1
|
Chen Y, Dai C, Wu Q, Li H, Xi S, Seow JZY, Luo S, Meng F, Bo Y, Xia Y, Jia Y, Fisher AC, Xu ZJ. Support-free iridium hydroxide for high-efficiency proton-exchange membrane water electrolysis. Nat Commun 2025; 16:2730. [PMID: 40108156 PMCID: PMC11923266 DOI: 10.1038/s41467-025-58019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
The large-scale implementation of proton-exchange membrane water electrolyzers relies on high-performance membrane-electrode assemblies that use minimal iridium (Ir). In this study, we present a support-free Ir catalyst developed through a metal-oxide-based molecular self-assembly strategy. The unique self-assembly of densely isolated single IrO6H8 octahedra leads to the formation of μm-sized hierarchically porous Ir hydroxide particles. The support-free Ir catalyst exhibits a high turnover frequency of 5.31 s⁻¹ at 1.52 V in the membrane-electrode assembly. In the corresponding proton-exchange membrane water electrolyzer, notable performance with a cell voltage of less than 1.75 V at 4.0 A cm⁻² (Ir loading of 0.375 mg cm⁻²) is achieved. This metal-oxide-based molecular self-assembly strategy may provide a general approach for the development of advanced support-free catalysts for high-performance membrane-electrode assemblies.
Collapse
Affiliation(s)
- Yubo Chen
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore.
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore, Republic of Singapore.
- Institute of Advanced Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, P. R. China.
| | - Chencheng Dai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore, Republic of Singapore
| | - Qian Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Haiyan Li
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Justin Zhu Yeow Seow
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
- Energy Research Institute@NTU (ERI@N), Nanyang Technological University, Singapore, Republic of Singapore
| | - Songzhu Luo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Fanxu Meng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yaolong Bo
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China
- College of Electrical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yanghong Xia
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China
- College of Electrical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yansong Jia
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China
- Institute of Advanced Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Adrian C Fisher
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore, Republic of Singapore
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore.
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
2
|
Lee JL, Gentry NE, Peper JL, Hetzel S, Quist C, Menges FS, Mayer JM. Oxygen Atom Transfer Reactions of Colloidal Metal Oxide Nanoparticles. ACS NANO 2025; 19:10289-10300. [PMID: 40040243 DOI: 10.1021/acsnano.4c17955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Redox transformations at metal oxide (MOx)/solution interfaces are broadly important, and oxygen atom transfer (OAT) is one of the simplest and most fundamental examples of such reactivity. OAT is a two-electron transfer process, well-known in gas/solid reactions and catalysis. However, OAT is rarely directly observed at oxide/water interfaces, whose redox reactions are typically proposed to occur in one-electron steps. Reported here are stoichiometric OAT reactions of organic molecules with aqueous colloidal titanium dioxide and iridium oxide nanoparticles (TiO2 and IrOx NPs). Me2SO (DMSO) oxidizes reduced TiO2 NPs with the formation of Me2S, and IrOx NPs transfer O atoms to a water-soluble phosphine and a thioether. The reaction stoichiometries were established and the chemical mechanisms were probed using typical solution spectroscopic techniques, exploiting the high surface areas and transparency of the colloids. These OAT reactions, including a catalytic example, utilize the ability of the individual NPs to accumulate many electrons and/or holes. Observing OAT reactions of two different materials, in opposite directions, is a step toward harnessing oxide nanoparticles for valuable multi-electron and multi-hole transformations.
Collapse
Affiliation(s)
- Justin L Lee
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | | | - Jennifer L Peper
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Staci Hetzel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Christine Quist
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Fabian S Menges
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
3
|
Fairhurst A, Snyder J, Wang C, Strmcnik D, Stamenkovic VR. Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces. Chem Rev 2025; 125:1332-1419. [PMID: 39873431 PMCID: PMC11826915 DOI: 10.1021/acs.chemrev.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025]
Abstract
The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena. To make significant strides in materials design, a structured approach based on well-defined surfaces is necessary to selectively control distinct parameters, while complexity is added sequentially through careful application of nanostructured surfaces. In this review, we cover advances made through this approach for key elements in the field, beginning with the simplest hydrogen oxidation and evolution reactions and concluding with more complex organic molecules. In each case, we offer a unique perspective on the contribution of well-defined systems to our understanding of electrochemical energy conversion technologies and how wider deployment can aid intelligent materials design.
Collapse
Affiliation(s)
- Alasdair
R. Fairhurst
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Joshua Snyder
- Department
of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chao Wang
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 United States
| | - Dusan Strmcnik
- National
Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Vojislav R. Stamenkovic
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
4
|
Yang T, Wu B, Ding C, Yan X, Tian W, Jin S. Proton-Controlled Electron Injection in MoS 2 During Hydrogen Evolution Revealed by Time-Resolved Spectroelectrochemistry. J Am Chem Soc 2025; 147:4531-4540. [PMID: 39841880 DOI: 10.1021/jacs.4c16536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Monolayer MoS2 is an effective electrocatalyst for the hydrogen evolution reaction (HER). Despite significant efforts to optimize the active sites, its catalytic performance still falls short of theoretical predictions. One key factor that has often been overlooked is the electron injection from the conductive substrate into the MoS2. The charge transfer behavior at the substrate-MoS2 interface is nonclassical, exhibiting a liquid-gated electron injection behavior, the underlying mechanism of which remain under debate. To investigate this, we employ nanosecond time-resolved spectroelectrochemistry to probe the electron injection dynamics into monolayer MoS2 under operando HER conditions. Simultaneously, transient current measurements provide insights into the electron density at the substrate. By combining the electron density obtained from the MoS2 through spectroelectrochemical analysis with the electron density at the conductive substrate derived from transient current measurements, we explore the electron injection dynamics and characterize the current density potential (J-E) behavior at the substrate-MoS2 interface. Our findings show that the electron injection barrier and capability correlate strongly with proton concentration in the electrolyte. This relationship likely reflects the electron concentration-dependent conductivity of MoS2, where higher proton concentrations lead to fewer stray electrons before injection begins.
Collapse
Affiliation(s)
- Tao Yang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Boning Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianchang Yan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Lee H, Kim KH, Rao RR, Park DG, Choi WH, Choi JH, Kim DW, Jung DH, Stephens IEL, Durrant JR, Kang JK. A hydrogen radical pathway for efficacious electrochemical nitrate reduction to ammonia over an Fe-polyoxometalate/Cu electrocatalyst. MATERIALS HORIZONS 2024; 11:4115-4122. [PMID: 38884595 DOI: 10.1039/d4mh00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Electrochemical nitrate (NO3-) reduction to ammonia (NH3), which is a high value-added chemical or high-energy density carrier in many applications, could become a key process overcoming the disadvantages of the Haber-Bosch process; however, current electrocatalysts have severe drawbacks in terms of activity, selectivity, and stability. Here, we report the hydrogen radical (H*) pathway as a solution to overcome this challenge, as demonstrated by efficacious electrochemical NO3- reduction to NH3 over the Fe-polyoxometalate (Fe-POM)/Cu hybrid electrocatalyst. Fe-POM, composed of Preyssler anions ([NaP5W30O110]14-) and Fe cations, facilitates efficient H* generation via H2O + e- → H* + OH-, and H* transfer to the Cu sites of the Fe-POM/Cu catalyst enables selective NO3- reduction to NH3. Operando spectroelectrochemical spectra substantiate the occurrence of the H* pathway through direct observation of Fe redox related to H* generation and Cu redox related to NO3- binding. With the H* pathway, the Fe-POM/Cu electrodes exhibit high activity for NO3- reduction to NH3 with 1.44 mg cm-2 h-1 in a 500 ppm NO3-/1 M KOH solution at -0.2 V vs. RHE, which is about 36-fold higher than that of the pristine Cu electrocatalyst. Additionally, it attains high selectivity with a faradaic efficiency of up to 97.09% at -0.2 V vs. RHE while exhibiting high catalytic stability over cycles.
Collapse
Affiliation(s)
- Heebin Lee
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Keon-Han Kim
- Chemical Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Reshma R Rao
- Department of Materials, Imperial College London, London W12 0BZ, UK
| | - Dong Gyu Park
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Won Ho Choi
- Department of Petrochemical Materials, Chonnam National University, 50 Daehak-ro, Yeosu-si 59631, Republic of Korea
| | - Jong Hui Choi
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Dong Won Kim
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Do Hwan Jung
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Ifan E L Stephens
- Department of Materials, Imperial College London, London W12 0BZ, UK
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, UK.
| | - Jeung Ku Kang
- Department of Materials Science and Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Jones TE, Teschner D, Piccinin S. Toward Realistic Models of the Electrocatalytic Oxygen Evolution Reaction. Chem Rev 2024; 124:9136-9223. [PMID: 39038270 DOI: 10.1021/acs.chemrev.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The electrocatalytic oxygen evolution reaction (OER) supplies the protons and electrons needed to transform renewable electricity into chemicals and fuels. However, the OER is kinetically sluggish; it operates at significant rates only when the applied potential far exceeds the reversible voltage. The origin of this overpotential is hidden in a complex mechanism involving multiple electron transfers and chemical bond making/breaking steps. Our desire to improve catalytic performance has then made mechanistic studies of the OER an area of major scientific inquiry, though the complexity of the reaction has made understanding difficult. While historically, mechanistic studies have relied solely on experiment and phenomenological models, over the past twenty years ab initio simulation has been playing an increasingly important role in developing our understanding of the electrocatalytic OER and its reaction mechanisms. In this Review we cover advances in our mechanistic understanding of the OER, organized by increasing complexity in the way through which the OER is modeled. We begin with phenomenological models built using experimental data before reviewing early efforts to incorporate ab initio methods into mechanistic studies. We go on to cover how the assumptions in these early ab initio simulations─no electric field, electrolyte, or explicit kinetics─have been relaxed. Through comparison with experimental literature, we explore the veracity of these different assumptions. We summarize by discussing the most critical open challenges in developing models to understand the mechanisms of the OER.
Collapse
Affiliation(s)
- Travis E Jones
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
| | - Detre Teschner
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
- Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Simone Piccinin
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, Trieste 34136, Italy
| |
Collapse
|
7
|
Rao RR, Bucci A, Corby S, Moss B, Liang C, Gopakumar A, Stephens IEL, Lloret-Fillol J, Durrant JR. Unraveling the Role of Particle Size and Nanostructuring on the Oxygen Evolution Activity of Fe-Doped NiO. ACS Catal 2024; 14:11389-11399. [PMID: 39114087 PMCID: PMC11301624 DOI: 10.1021/acscatal.4c02329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Nickel-based oxides and oxyhydroxide catalysts exhibit state-of-the-art activity for the sluggish oxygen evolution reaction (OER) under alkaline conditions. A widely employed strategy to increase the gravimetric activity of the catalyst is to increase the active surface area via nanostructuring or decrease the particle size. However, the fundamental understanding about how tuning these parameters influences the density of oxidized species and their reaction kinetics remains unclear. Here, we use solution combustion synthesis, a low-cost and scalable approach, to synthesize a series of Fe0.1Ni0.9O samples from different precursor salts. Based on the precursor salt, the nanoparticle size can be changed significantly from ∼2.5 to ∼37 nm. The OER activity at pH 13 trends inversely with the particle size. Using operando time-resolved optical spectroscopy, we quantify the density of oxidized species as a function of potential and demonstrate that the OER kinetics exhibits a second-order dependence on the density of these species, suggesting that the OER mechanism relies on O-O coupling between neighboring oxidized species. With the decreasing particle size, the density of species accumulated is found to increase, and their intrinsic reactivity for the OER is found to decrease, attributed to the stronger binding of *O species (i.e., a cathodic shift of species energetics). This signifies that the high apparent OER activity per geometric area of the smaller nanoparticles is driven by their ability to accumulate a larger density of oxidized species. This study not only experimentally disentangles the influence of the density of oxidized species and intrinsic kinetics on the overall rate of the OER but also highlights the importance of tuning these parameters independently to develop more active OER catalysts.
Collapse
Affiliation(s)
- Reshma R. Rao
- Department
of Materials, Royal School of Mines, Imperial
College London, South Kensington Campus, London SW7 2AZ, U.K.
- Grantham
Institute—Centre for Climate Change and the Environment, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Alberto Bucci
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Sacha Corby
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Benjamin Moss
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Caiwu Liang
- Department
of Materials, Royal School of Mines, Imperial
College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Aswin Gopakumar
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Ifan E. L. Stephens
- Department
of Materials, Royal School of Mines, Imperial
College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Julio Lloret-Fillol
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Passeig Lluıs Companys, 23, Barcelona 08010, Spain
| | - James R. Durrant
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
8
|
Matter L, Abdullaeva OS, Shaner S, Leal J, Asplund M. Bioelectronic Direct Current Stimulation at the Transition Between Reversible and Irreversible Charge Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306244. [PMID: 38460180 PMCID: PMC11251568 DOI: 10.1002/advs.202306244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/06/2024] [Indexed: 03/11/2024]
Abstract
Many biological processes rely on endogenous electric fields (EFs), including tissue regeneration, cell development, wound healing, and cancer metastasis. Mimicking these biological EFs by applying external direct current stimulation (DCS) is therefore the key to many new therapeutic strategies. During DCS, the charge transfer from electrode to tissue relies on a combination of reversible and irreversible electrochemical processes, which may generate toxic or bio-altering substances, including metal ions and reactive oxygen species (ROS). Poly(3,4-ethylenedioxythiophene) (PEDOT) based electrodes are emerging as suitable candidates for DCS to improve biocompatibility compared to metals. This work addresses whether PEDOT electrodes can be tailored to favor reversible biocompatible charge transfer. To this end, different PEDOT formulations and their respective back electrodes are studied using cyclic voltammetry, chronopotentiometry, and direct measurements of H2O2 and O2. This combination of electrochemical methods sheds light on the time dynamics of reversible and irreversible charge transfer and the relationship between capacitance and ROS generation. The results presented here show that although all electrode materials investigated generate ROS, the onset of ROS can be delayed by increasing the electrode's capacitance via PEDOT coating, which has implications for future bioelectronic devices that allow longer reversibly driven pulse durations during DCS.
Collapse
Affiliation(s)
- Lukas Matter
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSE 41296Sweden
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 1979104FreiburgGermany
| | - Oliya S. Abdullaeva
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleåSE 97187Sweden
| | - Sebastian Shaner
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
| | - José Leal
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
| | - Maria Asplund
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSE 41296Sweden
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 1979104FreiburgGermany
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleåSE 97187Sweden
| |
Collapse
|
9
|
Li B, Oldham LI, Tian L, Zhou G, Selim S, Steier L, Durrant JR. Electrochemical versus Photoelectrochemical Water Oxidation Kinetics on Bismuth Vanadate (Photo)anodes. J Am Chem Soc 2024; 146:12324-12328. [PMID: 38661382 PMCID: PMC11082883 DOI: 10.1021/jacs.4c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
This study reports a comparison of the kinetics of electrochemical (EC) versus photoelectrochemical (PEC) water oxidation on bismuth vanadate (BiVO4) photoanodes. Plots of current density versus surface hole density, determined from operando optical absorption analyses under EC and PEC conditions, are found to be indistinguishable. We thus conclude that EC water oxidation is driven by the Zener effect tunneling electrons from the valence to conduction band under strong bias, with the kinetics of both EC and PEC water oxidation being determined by the density of accumulated surface valence band holes. We further demonstrate that our combined optical absorption/current density analyses enable an operando quantification of the BiVO4 photovoltage as a function of light intensity.
Collapse
Affiliation(s)
- Biwen Li
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Louise I. Oldham
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Lei Tian
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Guanda Zhou
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Shababa Selim
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - Ludmilla Steier
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| | - James R. Durrant
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, United
Kingdom
| |
Collapse
|
10
|
Liang C, Katayama Y, Tao Y, Morinaga A, Moss B, Celorrio V, Ryan M, Stephens IEL, Durrant JR, Rao RR. Role of Electrolyte pH on Water Oxidation for Iridium Oxides. J Am Chem Soc 2024; 146:8928-8938. [PMID: 38526298 PMCID: PMC10996014 DOI: 10.1021/jacs.3c12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Understanding the effect of noncovalent interactions of intermediates at the polarized catalyst-electrolyte interface on water oxidation kinetics is key for designing more active and stable electrocatalysts. Here, we combine operando optical spectroscopy, X-ray absorption spectroscopy (XAS), and surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe the effect of noncovalent interactions on the oxygen evolution reaction (OER) activity of IrOx in acidic and alkaline electrolytes. Our results suggest that the active species for the OER (Ir4.x+-*O) binds much stronger in alkaline compared with acid at low coverage, while the repulsive interactions between these species are higher in alkaline electrolytes. These differences are attributed to the larger fraction of water within the cation hydration shell at the interface in alkaline electrolytes compared to acidic electrolytes, which can stabilize oxygenated intermediates and facilitate long-range interactions between them. Quantitative analysis of the state energetics shows that although the *O intermediates bind more strongly than optimal in alkaline electrolytes, the larger repulsive interaction between them results in a significant weakening of *O binding with increasing coverage, leading to similar energetics of active states in acid and alkaline at OER-relevant potentials. By directly probing the electrochemical interface with complementary spectroscopic techniques, our work goes beyond conventional computational descriptors of the OER activity to explain the experimentally observed OER kinetics of IrOx in acidic and alkaline electrolytes.
Collapse
Affiliation(s)
- Caiwu Liang
- Department of
Materials, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| | - Yu Katayama
- Department
of Energy and Environmental Materials, SANKEN (The Institute of Scientific
and Industrial Research), Osaka University, Mihogaoka 8-1, Osaka 567-0047, Ibaraki, Japan
| | - Yemin Tao
- Department of
Materials, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| | - Asuka Morinaga
- Department
of Energy and Environmental Materials, SANKEN (The Institute of Scientific
and Industrial Research), Osaka University, Mihogaoka 8-1, Osaka 567-0047, Ibaraki, Japan
| | - Benjamin Moss
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, White city campus, W12 0BZ London, United Kingdom
| | - Verónica Celorrio
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United
Kingdom
| | - Mary Ryan
- Department of
Materials, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| | - Ifan E. L. Stephens
- Department of
Materials, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| | - James R. Durrant
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, White city campus, W12 0BZ London, United Kingdom
| | - Reshma R. Rao
- Department of
Materials, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| |
Collapse
|
11
|
Moss B, Svane KL, Nieto-Castro D, Rao RR, Scott SB, Tseng C, Sachs M, Pennathur A, Liang C, Oldham LI, Mazzolini E, Jurado L, Sankar G, Parry S, Celorrio V, Dawlaty JM, Rossmeisl J, Galán-Mascarós JR, Stephens IEL, Durrant JR. Cooperative Effects Drive Water Oxidation Catalysis in Cobalt Electrocatalysts through the Destabilization of Intermediates. J Am Chem Soc 2024; 146:8915-8927. [PMID: 38517290 PMCID: PMC10995992 DOI: 10.1021/jacs.3c11651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
A barrier to understanding the factors driving catalysis in the oxygen evolution reaction (OER) is understanding multiple overlapping redox transitions in the OER catalysts. The complexity of these transitions obscure the relationship between the coverage of adsorbates and OER kinetics, leading to an experimental challenge in measuring activity descriptors, such as binding energies, as well as adsorbate interactions, which may destabilize intermediates and modulate their binding energies. Herein, we utilize a newly designed optical spectroelectrochemistry system to measure these phenomena in order to contrast the behavior of two electrocatalysts, cobalt oxyhydroxide (CoOOH) and cobalt-iron hexacyanoferrate (cobalt-iron Prussian blue, CoFe-PB). Three distinct optical spectra are observed in each catalyst, corresponding to three separate redox transitions, the last of which we show to be active for the OER using time-resolved spectroscopy and electrochemical mass spectroscopy. By combining predictions from density functional theory with parameters obtained from electroadsorption isotherms, we demonstrate that a destabilization of catalytic intermediates occurs with increasing coverage. In CoOOH, a strong (∼0.34 eV/monolayer) destabilization of a strongly bound catalytic intermediate is observed, leading to a potential offset between the accumulation of the intermediate and measurable O2 evolution. We contrast these data to CoFe-PB, where catalytic intermediate generation and O2 evolution onset coincide due to weaker binding and destabilization (∼0.19 eV/monolayer). By considering a correlation between activation energy and binding strength, we suggest that such adsorbate driven destabilization may account for a significant fraction of the observed OER catalytic activity in both materials. Finally, we disentangle the effects of adsorbate interactions on state coverages and kinetics to show how adsorbate interactions determine the observed Tafel slopes. Crucially, the case of CoFe-PB shows that, even where interactions are weaker, adsorption remains non-Nernstian, which strongly influences the observed Tafel slope.
Collapse
Affiliation(s)
- Benjamin Moss
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | | | - David Nieto-Castro
- Institut
Català d’Investigació Química (ICIQ), Avda. Països Catalans 16, 43007, Tarragona, Spain
| | - Reshma R. Rao
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | - Soren B. Scott
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | - Cindy Tseng
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United
States
| | - Michael Sachs
- SLAC
National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Anuj Pennathur
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United
States
| | - Caiwu Liang
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | - Louise I. Oldham
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | - Eva Mazzolini
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | - Lole Jurado
- Institut
Català d’Investigació Química (ICIQ), Avda. Països Catalans 16, 43007, Tarragona, Spain
| | - Gopinathan Sankar
- SLAC
National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Stephen Parry
- Diamond
Light Source, Harwell
Science and Innovation Campus, Fermi Ave., Didcot OX11 0D, United Kingdom
| | - Veronica Celorrio
- Diamond
Light Source, Harwell
Science and Innovation Campus, Fermi Ave., Didcot OX11 0D, United Kingdom
| | - Jahan M. Dawlaty
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United
States
| | - Jan Rossmeisl
- University
of Copenhagen, Universitetsparken
5, 2100 København
Ø, Denmark
| | - J. R. Galán-Mascarós
- Institut
Català d’Investigació Química (ICIQ), Avda. Països Catalans 16, 43007, Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Ifan E. L. Stephens
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| | - James R. Durrant
- Imperial
College London, Molecular Sciences
Research Hub (MSRH), 82
Wood Lane, London W120BZ, United Kingdom
| |
Collapse
|
12
|
Bols ML, Ma J, Rammal F, Plessers D, Wu X, Navarro-Jaén S, Heyer AJ, Sels BF, Solomon EI, Schoonheydt RA. In Situ UV-Vis-NIR Absorption Spectroscopy and Catalysis. Chem Rev 2024; 124:2352-2418. [PMID: 38408190 PMCID: PMC11809662 DOI: 10.1021/acs.chemrev.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.
Collapse
Affiliation(s)
- Max L Bols
- Laboratory for Chemical Technology (LCT), University of Ghent, Technologiepark Zwijnaarde 125, 9052 Ghent, Belgium
| | - Jing Ma
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Fatima Rammal
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xuejiao Wu
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sara Navarro-Jaén
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Alexander J Heyer
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
13
|
Wang S, Zang J, Shi W, Zhou D, Jia Y, Wu J, Yan W, Zhang B, Sun L, Fan K. Simultaneously Improved Activity and Stability for Acidic Water Oxidation of IrRu Oxides by a Dual Role of Tungsten Doping. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59432-59443. [PMID: 38108306 DOI: 10.1021/acsami.3c13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Acidic oxygen evolution reaction (OER) remains a significant challenge due to the low activity and/or poor stability of the catalysts, even with state-of-the-art catalysts such as IrO2 and RuO2. Herein, we propose a strategy to enhance both the catalytic activity and stability of IrRu oxides for acidic OER by doping non-noble metal W. The W-doped IrRu3Ox (W-IrRu3Ox) undergoes a process of W leaching and reconstruction during the OER, leading to a more uniform distribution of elements, while the electronegative nature of W influences the electronic structures of Ir and Ru in W-IrRu3Ox. The dual role of W in promoting the formation of active site Ir5+ and inhibiting the concentration of soluble Ru>4+ ions results in a synergistic enhancement of both the activity and stability of acidic OER. Remarkably, W-IrRu3Ox exhibits outstanding catalytic activity for the OER in 0.5 M H2SO4, with a high stability of more than 500 h. This work presents a novel and feasible strategy for the development of efficient and stable catalysts for acid OER, shedding light on the design of advanced electrocatalysts for energy conversion and storage applications.
Collapse
Affiliation(s)
- Simeng Wang
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Jianyang Zang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024 Hangzhou, China
| | - Weili Shi
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024 Hangzhou, China
| | - Dinghua Zhou
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Yufei Jia
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Jingpin Wu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Weihong Yan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Biaobiao Zhang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024 Hangzhou, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024 Hangzhou, China
| | - Ke Fan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Frontier Science Center for Smart Materials, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
14
|
Jenewein KJ, Wang Y, Liu T, McDonald T, Zlatar M, Kulyk N, Benavente Llorente V, Kormányos A, Wang D, Cherevko S. Electrolyte Engineering Stabilizes Photoanodes Decorated with Molecular Catalysts. CHEMSUSCHEM 2023; 16:e202202319. [PMID: 36602840 DOI: 10.1002/cssc.202202319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Molecular catalysts are promising oxygen evolution promoters in conjunction with photoanodes for solar water splitting. Maintaining the stability of both photoabsorber and cocatalyst is still a prime challenge, with many efforts tackling this issue through sophisticated material designs. Such approaches often mask the importance of the electrode-electrolyte interface and overlook easily tunable system parameters, such as the electrolyte environment, to improve efficiency. We provide a systematic study on the activity-stability relationship of a prominent Fe2 O3 photoanode modified with Ir molecular catalysts using in situ mass spectroscopy. After gaining detailed insights into the dissolution behavior of the Ir cocatalyst, a comprehensive pH study is conducted to probe the impact of the electrolyte on the performance. An inverse trend in Fe and Ir stability is found, with the best activity-stability synergy obtained at pH 9.7. The results bring awareness to the overall photostability and electrolyte engineering when advancing catalysts for solar water splitting.
Collapse
Affiliation(s)
- Ken J Jenewein
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy IEK-11, Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Yuanxing Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon St., Chestnut Hill, MA 02467, USA
| | - Tianying Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon St., Chestnut Hill, MA 02467, USA
| | - Tara McDonald
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon St., Chestnut Hill, MA 02467, USA
| | - Matej Zlatar
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy IEK-11, Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Nadiia Kulyk
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy IEK-11, Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
| | - Victoria Benavente Llorente
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy IEK-11, Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
| | - Attila Kormányos
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy IEK-11, Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged, H-6720, Hungary
| | - Dunwei Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon St., Chestnut Hill, MA 02467, USA
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy IEK-11, Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
| |
Collapse
|
15
|
Humayun M, Ullah H, Hu C, Tian M, Pi W, Zhang Y, Luo W, Wang C. Enhanced Photocatalytic H 2 Evolution Performance of the Type-II FeTPPCl/Porous g-C 3N 4 Heterojunction: Experimental and Density Functional Theory Studies. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892209 DOI: 10.1021/acsami.3c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is of great significance to improve the photocatalytic performance of g-C3N4 by promoting its surface-active sites and engineering more suitable and stable redox couples. Herein, first of all, we fabricated porous g-C3N4 (PCN) via the sulfuric acid-assisted chemical exfoliation method. Then, we modified the porous g-C3N4 with iron(III) meso-tetraphenylporphine chloride (FeTPPCl) porphyrin via the wet-chemical method. The as-fabricated FeTPPCl-PCN composite revealed exceptional performance for photocatalytic water reduction by evolving 253.36 and 8301 μmol g-1 of H2 after visible and UV-visible irradiation for 4 h, respectively. The performance of the FeTPPCl-PCN composite is ∼2.45 and 4.75-fold improved compared to that of the pristine PCN photocatalyst under the same experimental conditions. The calculated quantum efficiencies of the FeTPPCl-PCN composite for H2 evolution at 365 and 420 nm wavelengths are 4.81 and 2.68%, respectively. This exceptional H2 evolution performance is because of improved surface-active sites due to porous architecture and remarkably improved charge carrier separation via the well-aligned type-II band heterostructure. Besides, we also reported the correct theoretical model of our catalyst through density functional theory (DFT) simulations. It is found that the hydrogen evolution reaction (HER) activity of FeTPPCl-PCN arises from the electron transfer from PCN via Cl atom(s) to Fe of the FeTPPCl, which forms a strong electrostatic interaction, leading to a decreased local work function on the surface of the catalyst. We suggest that the resultant composite would be a perfect model for the design and fabrication of high-efficiency heterostructure photocatalysts for energy applications.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Habib Ullah
- Department of Renewable Energy, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Chao Hu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Mi Tian
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Wenbo Pi
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yi Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Wei Luo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
16
|
Luo H, Yukuhiro VY, Fernández PS, Feng J, Thompson P, Rao RR, Cai R, Favero S, Haigh SJ, Durrant JR, Stephens IEL, Titirici MM. Role of Ni in PtNi Bimetallic Electrocatalysts for Hydrogen and Value-Added Chemicals Coproduction via Glycerol Electrooxidation. ACS Catal 2022; 12:14492-14506. [PMID: 36504912 PMCID: PMC9724082 DOI: 10.1021/acscatal.2c03907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Indexed: 11/12/2022]
Abstract
Pt-based bimetallic electrocatalysts are promising candidates to convert surplus glycerol from the biodiesel industry to value-added chemicals and coproduce hydrogen. It is expected that the nature and content of the elements in the bimetallic catalyst can not only affect the reaction kinetics but also influence the product selectivity, providing a way to increase the yield of the desired products. Hence, in this work, we investigate the electrochemical oxidation of glycerol on a series of PtNi nanoparticles with increasing Ni content using a combination of physicochemical structural analysis, electrochemical measurements, operando spectroscopic techniques, and advanced product characterizations. With a moderate Ni content and a homogenously alloyed bimetallic Pt-Ni structure, the PtNi2 catalyst displayed the highest reaction activity among all materials studied in this work. In situ FTIR data show that PtNi2 can activate the glycerol molecule at a more negative potential (0.4 V RHE) than the other PtNi catalysts. In addition, its surface can effectively catalyze the complete C-C bond cleavage, resulting in lower CO poisoning and higher stability. Operando X-ray absorption spectroscopy and UV-vis spectroscopy suggest that glycerol adsorbs strongly onto surface Ni(OH) x sites, preventing their oxidation and activation of oxygen or hydroxyl from water. As such, we propose that the role of Ni in PtNi toward glycerol oxidation is to tailor the electronic structure of the pure Pt sites rather than a bifunctional mechanism. Our experiments provide guidance for the development of bimetallic catalysts toward highly efficient, selective, and stable glycerol oxidation reactions.
Collapse
Affiliation(s)
- Hui Luo
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| | - Victor Y. Yukuhiro
- Chemistry
Institute and Center for Innovation on New Energies, State University of Campinas, P.O. Box
6154, São Paulo13083-970, Campinas, Brazil
| | - Pablo S. Fernández
- Chemistry
Institute and Center for Innovation on New Energies, State University of Campinas, P.O. Box
6154, São Paulo13083-970, Campinas, Brazil
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, LondonSW7 2AZ, U.K.,School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, U.K.
| | - Paul Thompson
- XMaS
CRG, ESRF, 71 Avenue
des Martyrs, Grenoble38000, France
| | - Reshma R. Rao
- Department
of Materials, Imperial College London, South Kensington Campus, LondonSW7 2AZ, U.K.
| | - Rongsheng Cai
- School of
Materials, University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| | - Sarah J. Haigh
- School of
Materials, University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - James R. Durrant
- Centre
for Processable Electronics, Imperial College
London, LondonSW7 2AZ, U.K.,Department
of Chemistry, Imperial College London, South Kensington Campus, LondonSW7 2AZ, U.K.
| | - Ifan E. L. Stephens
- Department
of Materials, Imperial College London, South Kensington Campus, LondonSW7 2AZ, U.K.,
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, LondonSW7 2AZ, U.K.,Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan,
| |
Collapse
|
17
|
Medium-independent hydrogen atom binding isotherms of nickel oxide electrodes. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Performance of Insoluble IrO2 Anode for Sewage Sludge Cake Electrodehydration Application with Respect to Operation Conditions. COATINGS 2022. [DOI: 10.3390/coatings12060724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The efficient management of wastewater and sewage sludge treatment are becoming crucial with industrialization and increasing anthropological effects. Dehydration of sewage sludge cakes (SSCs) is typically carried out using mechanical and electrochemical processes. Using the mechanical dehydration process, only a limited amount of water can be removed, and the resultant SSCs have a water content of approximately 70–80 wt.%, which is significantly high for land dumping or recycling as solid fuel. Dumping high-moisture-content SSCs in land can lead to leakage of hazardous wastewater into the ground and cause economic loss. Therefore, dehydration of SSCs is crucial. Contemporary treatment methods focus on the development of anode materials for the electrochemical processes. IrO2 is an insoluble anode material that is eco-friendly, less expensive, and exhibits high chemical stability, and it has been widely used and investigated in wastewater treatment and electrodehydration (ED) industries. Herein, we evaluated the performance of the ED system developed using IrO2 anode material. The operating conditions of the anode such as reaction time, sludge thickness, and voltage on SSC were optimized. The performance of the ED system was evaluated based on the moisture content of SSCs after dehydration. The moisture content decreased proportionally with the reaction time, sludge thickness, and voltage. The moisture content of 40 wt.% was determined as the optimum quantity for land dumping or to be used as recycled solid fuel.
Collapse
|
19
|
Bozal-Ginesta C, Rao RR, Mesa CA, Wang Y, Zhao Y, Hu G, Antón-García D, Stephens IEL, Reisner E, Brudvig GW, Wang D, Durrant JR. Spectroelectrochemistry of Water Oxidation Kinetics in Molecular versus Heterogeneous Oxide Iridium Electrocatalysts. J Am Chem Soc 2022; 144:8454-8459. [PMID: 35511107 PMCID: PMC9121376 DOI: 10.1021/jacs.2c02006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Water oxidation is the step limiting
the efficiency of electrocatalytic
hydrogen production from water. Spectroelectrochemical analyses are
employed to make a direct comparison of water oxidation reaction kinetics
between a molecular catalyst, the dimeric iridium catalyst [Ir2(pyalc)2(H2O)4-(μ-O)]2+ (IrMolecular, pyalc
= 2-(2′pyridinyl)-2-propanolate) immobilized on a mesoporous
indium tin oxide (ITO) substrate, with that of an heterogeneous electrocatalyst,
an amorphous hydrous iridium (IrOx) film. For both systems, four analogous redox states were
detected, with the formation of Ir(4+)–Ir(5+) being the potential-determining
step in both cases. However, the two systems exhibit distinct water
oxidation reaction kinetics, with potential-independent first-order
kinetics for IrMolecular contrasting
with potential-dependent kinetics for IrOx. This is attributed to water oxidation on the heterogeneous
catalyst requiring co-operative effects between neighboring oxidized
Ir centers. The ability of IrMolecular to drive water oxidation without such co-operative effects
is explained by the specific coordination environment around its Ir
centers. These distinctions between molecular and heterogeneous reaction
kinetics are shown to explain the differences observed in their water
oxidation electrocatalytic performance under different potential conditions.
Collapse
Affiliation(s)
- Carlota Bozal-Ginesta
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Reshma R Rao
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Camilo A Mesa
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Yuanxing Wang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Yanyan Zhao
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Gongfang Hu
- Yale Energy Sciences Institute and Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Daniel Antón-García
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Ifan E L Stephens
- Department of Materials, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Gary W Brudvig
- Yale Energy Sciences Institute and Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Dunwei Wang
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - James R Durrant
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
20
|
Kang J, Xue Y, Yang J, Hu Q, Zhang Q, Gu L, Selloni A, Liu LM, Guo L. Realizing Two-Electron Transfer in Ni(OH) 2 Nanosheets for Energy Storage. J Am Chem Soc 2022; 144:8969-8976. [PMID: 35500303 DOI: 10.1021/jacs.1c13523] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The theoretical capacity of a given electrode material is ultimately determined by the number of electrons transferred in each redox center. The design of multi-electron transfer processes could break through the limitation of one-electron transfer and multiply the total capacity but is difficult to achieve because multiple electron transfer processes are generally thermodynamically and kinetically more complex. Here, we report the discovery of two-electron transfer in monolayer Ni(OH)2 nanosheets, which contrasts with the traditional one-electron transfer found in multilayer materials. First-principles calculations predict that the first oxidation process Ni2+ → Ni3+ occurs easily, whereas the second electron transfer in Ni3+ → Ni4+ is strongly hindered in multilayer materials by both the interlayer hydrogen bonds and the domain H structure induced by the Jahn-Teller distortion of the Ni3+ (t2g6eg1)-centered octahedra. In contrast, the second electron transfer can easily occur in monolayers because all H atoms are fully exposed. Experimentally, the as-prepared monolayer is found to deliver an exceptional redox capacity of ∼576 mA h/g, nearly 2 times the theoretical capacity of one-electron processes. In situ experiments demonstrate that monolayer Ni(OH)2 can transfer two electrons and most Ni ions transform into Ni4+ during the charging process, whereas bulk Ni(OH)2 can only be transformed partially. Our work reveals a new redox reaction mechanism in atomically thin Ni(OH)2 nanosheets and suggests a promising path toward tuning the electron transfer numbers to multiply the capacity of the relevant energy storage materials.
Collapse
Affiliation(s)
- Jianxin Kang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Yufeng Xue
- School of Physics, Beihang University, Beijing 100191, China
| | - Jie Yang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Qi Hu
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Annabella Selloni
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| |
Collapse
|