1
|
Xie Y, Cheng J, Wang W, Han Y, Fan Q, Li H, Cheng K, Zhang Q, Wang Y. Separation of MnWO x and NaWSiO x Phases Boosts Oxidative Coupling of Methane. Angew Chem Int Ed Engl 2025:e202503767. [PMID: 40178241 DOI: 10.1002/anie.202503767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
The oxidative coupling of methane (OCM) is an attractive approach for methane transformations, but achieving a satisfactory combination of activity and selectivity remains challenging, even with the promising Mn-Na2WO4/SiO2 catalyst. Herein, we demonstrate that nanoscale separation of Mn-based and Na2WO4-based phases results in a highly efficient catalyst, achieving a remarkable 79% selectivity for C2-C3 hydrocarbons at a 32% CH4 conversion at 775 °C, outperforming most previously reported catalysts. Our studies reveal that MnWOx phases with adjustable surface Mn/W ratios and redox activities are more effective for the selective activation of O2, thereby enhancing the OCM of CH4. The assembly of MnWOx and Na2WO4/SiO2 components in nanoscale proximity significantly promotes the formation of C2-C3 hydrocarbons by suppressing deep oxidation. We propose a bifunctional mechanism involving the transfer of active oxygen species from MnWOx to Na2WO4/SiO2, which induces selective activation and coupling of CH4 on the Na2WO4/SiO2 surface.
Collapse
Affiliation(s)
- Yu Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiawei Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wangyang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yaoyao Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qiyuan Fan
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Hui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
2
|
Liu Q, Wang R, Li R, Wang X, Zhao S, Yu C. Study on the Synergistic Effect of SiO 2 and H 2O on Oxidative Coupling of Methane over Mn-Na 2WO 4/SiO 2 Catalyst. ACS OMEGA 2024; 9:36751-36760. [PMID: 39220539 PMCID: PMC11360044 DOI: 10.1021/acsomega.4c05565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Mn-Na2WO4-based catalysts with different supports were prepared using the incipient wetness impregnation method and evaluated for their oxidative coupling of methane (OCM) reaction performance. The results demonstrated that the SiO2- supported catalyst exhibited the best catalytic performance, and the introduction of H2O further enhanced its activity. Under the conditions of a feed gas mixture of CH4/O2/H2O = 6:1:24 at 800 °C and atmospheric pressure, the CH4 conversion and C2+ selectivity over the Mn-Na2WO4/SiO2 catalyst increased from 28.4% and 77.4% (without H2O) to 33.2% and 84.9%, respectively. In contrast, the catalytic activity using TiO2 and MgO supports drastically declined. Characterizations using X-ray diffraction (XRD), in situ infrared spectroscopy (In-situ IR), X-ray photoelectron spectroscopy (XPS), hydrogen temperature-programmed reduction (H2-TPR), and oxygen temperature-programmed desorption (O2-TPD) revealed that the introduction of steam not only served as a diluent to decrease the partial pressures of the reactants CH4 and O2, thereby reducing deep oxidation reactions in the gas phase, but also interacted with surface oxygen species (O2 2-) and silica to form adjacent surface-bonded disilanol free radicals Si-OIH. This interaction facilitated the dehydrogenation and coupling of two methane molecules on the catalyst surface, resulting in the generation of C2+ products, significantly enhancing the catalytic activity and selectivity of OCM.
Collapse
Affiliation(s)
- Qingjing Liu
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | - Ruisheng Wang
- College
of New Energy and Materials, China University
of Petroleum, Beijing, 102249, P. R. China
| | - Ranjia Li
- College
of New Energy and Materials, China University
of Petroleum, Beijing, 102249, P. R. China
| | - Xiaosheng Wang
- College
of New Energy and Materials, China University
of Petroleum, Beijing, 102249, P. R. China
| | - Suoqi Zhao
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | - Changchun Yu
- College
of New Energy and Materials, China University
of Petroleum, Beijing, 102249, P. R. China
| |
Collapse
|
3
|
Wang P, Shi R, Zhao J, Zhang T. Photodriven Methane Conversion on Transition Metal Oxide Catalyst: Recent Progress and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305471. [PMID: 37882341 PMCID: PMC10885660 DOI: 10.1002/advs.202305471] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Indexed: 10/27/2023]
Abstract
Methane as the main component in natural gas is a promising chemical raw material for synthesizing value-added chemicals, but its harsh chemical conversion process often causes severe energy and environment concerns. Photocatalysis provides an attractive path to active and convert methane into various products under mild conditions with clean and sustainable solar energy, although many challenges remain at present. In this review, recent advances in photocatalytic methane conversion are systematically summarized. As the basis of methane conversion, the activation of methane is first elucidated from the structural basis and activation path of methane molecules. The study is committed to categorizing and elucidating the research progress and the laws of the intricate methane conversion reactions according to the target products, including photocatalytic methane partial oxidation, reforming, coupling, combustion, and functionalization. Advanced photocatalytic reactor designs are also designed to enrich the options and reliability of photocatalytic methane conversion performance evaluation. The challenges and prospects of photocatalytic methane conversion are also discussed, which in turn offers guidelines for methane-conversion-related photocatalyst exploration, reaction mechanism investigation, and advanced photoreactor design.
Collapse
Affiliation(s)
- Pu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
Performance-defining factors of (MnOx)-M2WO4/SiO2 (M=Na, K, Rb or Cs) catalysts in oxidative coupling of methane. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Si J, Zhao G, Lan T, Ni J, Sun W, Liu Y, Lu Y. Insight into the Role of Na 2WO 4 in a Low-Temperature Light-off Mn 7SiO 12–Na 2WO 4/Cristobalite Catalyst for Oxidative Coupling of Methane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiaqi Si
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Guofeng Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Tian Lan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Jiayong Ni
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Weidong Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Ye Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Yong Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
- Institute of Eco-Chongming, Shanghai202162, China
| |
Collapse
|
6
|
TiOx-supported Na-Mn-W oxides for the oxidative coupling of methane. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Zanina A, Kondratenko VA, Lund H, Li J, Chen J, Li Y, Jiang G, Kondratenko EV. The Role of Adsorbed and Lattice Oxygen Species in Product Formation in the Oxidative Coupling of Methane over M 2WO 4/SiO 2 (M = Na, K, Rb, Cs). ACS Catal 2022. [DOI: 10.1021/acscatal.2c04916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Anna Zanina
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059Rostock, Germany
| | - Vita A. Kondratenko
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059Rostock, Germany
| | - Henrik Lund
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059Rostock, Germany
| | - Jianshu Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing102249, People’s Republic of China
| | - Juan Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing102249, People’s Republic of China
| | - Yuming Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing102249, People’s Republic of China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing102249, People’s Republic of China
| | | |
Collapse
|
8
|
Wang Y, Sourav S, Malizia JP, Thompson B, Wang B, Kunz MR, Nikolla E, Fushimi R. Deciphering the Mechanistic Role of Individual Oxide Phases and Their Combinations in Supported Mn–Na 2WO 4 Catalysts for Oxidative Coupling of Methane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yixiao Wang
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Sagar Sourav
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jason P. Malizia
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Brooklyne Thompson
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
- Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Bingwen Wang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - M. Ross Kunz
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Eranda Nikolla
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Rebecca Fushimi
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| |
Collapse
|
9
|
Song H, Ye J. Direct photocatalytic conversion of methane to value-added chemicals. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Zhao G, Ni J, Si J, Sun W, Lu Y. Low-Temperature Light-off MnOx-Na2WO4-Based Catalysts: A Step Forward to OCM Process Industrialization. Chemphyschem 2022; 23:e202200365. [PMID: 35838245 DOI: 10.1002/cphc.202200365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Indexed: 11/05/2022]
Abstract
Oxidative coupling of methane (OCM) catalyzed by MnOx-Na2WO4-based catalysts has great industrial potential to convert CH4 directly to C2-3 products, but the high light-off temperature is a big challenge to OCM commercialization. The reaction mechanism studies disclosed that O2/CH4-activation relevant "Mn2+↔Mn3+" redox cycle is tightly linked with the catalyst light-off. One concept is thus put forward that the OCM light-off temperature could be lowered once a "Mn2+↔Mn3+" redox cycle was established to be triggered at low temperature over MnOx-Na2WO4-based catalysts. The relevant studies in recent years are reviewed, showing that the establishment of low-temperature light-off "Mn2+↔Mn3+" redox cycle over the MnOx-Na2WO4-based catalysts indeed works effectively toward a low-temperature light-off OCM process. Moreover, three perspectives for the OCM industrialization are discussed based on this concept, including monolithic catalyst, fluidized-bed method and chemical-looping process.
Collapse
Affiliation(s)
- Guofeng Zhao
- East China Normal University, School of Chemistry and Molecular Engineering, CHINA
| | - Jiayong Ni
- East China Normal University, School of Chemistry and Molecular Engineering, CHINA
| | - Jiaqi Si
- East China Normal University, School of Chemistry and Molecular Engineering, CHINA
| | - Weidong Sun
- East China Normal University, School of Chemistry and Molecular Engineering, CHINA
| | - Yong Lu
- East China Normal University, School of Chemistry and Molecular Engineering, 3663 North Zhongshan Road, 200062, Shanghai, CHINA
| |
Collapse
|
11
|
Sourav S, Kiani D, Wang Y, Baltrusaitis J, Fushimi RR, Wachs IE. Molecular structure and catalytic promotional effect of Mn on supported Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) reaction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Nishimura S, Ohyama J, Li X, Miyazato I, Taniike T, Takahashi K. Machine Learning-Aided Catalyst Modification in Oxidative Coupling of Methane via Manganese Promoter. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shun Nishimura
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Japan
| | - Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Xinyue Li
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Japan
| | - Itsuki Miyazato
- Department of Chemistry, Hokkaido University, N-10 W-8, Sapporo 060-0810, Japan
| | - Toshiaki Taniike
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Japan
| | - Keisuke Takahashi
- Department of Chemistry, Hokkaido University, N-10 W-8, Sapporo 060-0810, Japan
| |
Collapse
|
13
|
Si J, Zhao G, Sun W, Liu J, Guan C, Yang Y, Shi XR, Lu Y. Oxidative Coupling of Methane: Examining the Inactivity of the MnO x -Na 2 WO 4 /SiO 2 Catalyst at Low Temperature. Angew Chem Int Ed Engl 2022; 61:e202117201. [PMID: 35181983 DOI: 10.1002/anie.202117201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/07/2022]
Abstract
Oxidative coupling of methane (OCM) catalyzed by MnOx -Na2 WO4 /SiO2 has great industrial promise to convert methane directly to C2-3 products, but its high light-off temperature is the most challenging obstacle to commercialization and its working mechanism is still a mystery. We report the discovery of a low-temperature active and selective MnOx -Na2 WO4 /SiO2 catalyst enriched with Q2 units in the SiO2 carrier, being capable of converting 23 % CH4 with 72 % C2-3 selectivity at 660 °C. From experiments and theoretical calculations, a large number of Q2 units in the MnOx -Na2 WO4 /SiO2 catalyst is a trigger for markedly lowering the light-off temperature of the Mn3+ ↔Mn2+ redox cycle involved in the OCM reaction because of the easy formation of MnSiO3 . Notably, the MnSiO3 formation proceeds merely through the SiO2 -involved reaction in the presence of Na2 WO4 : Mn7 SiO12 +6 SiO2 ↔7 MnSiO3 +1.5 O2 . The Na2 WO4 not only drives the light-off of this cycle but also gets it working with substantial selectivity toward C2-3 products. Our findings shine a light on the rational design of more advanced MnOx -Na2 WO4 based OCM catalysts through establishing new Mn3+ ↔Mn2+ redox cycles with lowered light-off temperature.
Collapse
Affiliation(s)
- Jiaqi Si
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Guofeng Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Weidong Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Jincun Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| | - Cairu Guan
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Yong Yang
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Xue-Rong Shi
- Department of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yong Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China.,Institute of Eco-Chongming, Shanghai, 202162, China
| |
Collapse
|
14
|
Si J, Zhao G, Sun W, Liu J, Guan C, Yang Y, Shi XR, Lu Y. Oxidative Coupling of Methane: Examining the Inactivity of the MnOx‐Na2WO4/SiO2 Catalyst at Low Temperature. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiaqi Si
- East China Normal University School of chemistry and molecular engineering CHINA
| | - Guofeng Zhao
- East China Normal University School of chemistry and molecular engineering CHINA
| | - Weidong Sun
- East China Normal University School of chemistry and molecular engineering CHINA
| | - Jincun Liu
- East China Normal University Scool of chemistry and molecular engineering CHINA
| | - Cairu Guan
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University School of physical Science and Technology CHINA
| | - Yong Yang
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University School of physical science and technology CHINA
| | - Xue-Rong Shi
- Shanghai University of Engineering Science - Songjiang Campus: Shanghai University of Engineering Science Department of Materials Engineering CHINA
| | - Yong Lu
- East China Normal University School of Chemistry and Molecular Engineering 3663 North Zhongshan Road 200062 Shanghai CHINA
| |
Collapse
|
15
|
Oxidative coupling of methane-comparisons of MnTiO 3-Na 2WO 4 and MnO x-TiO 2-Na 2WO 4 catalysts on different silica supports. Sci Rep 2022; 12:2595. [PMID: 35173240 PMCID: PMC8850452 DOI: 10.1038/s41598-022-06598-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
The oxidative coupling of methane (OCM) converts CH4 to value-added chemicals (C2+), such as olefins and paraffin. For a series of MnTiO3-Na2WO4 (MnTiO3-NW) and MnOx-TiO2-Na2WO4 (Mn-Ti-NW), the effect of loading of MnTiO3 or MnOx-TiO2, respectively, on two different supports (sol-gel SiO2 (SG) and commercial fumed SiO2 (CS)) was examined. The catalyst with the highest C2+ yield (21.6% with 60.8% C2+ selectivity and 35.6% CH4 conversion) was 10 wt% MnTiO3-NW/SG with an olefins/paraffin ratio of 2.2. The catalyst surfaces with low oxygen-binding energies were associated with high CH4 conversion. Stability tests conducted for over 24 h revealed that SG-supported catalysts were more durable than those on CS because the active phase (especially Na2WO4) was more stable in SG than in CS. With the use of SG, the activity of MnTiO3-NW was not substantially different from that of Mn-Ti-NW, especially at high metal loading.
Collapse
|
16
|
Aydin Z, Zanina A, Kondratenko VA, Rabeah J, Li J, Chen J, Li Y, Jiang G, Lund H, Bartling S, Linke D, Kondratenko EV. Effects of N2O and Water on Activity and Selectivity in the Oxidative Coupling of Methane over Mn–Na2WO4/SiO2: Role of Oxygen Species. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zeynep Aydin
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Anna Zanina
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Vita A. Kondratenko
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jabor Rabeah
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jianshu Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, People’s Republic of China
| | - Juan Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, People’s Republic of China
| | - Yuming Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, People’s Republic of China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, People’s Republic of China
| | - Henrik Lund
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Stephan Bartling
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - David Linke
- Leibniz Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | | |
Collapse
|
17
|
Kiani D, Sourav S, Wachs IE, Baltrusaitis J. A combined computational and experimental study of methane activation during oxidative coupling of methane (OCM) by surface metal oxide catalysts. Chem Sci 2021; 12:14143-14158. [PMID: 34760199 PMCID: PMC8565385 DOI: 10.1039/d1sc02174e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
The experimentally validated computational models developed herein, for the first time, show that Mn-promotion does not enhance the activity of the surface Na2WO4 catalytic active sites for CH4 heterolytic dissociation during OCM. Contrary to previous understanding, it is demonstrated that Mn-promotion poisons the surface WO4 catalytic active sites resulting in surface WO5 sites with retarded kinetics for C-H scission. On the other hand, dimeric Mn2O5 surface sites, identified and studied via ab initio molecular dynamics and thermodynamics, were found to be more efficient in activating CH4 than the poisoned surface WO5 sites or the original WO4 sites. However, the surface reaction intermediates formed from CH4 activation over the Mn2O5 surface sites are more stable than those formed over the Na2WO4 surface sites. The higher stability of the surface intermediates makes their desorption unfavorable, increasing the likelihood of over-oxidation to CO x , in agreement with the experimental findings in the literature on Mn-promoted catalysts. Consequently, the Mn-promoter does not appear to have an essential positive role in synergistically tuning the structure of the Na2WO4 surface sites towards CH4 activation but can yield MnO x surface sites that activate CH4 faster than Na2WO4 surface sites, but unselectively.
Collapse
Affiliation(s)
- Daniyal Kiani
- Department of Chemical and Biomolecular Engineering, Lehigh University B336 Iacocca Hall, 111 Research Drive Bethlehem PA 18015 USA
| | - Sagar Sourav
- Department of Chemical and Biomolecular Engineering, Lehigh University B336 Iacocca Hall, 111 Research Drive Bethlehem PA 18015 USA
| | - Israel E Wachs
- Department of Chemical and Biomolecular Engineering, Lehigh University B336 Iacocca Hall, 111 Research Drive Bethlehem PA 18015 USA
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University B336 Iacocca Hall, 111 Research Drive Bethlehem PA 18015 USA
| |
Collapse
|
18
|
Sourav S, Wang Y, Kiani D, Baltrusaitis J, Fushimi RR, Wachs IE. New Mechanistic and Reaction Pathway Insights for Oxidative Coupling of Methane (OCM) over Supported Na
2
WO
4
/SiO
2
Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sagar Sourav
- Biological and Chemical Science and Engineering Energy Environment Science & Technology Idaho National Laboratory Idaho Falls ID 83415 USA
- Department of Chemical and Biomolecular Engineering Lehigh University Bethlehem PA 18015 USA
| | - Yixiao Wang
- Biological and Chemical Science and Engineering Energy Environment Science & Technology Idaho National Laboratory Idaho Falls ID 83415 USA
| | - Daniyal Kiani
- Department of Chemical and Biomolecular Engineering Lehigh University Bethlehem PA 18015 USA
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering Lehigh University Bethlehem PA 18015 USA
| | - Rebecca R. Fushimi
- Biological and Chemical Science and Engineering Energy Environment Science & Technology Idaho National Laboratory Idaho Falls ID 83415 USA
| | - Israel E. Wachs
- Department of Chemical and Biomolecular Engineering Lehigh University Bethlehem PA 18015 USA
| |
Collapse
|
19
|
Sourav S, Wang Y, Kiani D, Baltrusaitis J, Fushimi RR, Wachs IE. New Mechanistic and Reaction Pathway Insights for Oxidative Coupling of Methane (OCM) over Supported Na 2 WO 4 /SiO 2 Catalysts. Angew Chem Int Ed Engl 2021; 60:21502-21511. [PMID: 34339591 DOI: 10.1002/anie.202108201] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Indexed: 12/14/2022]
Abstract
The complex structure of the catalytic active phase, and surface-gas reaction networks have hindered understanding of the oxidative coupling of methane (OCM) reaction mechanism by supported Na2 WO4 /SiO2 catalysts. The present study demonstrates, with the aid of in situ Raman spectroscopy and chemical probe (H2 -TPR, TAP and steady-state kinetics) experiments, that the long speculated crystalline Na2 WO4 active phase is unstable and melts under OCM reaction conditions, partially transforming to thermally stable surface Na-WOx sites. Kinetic analysis via temporal analysis of products (TAP) and steady-state OCM reaction studies demonstrate that (i) surface Na-WOx sites are responsible for selectively activating CH4 to C2 Hx and over-oxidizing CHy to CO and (ii) molten Na2 WO4 phase is mainly responsible for over-oxidation of CH4 to CO2 and also assists in oxidative dehydrogenation of C2 H6 to C2 H4 . These new insights reveal the nature of catalytic active sites and resolve the OCM reaction mechanism over supported Na2 WO4 /SiO2 catalysts.
Collapse
Affiliation(s)
- Sagar Sourav
- Biological and Chemical Science and Engineering, Energy Environment Science & Technology, Idaho National Laboratory, Idaho Falls, ID, 83415, USA.,Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Yixiao Wang
- Biological and Chemical Science and Engineering, Energy Environment Science & Technology, Idaho National Laboratory, Idaho Falls, ID, 83415, USA
| | - Daniyal Kiani
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Rebecca R Fushimi
- Biological and Chemical Science and Engineering, Energy Environment Science & Technology, Idaho National Laboratory, Idaho Falls, ID, 83415, USA
| | - Israel E Wachs
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| |
Collapse
|