Moreover, the system was scaled-up (working volume of 200 mL) in an internally illuminated Bubble Column Reactor exhibiting a 2.4-fold increase of specific activity under light-limited conditions. CONCLUSIONS Results show that under photoautotrophic conditions at a specific activity of 90 µmol min-1 gDCW-1, the ene-reductase YqjM in Synechocystis sp. PCC 6803 is not NAD(P)H saturated, which is an indicator that an increase of the rates of heterologous electron consuming processes for catalysis and biofuel production will require funnelling further reducing power from the photosynthetic chain toward heterologous processes.
Collapse
Affiliation(s)
- Giovanni Davide Barone
- grid.410413.30000 0001 2294 748XBiocatalysis and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria ,grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Michal Hubáček
- grid.1374.10000 0001 2097 1371Laboratory of Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lenny Malihan-Yap
- grid.410413.30000 0001 2294 748XBiocatalysis and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Hanna C. Grimm
- grid.410413.30000 0001 2294 748XBiocatalysis and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Lauri Nikkanen
- grid.1374.10000 0001 2097 1371Laboratory of Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Catarina C. Pacheco
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Paula Tamagnini
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Yagut Allahverdiyeva
- grid.1374.10000 0001 2097 1371Laboratory of Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Robert Kourist
- grid.410413.30000 0001 2294 748XBiocatalysis and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
20
|
Spasic J, Oliveira P, Pacheco C, Kourist R, Tamagnini P. Engineering cyanobacterial chassis for improved electron supply toward a heterologous ene-reductase. J Biotechnol 2022; 360:152-159. [PMID: 36370921 DOI: 10.1016/j.jbiotec.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Cyanobacteria are noteworthy hosts for industrially relevant redox reactions, owing to a light-driven cofactor recycling system using water as electron donor. Customizing Synechocystis sp. PCC 6803 chassis by redirecting electron flow offers a particularly interesting approach to further improve light-driven biotransformations. Therefore, different chassis expressing the heterologous ene-reductase YqjM (namely ΔhoxYH, Δflv3, ΔndhD2 and ΔhoxYHΔflv3) were generated/evaluated. The results showed the robustness of the chassis, that exhibited growth and oxygen evolution rates similar to Synechocystis wild-type, even when expressing YqjM. By engineering the electron flow, the YqjM light-driven stereoselective reduction of 2-methylmaleimide to 2-methylsuccinimide was significantly enhanced in all chassis. In the best performing chassis (ΔhoxYH, lacking an active bidirectional hydrogenase) a 39 % increase was observed, reaching an in vivo specific activity of 116 U gDCW-1 and an initial reaction rate of 16.7 mM h-1. In addition, the presence of the heterologous YqjM mitigated substrate toxicity, and the conversion of 2-methylmaleimide increased oxygen evolution rates, in particular at higher light intensity. In conclusion, this work demonstrates that rational engineering of electron transfer pathways is a valid strategy to increase in vivo specific activities and initial reaction rates in cyanobacterial chassis harboring oxidoreductases.
Collapse
Affiliation(s)
- Jelena Spasic
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Paulo Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Catarina Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
21
|
Valotta A, Malihan-Yap L, Hinteregger K, Kourist R, Gruber-Woelfler H. Design and Investigation of a Photocatalytic Setup for Efficient Biotransformations Within Recombinant Cyanobacteria in Continuous Flow. CHEMSUSCHEM 2022; 15:e202201468. [PMID: 36069133 PMCID: PMC9828554 DOI: 10.1002/cssc.202201468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Photo- and biocatalysis show many advantages as more sustainable solutions for the production of fine chemicals. In an effort to combine the benefits and the knowledge of both these areas, a continuous photobiocatalytic setup was designed and optimized to carry out whole-cell biotransformations within cells of the cyanobacterium Synechocystis sp. PCC 6803 expressing the gene of the ene-reductase YqjM from B. subtilis. The effect of the light intensity and flow rate on the specific activity in the stereoselective reduction of 2-methyl maleimide was investigated via a design-of-experiments approach. The cell density in the setup was further increased at the optimal operating conditions without loss in specific activity, demonstrating that the higher surface area/volume ratio in the coil reactor improved the illumination efficiency of the process. Furthermore, different reactor designs were compared, proving that the presented approach was the most cost- and time-effective solution for intensifying photobiotransformations within cyanobacterial cells.
Collapse
Affiliation(s)
- Alessia Valotta
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010, Graz, Austria
| | - Lenny Malihan-Yap
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Kerstin Hinteregger
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010, Graz, Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- ACIB GmbH, Krenngasse 37, 8010, Graz, Austria
| | - Heidrun Gruber-Woelfler
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010, Graz, Austria
| |
Collapse
|
22
|
Jurkaš V, Weissensteiner F, De Santis P, Vrabl S, Sorgenfrei FA, Bierbaumer S, Kara S, Kourist R, Wangikar PP, Winkler CK, Kroutil W. Transmembrane Shuttling of Photosynthetically Produced Electrons to Propel Extracellular Biocatalytic Redox Reactions in a Modular Fashion. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202207971. [PMID: 38505002 PMCID: PMC10946770 DOI: 10.1002/ange.202207971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 03/21/2024]
Abstract
Many biocatalytic redox reactions depend on the cofactor NAD(P)H, which may be provided by dedicated recycling systems. Exploiting light and water for NADPH-regeneration as it is performed, e.g. by cyanobacteria, is conceptually very appealing due to its high atom economy. However, the current use of cyanobacteria is limited, e.g. by challenging and time-consuming heterologous enzyme expression in cyanobacteria as well as limitations of substrate or product transport through the cell wall. Here we establish a transmembrane electron shuttling system propelled by the cyanobacterial photosynthesis to drive extracellular NAD(P)H-dependent redox reactions. The modular photo-electron shuttling (MPS) overcomes the need for cloning and problems associated with enzyme- or substrate-toxicity and substrate uptake. The MPS was demonstrated on four classes of enzymes with 19 enzymes and various types of substrates, reaching conversions of up to 99 % and giving products with >99 % optical purity.
Collapse
Affiliation(s)
- Valentina Jurkaš
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | | | - Piera De Santis
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
- Department of Engineering, Biological and Chemical Engineering SectionBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Stephan Vrabl
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | - Frieda A. Sorgenfrei
- Austrian Centre of Industrial Biotechnology, c/oInstitute of Chemistry, University of GrazHeinrichstraße 288010GrazAustria
| | - Sarah Bierbaumer
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | - Selin Kara
- Department of Engineering, Biological and Chemical Engineering SectionBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Robert Kourist
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| | - Pramod P. Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 IndiaDBT-Pan IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076 IndiaWadhwani Research Centre for BioengineeringIndian Institute of Technology BombayPowaiMumbai 400076India
| | | | - Wolfgang Kroutil
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
- Field of Excellence BioHealth—University of Graz8010GrazAustria
- BioTechMed Graz8010GrazAustria
| |
Collapse
|
23
|
Jurkaš V, Weissensteiner F, De Santis P, Vrabl S, Sorgenfrei FA, Bierbaumer S, Kara S, Kourist R, Wangikar PP, Winkler CK, Kroutil W. Transmembrane Shuttling of Photosynthetically Produced Electrons to Propel Extracellular Biocatalytic Redox Reactions in a Modular Fashion. Angew Chem Int Ed Engl 2022; 61:e202207971. [PMID: 35921249 PMCID: PMC9804152 DOI: 10.1002/anie.202207971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/05/2023]
Abstract
Many biocatalytic redox reactions depend on the cofactor NAD(P)H, which may be provided by dedicated recycling systems. Exploiting light and water for NADPH-regeneration as it is performed, e.g. by cyanobacteria, is conceptually very appealing due to its high atom economy. However, the current use of cyanobacteria is limited, e.g. by challenging and time-consuming heterologous enzyme expression in cyanobacteria as well as limitations of substrate or product transport through the cell wall. Here we establish a transmembrane electron shuttling system propelled by the cyanobacterial photosynthesis to drive extracellular NAD(P)H-dependent redox reactions. The modular photo-electron shuttling (MPS) overcomes the need for cloning and problems associated with enzyme- or substrate-toxicity and substrate uptake. The MPS was demonstrated on four classes of enzymes with 19 enzymes and various types of substrates, reaching conversions of up to 99 % and giving products with >99 % optical purity.
Collapse
Affiliation(s)
- Valentina Jurkaš
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | | | - Piera De Santis
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
- Department of Engineering, Biological and Chemical Engineering SectionBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Stephan Vrabl
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | - Frieda A. Sorgenfrei
- Austrian Centre of Industrial Biotechnology, c/oInstitute of Chemistry, University of GrazHeinrichstraße 288010GrazAustria
| | - Sarah Bierbaumer
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | - Selin Kara
- Department of Engineering, Biological and Chemical Engineering SectionBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Robert Kourist
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| | - Pramod P. Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 IndiaDBT-Pan IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai 400076 IndiaWadhwani Research Centre for BioengineeringIndian Institute of Technology BombayPowaiMumbai 400076India
| | | | - Wolfgang Kroutil
- Institute of ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
- Field of Excellence BioHealth—University of Graz8010GrazAustria
- BioTechMed Graz8010GrazAustria
| |
Collapse
|
24
|
Malihan‐Yap L, Grimm HC, Kourist R. Recent Advances in Cyanobacterial Biotransformations. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lenny Malihan‐Yap
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
| | - Hanna C. Grimm
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
| | - Robert Kourist
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
- ACIB GmbH 8010 Graz Austria
| |
Collapse
|
25
|
Luan P, Li Y, Huang C, Dong L, Ma T, Liu J, Gao J, Liu Y, Jiang Y. Design of De Novo Three-Enzyme Nanoreactors for Stereodivergent Synthesis of α-Substituted Cyclohexanols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pengqian Luan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yongxing Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Chen Huang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Lele Dong
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Teng Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jianqiao Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
26
|
Theodosiou E, Tüllinghoff A, Toepel J, Bühler B. Exploitation of Hetero- and Phototrophic Metabolic Modules for Redox-Intensive Whole-Cell Biocatalysis. Front Bioeng Biotechnol 2022; 10:855715. [PMID: 35497353 PMCID: PMC9043136 DOI: 10.3389/fbioe.2022.855715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
The successful realization of a sustainable manufacturing bioprocess and the maximization of its production potential and capacity are the main concerns of a bioprocess engineer. A main step towards this endeavor is the development of an efficient biocatalyst. Isolated enzyme(s), microbial cells, or (immobilized) formulations thereof can serve as biocatalysts. Living cells feature, beside active enzymes, metabolic modules that can be exploited to support energy-dependent and multi-step enzyme-catalyzed reactions. Metabolism can sustainably supply necessary cofactors or cosubstrates at the expense of readily available and cheap resources, rendering external addition of costly cosubstrates unnecessary. However, for the development of an efficient whole-cell biocatalyst, in depth comprehension of metabolic modules and their interconnection with cell growth, maintenance, and product formation is indispensable. In order to maximize the flux through biosynthetic reactions and pathways to an industrially relevant product and respective key performance indices (i.e., titer, yield, and productivity), existing metabolic modules can be redesigned and/or novel artificial ones established. This review focuses on whole-cell bioconversions that are coupled to heterotrophic or phototrophic metabolism and discusses metabolic engineering efforts aiming at 1) increasing regeneration and supply of redox equivalents, such as NAD(P/H), 2) blocking competing fluxes, and 3) increasing the availability of metabolites serving as (co)substrates of desired biosynthetic routes.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Adrian Tüllinghoff
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| |
Collapse
|
27
|
Jurkaš V, Winkler CK, Poschenrieder S, Oliveira P, Pacheco CC, Ferreira EA, Weissensteiner F, De Santis P, Kara S, Kourist R, Tamagnini P, Kroutil W. Expression and activity of heterologous hydroxyisocaproate dehydrogenases in Synechocystis sp. PCC 6803 Δ hoxYH. ENGINEERING MICROBIOLOGY 2022; 2:100008. [PMID: 39628613 PMCID: PMC11610949 DOI: 10.1016/j.engmic.2021.100008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/06/2024]
Abstract
Exploiting light to drive redox reactions is currently a hot topic since light is considered as an environmentally friendly source of energy. Consequently, cyanobacteria, which can use light e.g., for generating NADPH, are in the focus of research. Previously, it has been shown that various heterologous redox enzymes could be expressed in these microorganisms. Here we demonstrated the successful inducer-free expression of α-keto-acid dehydrogenases (L-HicDH and D-HicDH) from Lactobacillus confusus DSM 20196 and Lactobacillus paracasei DSM 20008 in Synechocystis sp. PCC 6803 ΔhoxYH mutant using replicative plasmids. While the L-HicDH showed poor activity limited by the amount of expressed enzyme, the D-HicDH was applied both in vivo and in vitro, transforming the selected α-keto acids to the corresponding optically pure (R)-α-hydroxy acids (ee >99%) in up to 53% and 90% conversion, respectively.
Collapse
Affiliation(s)
- Valentina Jurkaš
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Christoph K. Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Silvan Poschenrieder
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Paulo Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Catarina C. Pacheco
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Eunice A. Ferreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Florian Weissensteiner
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Piera De Santis
- Aarhus University, Department of Engineering, Biological and Chemical Engineering Section, Biocatalysis and Bioprocessing Group, Gustav Wieds Vej 10, DK 8000 Aarhus, Denmark
| | - Selin Kara
- Aarhus University, Department of Engineering, Biological and Chemical Engineering Section, Biocatalysis and Bioprocessing Group, Gustav Wieds Vej 10, DK 8000 Aarhus, Denmark
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Paula Tamagnini
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
28
|
Modulation of Antioxidant Activity Enhances Photoautotrophic Cell Growth of Rhodobacter sphaeroides in Microbial Electrosynthesis. ENERGIES 2022. [DOI: 10.3390/en15030935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Global warming is currently accelerating due to an increase in greenhouse gas emissions by industrialization. Microbial electrosynthesis (MES) using electroactive autotrophic microorganisms has recently been reported as a method to reduce carbon dioxide, the main culprit of greenhouse gas. However, there are still few cases of application of MES, and the molecular mechanisms are largely unknown. To investigate the growth characteristics in MES, we carried out growth tests according to reducing power sources in Rhodobacter sphaeroides. The growth rate was significantly lower when electrons were directly supplied to cells, compared to when hydrogen was supplied. Through a transcriptome analysis, we found that the expression of reactive oxygen species (ROS)-related genes was meaningfully higher in MES than in normal photoautotrophic conditions. Similarly, endogenous contents of H2O2 were higher and peroxidase activities were lower in MES. The exogenous application of ascorbic acid, a representative biological antioxidant, promotes cell growth by decreasing ROS levels, confirming the inhibitory effects of ROS on MES. Taken together, our observations suggest that reduction of ROS by increasing antioxidant activities is important for enhancing the cell growth and production of CO2-converting substances such as carotenoids in MES in R. sphaeroides
Collapse
|
29
|
Erdem E, Malihan-Yap L, Assil-Companioni L, Grimm H, Barone GD, Serveau-Avesque C, Amouric A, Duquesne K, de Berardinis V, Allahverdiyeva Y, Alphand V, Kourist R. Photobiocatalytic Oxyfunctionalization with High Reaction Rate using a Baeyer-Villiger Monooxygenase from Burkholderia xenovorans in Metabolically Engineered Cyanobacteria. ACS Catal 2022; 12:66-72. [PMID: 35036041 PMCID: PMC8751089 DOI: 10.1021/acscatal.1c04555] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/03/2021] [Indexed: 01/26/2023]
Abstract
![]()
Baeyer–Villiger
monooxygenases (BVMOs) catalyze the oxidation
of ketones to lactones under very mild reaction conditions. This enzymatic
route is hindered by the requirement of a stoichiometric supply of
auxiliary substrates for cofactor recycling and difficulties with
supplying the necessary oxygen. The recombinant production of BVMO
in cyanobacteria allows the substitution of auxiliary organic cosubstrates
with water as an electron donor and the utilization of oxygen generated
by photosynthetic water splitting. Herein, we report the identification
of a BVMO from Burkholderia xenovorans (BVMOXeno) that exhibits higher reaction
rates in comparison to currently identified BVMOs. We report a 10-fold
increase in specific activity in comparison to cyclohexanone monooxygenase
(CHMOAcineto) in Synechocystis sp. PCC 6803 (25 vs 2.3 U gDCW–1 at
an optical density of OD750 = 10) and an initial rate of
3.7 ± 0.2 mM h–1. While the cells containing
CHMOAcineto showed a considerable reduction
of cyclohexanone to cyclohexanol, this unwanted side reaction was
almost completely suppressed for BVMOXeno, which was attributed to the much faster lactone formation and a
10-fold lower KM value of BVMOXeno toward cyclohexanone. Furthermore, the whole-cell
catalyst showed outstanding stereoselectivity. These results show
that, despite the self-shading of the cells, high specific activities
can be obtained at elevated cell densities and even further increased
through manipulation of the photosynthetic electron transport chain
(PETC). The obtained rates of up to 3.7 mM h–1 underline
the usefulness of oxygenic cyanobacteria as a chassis for enzymatic
oxidation reactions. The photosynthetic oxygen evolution can contribute
to alleviating the highly problematic oxygen mass-transfer limitation
of oxygen-dependent enzymatic processes.
Collapse
Affiliation(s)
- Elif Erdem
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.,Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR7313, 13397 Marseille, France
| | - Lenny Malihan-Yap
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Leen Assil-Companioni
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.,ACIB GmbH, 8010 Graz, Austria
| | - Hanna Grimm
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Giovanni Davide Barone
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.,i3S, Instituto de Investigação em Saúde Universidade do Porto & IBMC, Instituto de Biologia Molecular e Celular, R. Alfredo Allen 208, 4200-135 Porto, Portugal.,Departamento de Biologia Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | | | - Agnes Amouric
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR7313, 13397 Marseille, France
| | - Katia Duquesne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR7313, 13397 Marseille, France
| | - Véronique de Berardinis
- Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Yagut Allahverdiyeva
- Molecular Plant Biology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku 20014, Finland
| | - Véronique Alphand
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR7313, 13397 Marseille, France
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.,ACIB GmbH, 8010 Graz, Austria
| |
Collapse
|
30
|
Blanc-Garin V, Veaudor T, Sétif P, Gontero B, Lemaire SD, Chauvat F, Cassier-Chauvat C. First in vivo analysis of the regulatory protein CP12 of the model cyanobacterium Synechocystis PCC 6803: Biotechnological implications. FRONTIERS IN PLANT SCIENCE 2022; 13:999672. [PMID: 36176677 PMCID: PMC9514657 DOI: 10.3389/fpls.2022.999672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 05/09/2023]
Abstract
We report the first in vivo analysis of a canonical CP12 regulatory protein, namely the unique CP12 of the model cyanobacterium Synechocystis PCC 6803, which has the advantage of being able to grow photoautotrophically, photomixotrophically, and photoheterotrophically. The data showed that CP12 is dispensable to cell growth under standard (continuous) light and light/dark cycle, whereas it is essential for the catabolism of exogenously added glucose that normally sustains cell growth in absence of photosynthesis. Furthermore, to be active in glucose catabolism, CP12 requires its three conserved features: its AWD_VEEL motif and its two pairs of cysteine residues. Also interestingly, CP12 was found to regulate the redox equilibrium of NADPH, an activity involving its AWD_VEEL motif and its C-ter cysteine residues, but not its N-ter cysteine residues. This finding is important because NADPH powers up the methylerythritol 4-phosphate (MEP) pathway that synthesizes the geranyl-diphosphate (GPP) and farnesyl-diphosphate (FPP) metabolites, which can be transformed into high-value terpenes by recombinant cyanobacteria producing plant terpene synthase enzymes. Therefore, we have introduced into the Δcp12 mutant and the wild-type (control) strain our replicative plasmids directing the production of the monoterpene limonene and the sesquiterpene bisabolene. The photosynthetic production of both bisabolene and limonene appeared to be increased (more than two-fold) in the Δcp12 mutant as compared to the WT strain. Furthermore, the level of bisabolene production was also higher to those previously reported for various strains of Synechocystis PCC 6803 growing under standard (non-optimized) photoautotrophic conditions. Hence, the presently described Δcp12 strain with a healthy photoautotrophic growth and an increased capability to produce terpenes, is an attractive cell chassis for further gene manipulations aiming at engineering cyanobacteria for high-level photoproduction of terpenes.
Collapse
Affiliation(s)
- Victoire Blanc-Garin
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Théo Veaudor
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Sétif
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, FR3479, 31 Chemin J. Aiguier, Marseille, France
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Computationnelle et Quantitative, CNRS, UMR7238, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Franck Chauvat
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Corinne Cassier-Chauvat
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
- *Correspondence: Corinne Cassier-Chauvat,
| |
Collapse
|
31
|
Fan J, Zhang Y, Wu P, Zhang X, Bai Y. Enhancing cofactor regeneration of cyanobacteria for the light-powered synthesis of chiral alcohols. Bioorg Chem 2021; 118:105477. [PMID: 34814084 DOI: 10.1016/j.bioorg.2021.105477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Cyanobacteria Synechocystis sp. PCC 6803 was exploited as green cell factory for light-powered asymmetric synthesis of aromatic chiral alcohols. The effect of temperature, light, substrate and cell concentration on substrate conversions were investigated. Under the optimal condition, a series of chiral alcohols were synthesized with conversions up to 95% and enantiomer excess (ee) > 99%. We found that the addition of Na2S2O3 and Angeli's Salt increased the NADPH content by 20% and 25%, respectively. As a result, the time to reach 95% substrate conversion was shortened by 12 h, which demonstrated that the NADPH regeneration and hence the reaction rates can be regulated in cyanobacteria. This blue-green algae based biocatalysis showed its potential for chiral compounds production in future.
Collapse
Affiliation(s)
- Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yinghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ping Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
32
|
Nowrouzi B, Rios-Solis L. Redox metabolism for improving whole-cell P450-catalysed terpenoid biosynthesis. Crit Rev Biotechnol 2021; 42:1213-1237. [PMID: 34749553 DOI: 10.1080/07388551.2021.1990210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The growing preference for producing cytochrome P450-mediated natural products in microbial systems stems from the challenging nature of the organic chemistry approaches. The P450 enzymes are redox-dependent proteins, through which they source electrons from reducing cofactors to drive their activities. Widely researched in biochemistry, most of the previous studies have extensively utilised expensive cell-free assays to reveal mechanistic insights into P450 functionalities in presence of commercial redox partners. However, in the context of microbial bioproduction, the synergic activity of P450- reductase proteins in microbial systems have not been largely investigated. This is mainly due to limited knowledge about their mutual interactions in the context of complex systems. Hence, manipulating the redox potential for natural product synthesis in microbial chassis has been limited. As the potential of redox state as crucial regulator of P450 biocatalysis has been greatly underestimated by the scientific community, in this review, we re-emphasize their pivotal role in modulating the in vivo P450 activity through affecting the product profile and yield. Particularly, we discuss the applications of widely used in vivo redox engineering methodologies for natural product synthesis to provide further suggestions for patterning on P450-based terpenoids production in microbial platforms.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
33
|
Zhang S, Liu S, Sun Y, Li S, Shi J, Jiang Z. Enzyme-photo-coupled catalytic systems. Chem Soc Rev 2021; 50:13449-13466. [PMID: 34734949 DOI: 10.1039/d1cs00392e] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Efficient chemical transformation in a green, low-carbon way is crucial for the sustainable development of modern society. Enzyme-photo-coupled catalytic systems (EPCS) that integrate the exceptional selectivity of enzyme catalysis and the unique reactivity of photocatalysis hold great promise in solar-driven 'molecular editing'. However, the involvement of multiple components and catalytic processes challenged the design of efficient and stable EPCS. To show a clear picture of the complex catalytic system, in this review, we analyze EPCS from the perspective of system engineering. First, we disintegrate the complex system into four elementary components, and reorganize these components into biocatalytic and photocatalytic ensembles (BE and PE). By resolving current accessible systems, we identify that connectivity and compatibility between BE and PE are two crucial factors that govern the performance of EPCS. Then, we discuss the origin of undesirable connectivity and low compatibility, and deduce the possible solutions. Based on these understandings, we propose the designing principles of EPCS. Lastly, we provide a future perspective of EPCS.
Collapse
Affiliation(s)
- Shaohua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. .,Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Shusong Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yiying Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Shihao Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 10090, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
34
|
Nikkanen L, Solymosi D, Jokel M, Allahverdiyeva Y. Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and biotechnological prospects. PHYSIOLOGIA PLANTARUM 2021; 173:514-525. [PMID: 33764547 DOI: 10.1111/ppl.13404] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacteria and microalgae perform oxygenic photosynthesis where light energy is harnessed to split water into oxygen and protons. This process releases electrons that are used by the photosynthetic electron transport chain to form reducing equivalents that provide energy for the cell metabolism. Constant changes in environmental conditions, such as light availability, temperature, and access to nutrients, create the need to balance the photochemical reactions and the metabolic demands of the cell. Thus, cyanobacteria and microalgae evolved several auxiliary electron transport (AET) pathways to disperse the potentially harmful over-supply of absorbed energy. AET pathways are comprised of electron sinks, e.g. flavodiiron proteins (FDPs) or other terminal oxidases, and pathways that recycle electrons around photosystem I, like NADPH-dehydrogenase-like complexes (NDH) or the ferredoxin-plastoquinone reductase (FQR). Under controlled conditions the need for these AET pathways is decreased and AET can even be energetically wasteful. Therefore, redirecting photosynthetic reducing equivalents to biotechnologically useful reactions, catalyzed by i.e. innate hydrogenases or heterologous enzymes, offers novel possibilities to apply photosynthesis research.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Daniel Solymosi
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Martina Jokel
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
35
|
Allahverdiyeva Y, Aro EM, van Bavel B, Escudero C, Funk C, Heinonen J, Herfindal L, Lindblad P, Mäkinen S, Penttilä M, Sivonen K, Skogen Chauton M, Skomedal H, Skjermo J. NordAqua, a Nordic Center of Excellence to develop an algae-based photosynthetic production platform. PHYSIOLOGIA PLANTARUM 2021; 173:507-513. [PMID: 33709388 DOI: 10.1111/ppl.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
NordAqua is a multidisciplinary Nordic Center of Excellence funded by NordForsk Bioeconomy program (2017-2022). The research center promotes Blue Bioeconomy and endeavours to reform the use of natural resources in a environmentally sustainable way. In this short communication, we summarize particular outcomes of the consortium. The key research progress of NordAqua includes (1) improving of photosynthetisis, (2) developing novel photosynthetic cell factories that function in a "solar-driven direct CO2 capture to target bioproducts" mode, (3) promoting the diversity of Nordic cyanobacteria and algae as an abundant and resilient alternative for less sustainable forest biomass and for innovative production of biochemicals, and (4) improving the bio-based wastewater purification and nutrient recycling technologies to provide new tools for integrative circular economy platforms.
Collapse
Affiliation(s)
- Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Bert van Bavel
- Section of Environmental Pollutants, Norwegian Institute for Water Research, Oslo, Norway
| | - Carlos Escudero
- Section of Environmental Pollutants, Norwegian Institute for Water Research, Oslo, Norway
| | | | - Jarna Heinonen
- Department of Management and Entrepreneurship, School of Economics, University of Turku, Turku, Finland
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Sari Mäkinen
- Department of Production Systems, Natural Resources Institute Finland, Jokioinen, Finland
| | - Merja Penttilä
- Devision of Industrial Biotechnology and Food Solutions, VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | | | - Hanne Skomedal
- Division of Biotechnology and Plant Health, NIBIO, Ås, Norway
| | - Jorunn Skjermo
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| |
Collapse
|
36
|
Liu X, Xie H, Roussou S, Lindblad P. Current advances in engineering cyanobacteria and their applications for photosynthetic butanol production. Curr Opin Biotechnol 2021; 73:143-150. [PMID: 34411807 DOI: 10.1016/j.copbio.2021.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 11/03/2022]
Abstract
Cyanobacteria are natural photosynthetic microbes which can be engineered for sustainable conversion of solar energy and carbon dioxide into chemical products. Attempts to improve target production often require an improved understanding of the native cyanobacterial host system. Valuable insights into cyanobacterial metabolism, biochemistry and physiology have been steadily increasing in recent years, stimulating key advancements of cyanobacteria as cell factories for biochemical, including biofuel, production. In the present review, we summarize the current progress in engineering cyanobacteria and discuss the achieved and potential utilization of these advances in cyanobacteria for the production of the bulk chemical butanol, specifically isobutanol and 1-butanol.
Collapse
Affiliation(s)
- Xufeng Liu
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Hao Xie
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Stamatina Roussou
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
37
|
Hobisch M, Spasic J, Malihan‐Yap L, Barone GD, Castiglione K, Tamagnini P, Kara S, Kourist R. Internal Illumination to Overcome the Cell Density Limitation in the Scale-up of Whole-Cell Photobiocatalysis. CHEMSUSCHEM 2021; 14:3219-3225. [PMID: 34138524 PMCID: PMC8456840 DOI: 10.1002/cssc.202100832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Indexed: 05/28/2023]
Abstract
Cyanobacteria have the capacity to use photosynthesis to fuel their metabolism, which makes them highly promising production systems for the sustainable production of chemicals. Yet, their dependency on visible light limits the cell-density, which is a challenge for the scale-up. Here, it was shown with the example of a light-dependent biotransformation that internal illumination in a bubble column reactor equipped with wireless light emitters (WLEs) could overcome this limitation. Cells of the cyanobacterium Synechocystis sp. PCC 6803 expressing the gene of the ene-reductase YqjM were used for the reduction of 2-methylmaleimide to (R)-2-methylsuccinimide with high optical purity (>99 % ee). Compared to external source of light, illumination by floating wireless light emitters allowed a more than two-fold rate increase. Under optimized conditions, product formation rates up to 3.7 mm h-1 and specific activities of up to 65.5 U gDCW -1 were obtained, allowing the reduction of 40 mm 2-methylmaleimide with 650 mg isolated enantiopure product (73 % yield). The results demonstrate the principle of internal illumination as a means to overcome the intrinsic cell density limitation of cyanobacterial biotransformations, obtaining high reaction rates in a scalable photobioreactor.
Collapse
Affiliation(s)
- Markus Hobisch
- Department of Biological and Chemical EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
- Institute of Molecular BiotechnologyGraz University of TechnologyNAWI GrazBioTechMedPetersgasse 148010GrazAustria
| | - Jelena Spasic
- Institute of Molecular BiotechnologyGraz University of TechnologyNAWI GrazBioTechMedPetersgasse 148010GrazAustria
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto & IBMC – Instituto de Biologia Molecular e CelularR. Alfredo Allen 2084200-135PortoPortugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre, Edifício FC44169-007PortoPortugal
| | - Lenny Malihan‐Yap
- Institute of Molecular BiotechnologyGraz University of TechnologyNAWI GrazBioTechMedPetersgasse 148010GrazAustria
| | - Giovanni Davide Barone
- Institute of Molecular BiotechnologyGraz University of TechnologyNAWI GrazBioTechMedPetersgasse 148010GrazAustria
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto & IBMC – Instituto de Biologia Molecular e CelularR. Alfredo Allen 2084200-135PortoPortugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre, Edifício FC44169-007PortoPortugal
| | - Kathrin Castiglione
- Institute of Bioprocess EngineeringDepartment of Chemical and BioengineeringFriedrich-Alexander-Universität Erlangen-NürnbergPaul-Gordan-Straße 391052ErlangenGermany
| | - Paula Tamagnini
- i3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto & IBMC – Instituto de Biologia Molecular e CelularR. Alfredo Allen 2084200-135PortoPortugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre, Edifício FC44169-007PortoPortugal
| | - Selin Kara
- Department of Biological and Chemical EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Robert Kourist
- Institute of Molecular BiotechnologyGraz University of TechnologyNAWI GrazBioTechMedPetersgasse 148010GrazAustria
| |
Collapse
|
38
|
Nagy C, Thiel K, Mulaku E, Mustila H, Tamagnini P, Aro EM, Pacheco CC, Kallio P. Comparison of alternative integration sites in the chromosome and the native plasmids of the cyanobacterium Synechocystis sp. PCC 6803 in respect to expression efficiency and copy number. Microb Cell Fact 2021; 20:130. [PMID: 34246263 PMCID: PMC8272380 DOI: 10.1186/s12934-021-01622-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Synechocystis sp. PCC 6803 provides a well-established reference point to cyanobacterial metabolic engineering as part of basic photosynthesis research, as well as in the development of next-generation biotechnological production systems. This study focused on expanding the current knowledge on genomic integration of expression constructs in Synechocystis, targeting a range of novel sites in the chromosome and in the native plasmids, together with established loci used in literature. The key objective was to obtain quantitative information on site-specific expression in reference to replicon copy numbers, which has been speculated but never compared side by side in this host. Results An optimized sYFP2 expression cassette was successfully integrated in two novel sites in Synechocystis chromosome (slr0944; sll0058) and in all four endogenous megaplasmids (pSYSM/slr5037-slr5038; pSYSX/slr6037; pSYSA/slr7023; pSYSG/slr8030) that have not been previously evaluated for the purpose. Fluorescent analysis of the segregated strains revealed that the expression levels between the megaplasmids and chromosomal constructs were very similar, and reinforced the view that highest expression in Synechocystis can be obtained using RSF1010-derived replicative vectors or the native small plasmid pCA2.4 evaluated in comparison. Parallel replicon copy number analysis by RT-qPCR showed that the expression from the alternative loci is largely determined by the gene dosage in Synechocystis, thereby confirming the dependence formerly proposed based on literature. Conclusions This study brings together nine different integrative loci in the genome of Synechocystis to demonstrate quantitative differences between target sites in the chromosome, the native plasmids, and a RSF1010-based replicative expression vector. To date, this is the most comprehensive comparison of alternative integrative sites in Synechocystis, and provides the first direct reference between expression efficiency and replicon gene dosage in the context. In the light of existing literature, the findings support the view that the small native plasmids can be notably more difficult to target than the chromosome or the megaplasmids, and that the RSF1010-derived vectors may be surprisingly well maintained under non-selective culture conditions in this cyanobacterial host. Altogether, the work broadens our views on genomic integration and the rational use of different integrative loci versus replicative plasmids, when aiming at expressing heterologous genes in Synechocystis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01622-2.
Collapse
Affiliation(s)
- Csaba Nagy
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Kati Thiel
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Edita Mulaku
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Henna Mustila
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Paula Tamagnini
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland
| | - Catarina C Pacheco
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Pauli Kallio
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Itäinen Pitkäkatu 4 C, 20520, Turku, Finland.
| |
Collapse
|