1
|
Alotaibi N, Babaahmadi R, Das S, Richards E, Wirth T, Pramanik M, Melen RL. B(C 6F 5) 3-Catalyzed Regiodivergent Thioetherifications of Alkenes via Thiiranium Intermediates: Experimental and Computational Insights. Chemistry 2025; 31:e202404236. [PMID: 39652309 PMCID: PMC11833220 DOI: 10.1002/chem.202404236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Indexed: 12/25/2024]
Abstract
Precise control of selective alkene functionalization is a continuing challenge in the chemical community. In this study, we develop a substitution-controlled regiodivergent thioetherification of di- or trisubstituted alkenes using 10 mol % tris(pentafluorophenyl)borane [B(C6F5)3] as a catalyst and N-thiosuccinimide as a sulfenylating reagent. This metal-free borane catalyzed C-S bond forming method is utilized for a Csp2-H sulfenylation reaction to synthesize an array of diphenylvinylsulfide derivatives with good to excellent yields (25 examples, up to 91 % yield). Some of the products exhibit aggregation-induced emission luminogen properties used in organic light-emitting diodes (OLEDs), chemical sensors, and biological imaging units. Depending upon the starting alkene, Csp3-S sulfenylation products could also be generated regioselectively. A variety of allylic thioethers from α-alkyl substituted styrenes were isolable in good yields and selectivities (14 examples, up to 67 % yield). The DFT-supported mechanistic study confirms that the reaction proceeds via a thiiranium ion intermediate, where the regioselectivity and product formation is determined by the alkene substituents which influence the activation barriers and energy profiles. Diphenylvinylsulfide derivatives can also be efficiently transformed into a range of synthetically valuable compounds, including vinyl sulfoxides, vinyl sulfones, and vinyl sulfoximines.
Collapse
Affiliation(s)
- Nusaybah Alotaibi
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research Hub, Maindy Road, CathaysCardiff, Cymru/WalesCF24 4HQUK
- Department of ChemistryKing Faisal UniversityCollege of Science, P.O. Box 400Al-Ahsa31982Saudi Arabia
| | - Rasool Babaahmadi
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research Hub, Maindy Road, CathaysCardiff, Cymru/WalesCF24 4HQUK
| | - Sampurna Das
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research Hub, Maindy Road, CathaysCardiff, Cymru/WalesCF24 4HQUK
| | - Emma Richards
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research Hub, Maindy Road, CathaysCardiff, Cymru/WalesCF24 4HQUK
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiff, Cymru/WalesCF10 3ATUK
| | - Thomas Wirth
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiff, Cymru/WalesCF10 3ATUK
| | - Milan Pramanik
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research Hub, Maindy Road, CathaysCardiff, Cymru/WalesCF24 4HQUK
| | - Rebecca L. Melen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityTranslational Research Hub, Maindy Road, CathaysCardiff, Cymru/WalesCF24 4HQUK
| |
Collapse
|
2
|
Dhami A, Chandrasekharan SP, Mohanan K. BF 3-Mediated C2-Amidation of Quinoline N-Oxides Employing Trifluorodiazoethane and Acetonitrile: Access to 2- N-(Trifluoroethyl)amidoquinolines. Org Lett 2025; 27:180-185. [PMID: 39706825 DOI: 10.1021/acs.orglett.4c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
A Lewis acid-mediated C2-N-trifluoroethylamidation of quinolines, employing quinoline N-oxides, trifluorodiazoethane, and acetonitrile to forge a new class of N-(quinolin-2-yl)-N-(trifluoroethyl)acetamide is presented in this Letter. The reaction proceeds through a carbene generation/nitrile ylide formation/(3 + 2) cycloaddition/rearrangement cascade to furnish quinoline-2-N-(trifluoroethyl)acetamide derivatives in high yields.
Collapse
Affiliation(s)
- Anamika Dhami
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Sanoop P Chandrasekharan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Kishor Mohanan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
3
|
Farshadfar K, Laasonen K. Comparison of the Efficiency of B-O and B-C Bond Formation Pathways in Borane-Catalyzed Carbene Transfer Reactions Using α-Diazocarbonyl Precursors: A Combined Density Functional Theory and Machine Learning Study. ACS Catal 2024; 14:14486-14496. [PMID: 39445172 PMCID: PMC11494835 DOI: 10.1021/acscatal.4c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Lewis acidic boranes, especially tris(pentafluorophenyl)borane [B(C6F5)3], have emerged as metal-free catalysts for carbene transfer reactions of α-diazocarbonyl compounds in a variety of functionalization reactions. The established mechanism for how borane facilitates carbene generation for these compounds in the scientific community is based on the formation of a B-O (C=O) intermediate (path O). Herein, we report an extensive DFT study that challenges the notion of a ubiquitous path O, revealing that B-C(=N=N) bond formation (path C) for certain diazocarbonyl substrates proves to be the preferred pathway. This study elucidates, through the introduction of 22 various substituents on each side of the α-diazocarbonyl backbone, how the electron-donating and -withdrawing properties of substituents influence the competition between these B-O and B-C pathways. To elucidate the impact of the electronic features of diazo substrates on the competition between the O and C pathways in the studied dataset, we employed a machine learning approach based on the Random Forest model. This analysis revealed that substrates with higher electron density on the diazo-attached carbon, lower electron density on the carbonyl carbon, and more stable HOMO orbitals tend to proceed via path C. Furthermore, this study not only demonstrates that borane efficiency in facilitating N2 release is greatly affected by the nature of substituents on both sides of the α-diazocarbonyl functionality but also shows that for some substrates, borane is incapable of catalyzing the release of molecular nitrogen.
Collapse
Affiliation(s)
- Kaveh Farshadfar
- Department of Chemistry and
Material Science, School of chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Kari Laasonen
- Department of Chemistry and
Material Science, School of chemical Engineering, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
4
|
Yi M, Wu X, Yang L, Yuan Y, Lu Y, Zhang Z. Visible Light Induced B-H Bond Insertion Reaction with Diazo Compounds. J Org Chem 2024; 89:12583-12590. [PMID: 39158102 DOI: 10.1021/acs.joc.4c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A protocol induced by visible light for the direct insertion of α-carbonyl carbenes into the B-H bond of amine-borane adducts has been developed under conditions that are free of metal and photocatalyst. This approach provides a straightforward route to various organoboron compounds from diazo compounds and amine-borane adducts with moderate to good yields. Mechanistic investigations reveal that this photoinduced reaction proceeds through concerted carbene insertion into the B-H bond, and the photoinduced generation of free carbene from α-diazo esters may be the rate-determining step.
Collapse
Affiliation(s)
- Mingjun Yi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yao Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
5
|
Saptal VB, Ranjan P, Zbořil R, Nowicki M, Walkowiak J. Magnetically Recyclable Borane Lewis Acid Catalyst for Hydrosilylation of Imines and Reductive Amination of Carbonyls. CHEMSUSCHEM 2024; 17:e202400058. [PMID: 38630961 DOI: 10.1002/cssc.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Fluorinated arylborane-based Lewis acid catalysts have shown remarkable activity and serve as ideal examples of transition metal-free catalysts for diverse organic transformations. However, their homogeneous nature poses challenges in terms of recyclability and separation from reaction mixtures. This work presents an efficient technique for the heterogenization of boron Lewis acid catalysts by anchoring Piers' borane to allyl-functionalized iron oxide. This catalyst demonstrates excellent activity in the hydrosilylation of imines and the reductive amination of carbonyls using various silanes as reducing agents under mild reaction conditions. The catalyst exhibits broad tolerance towards a wide range of functional substrates. Furthermore, it exhibits good recyclability and can be easily separated from the products using an external magnetic field. This work represents a significant advance in the development of sustainable heterogenous metal-free catalysts for organic transformations.
Collapse
Affiliation(s)
- Vitthal B Saptal
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego Poznań, 10, 61-614, Poznan, Poland
| | - Prabodh Ranjan
- Department of Chemistry, Indian Institute of Technology, Kanpur, India, 208016
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00, Olomouc, Czech Republic
- CEET, Nanotechnology Centre, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Marek Nowicki
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego Poznań, 10, 61-614, Poznan, Poland
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965, Poznan, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego Poznań, 10, 61-614, Poznan, Poland
| |
Collapse
|
6
|
He C, Zhou G, Yang G, Wang F, Lu C, Nie J, Ma C. Borane-Catalyzed Coupling of Diazooxindoles and Difluoroenoxysilanes to Tetrasubstituted Monofluoroalkenes. Org Lett 2024; 26:5539-5543. [PMID: 38913774 DOI: 10.1021/acs.orglett.4c01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A highly stereoselective coupling reaction of diazooxindoles with difluoroenoxysilanes catalyzed by Lewis acidic boranes has been developed. The reaction proceeded at ambient temperature under transition metal-free conditions with wide functional group tolerance. By using this simple procedure, a series of tetrasubstituted monofluoroalkenes can be accessed in good yield with high selectivity.
Collapse
Affiliation(s)
- Chunhu He
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Guoyi Zhou
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Guichun Yang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Feiyi Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Cuifen Lu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Junqi Nie
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Chao Ma
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
7
|
Pathak JK, Kant R, Rastogi N. Chemodivergent phosphonylation of diazocarboxylates: light-on vs. light-off reactions. Org Biomol Chem 2024; 22:5224-5228. [PMID: 38869003 DOI: 10.1039/d4ob00573b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
By tapping into the divergent reactivity of diazocarboxylates under thermal and photocatalytic conditions, we could develop chemodivergent phosphonylation protocols for α-diazocarboxylates with trialkyl phosphites. While the thermal reaction led to N-P bond formation affording phosphonylated hydrazones, the visible light-mediated reaction furnished phosphonylated aryl carboxylates through C-P bond formation. Both reactions are notable for their operational simplicity and mild conditions affording products in good yields without the requirement of a metal, base or photocatalyst.
Collapse
Affiliation(s)
- Jalaj Kumar Pathak
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
8
|
Kim H, Lough A, Qu ZW, Grimme S, Stephan DW. Addition and NN bond cleavage of diazo-compounds by phosphino-phosphenium cations. Chem Commun (Camb) 2024; 60:1031-1034. [PMID: 38174434 DOI: 10.1039/d3cc05728c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The phosphino-phosphenium cation (PPC) [Ph3PPPh2][GaCl4] reacts as a frustrated Lewis pair to add across the NN bond of (tBuO2CN)2. In contrast, photolytical addition [Ph2ClPPPh2][GaCl4] to (RN)2 results in cleavage of the NN bond affording [Ph2P(μ-NR)2PPh2Cl][GaCl4] (R = Ph 2, C6H4Cl3). While the chloride of 2 is replaced with N3 or CN via reaction with Me3SiN3 or tBuNC respectively, reaction with (C6F5)2BH effects ring opening to give [HN(Ph)PPh2(μ-NPh)PPh2][GaCl4] 7. This reactivity demonstrates that PPCs behave as FLPs to effect either addition or cleavage of NN double bonds.
Collapse
Affiliation(s)
- Hyehwang Kim
- Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada.
| | - Alan Lough
- Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada.
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, Bonn 53115, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, Bonn 53115, Germany.
| | - Douglas W Stephan
- Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada.
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
9
|
Zhang C, Wan JP. Synthesis of Hypervalent Iodine Diazo Compounds and Their Application in Organic Synthesis. Chemistry 2024; 30:e202302718. [PMID: 37846841 DOI: 10.1002/chem.202302718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
Diazomethyl-substituted iodine(III) compounds with electron-withdrawing groups (EWG) connected to diazo methyl center were a type of donor-acceptor diazo compounds with potential reaction abilities similar to ordinary diazo compounds. Although several diazomethyl-substituted iodine(III) compounds were synthesized and used in the nucleophilic substitution reactions as early as 1994, the synthesis and application of new iodine(III) diazo compounds have only been reported to a certain extent in recent years. In the presence of rhodium catalyst, photocatalyst, or nucleophiles, diazomethyl-substituted iodine(III) compounds can be converted into rhodium-carbenes, diazomethyl radicals, ester radicals or nucleophilic intermediates, which can be used as key intermediates for the formation of chemical bonds. The aim of this review is to give an overview of diazomethyl-substituted iodine(III) compounds in organic synthesis.
Collapse
Affiliation(s)
- Cai Zhang
- Department of Safety Supervision and Management, Chongqing Vocational Institute of Safety Technology, 583 Anqing road, Wanzhou district, 404020, Chongqing, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, 330022, Nanchang, China
| |
Collapse
|
10
|
Yan M, Xiao L, Xiong J, Jin L, Stephan DW, Guo J. Borane catalyzed transesterification of tert-butyl esters using α-aryl α-diazoesters. Org Biomol Chem 2023; 21:8279-8283. [PMID: 37812087 DOI: 10.1039/d3ob01548c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The B(C6F5)3-catalyzed transesterification of a series of 3-alkenyl-oxindoles and other unsaturated tert-butyl esters with aryl-diazo esters is reported. This protocol is facile and generally high yielding proceeding under mild conditions and is remarkably chemoselective leaving the CC bonds intact.
Collapse
Affiliation(s)
- Maying Yan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Lei Xiao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Jiangkun Xiong
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Lvnan Jin
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
- Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada.
| | - Jing Guo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| |
Collapse
|
11
|
Huang J, Wang L, Tang XY. Oxidative cross-coupling of quinoxalinones with indoles enabled by acidochromism. Org Biomol Chem 2023; 21:2709-2714. [PMID: 36928912 DOI: 10.1039/d3ob00280b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An oxidative cross-coupling of quinoxalinones with indole derivatives via B(C6F5)3·H2O induced acidochromism of quinoxalinone derivatives was developed under mild and external photocatalyst-free conditions. The reaction shows excellent substrate scope, accommodating a wide range of functional groups. The usefulness of this strategy was demonstrated by the synthesis of the natural products Azacephalandole A and Cephalandole A in high yields. Moreover, the products are fluorophores showing prevalent fluorescence properties with a wide emission range and good relative quantum yields.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China.
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China.
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, People's Republic of China.
| |
Collapse
|
12
|
Cai BG, Xu GY, Xuan J. Photochemical multicomponent transformation of acceptor-only diazoalkanes by merging their cycloaddition and carbene reactivities. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
13
|
Xiao L, Jin L, Zhao Y, Guo J, Stephan DW. B(C 6F 5) 3-catalyzed cyclopropanation of 3-alkenyl-oxindoles with diazomethanes. Chem Commun (Camb) 2023; 59:1833-1836. [PMID: 36722917 DOI: 10.1039/d2cc06744g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spirocyclopropane-oxindoles are key motifs in biologically active compounds and are versatile synthetic intermediates. Herein, we report a metal-free, B(C6F5)3 catalyzed cyclopropanation of 3-alkenyl-oxindoles with diazomethanes. This provides 25 variants of spirocyclopropane-oxindole derivatives. These spirocyclopropane-oxindole products were obtained in good to excellent yields (up to 99%) and high diastereoselectivities (up to 20 : 1 d.r.) under mild reaction conditions and could be performed on a gram scale.
Collapse
Affiliation(s)
- Lei Xiao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Lvnan Jin
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Yunbo Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Jing Guo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. .,Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada
| |
Collapse
|
14
|
Stefkova K, Guerzoni MG, van Ingen Y, Richards E, Melen RL. B(C 6F 5) 3-Catalyzed Diastereoselective and Divergent Reactions of Vinyldiazo Esters with Nitrones: Synthesis of Highly Functionalized Diazo Compounds. Org Lett 2023; 25:500-505. [PMID: 36634071 PMCID: PMC9887602 DOI: 10.1021/acs.orglett.2c04198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Herein we report a mild, transition-metal-free, highly diastereoselective Lewis acid catalyzed methodology toward the synthesis of isoxazolidine-based diazo compounds from the reaction between vinyldiazo esters and nitrones. Interestingly, the isoxazolidine products were identified to have contrasting diastereoselectivity to previously reported metal-catalyzed reactions. Furthermore, the same catalyst can be used with enol diazo esters, prompting the formation of Mukaiyama-Mannich products. These diazo products can then be further functionalized to afford benzo[b]azepine and pyrrolidinone derivatives.
Collapse
Affiliation(s)
| | | | - Yara van Ingen
- Cardiff Catalysis Institute, School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, United Kingdom
| | - Emma Richards
- Cardiff Catalysis Institute, School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, United Kingdom
| | - Rebecca L. Melen
- Cardiff Catalysis Institute, School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, United Kingdom
| |
Collapse
|
15
|
Ito T, Harada S, Homma H, Okabe A, Nemoto T. Mechanistic Investigation on Dearomative Spirocyclization of Arenes with α-Diazoamide under Boron Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tsubasa Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Haruka Homma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayaka Okabe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
16
|
Mandal D, Chen T, Qu Z, Grimme S, Stephan DW. Reactions of Frustrated Lewis Pairs with Chloro-Diazirines: Cleavage of N=N Double Bonds. Angew Chem Int Ed Engl 2022; 61:e202209241. [PMID: 35830598 PMCID: PMC9543150 DOI: 10.1002/anie.202209241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 01/19/2023]
Abstract
The reactions of FLPs with diazomethanes leads to the rapid loss of N2 . In contrast, in this work, we reported reactions of phosphine/borane FLPs with chlorodiazirines which led to the reduction of the N=N double bond, affording linked phosphinimide/amidoborate zwitterions of the general form R3 PNC(Ar)NR'BX(C6 F5 )2 . A detailed DFT mechanistic study showed that these reactions proceed via FLP addition to the N=N bond, followed by subsequent group transfer reactions to nitrogen and capture of the halide anion.
Collapse
Affiliation(s)
- Dipendu Mandal
- Institute of Drug Discovery TechnologyNingbo UniversityNingbo315211, ZhejiangChina
| | - Ting Chen
- Institute of Drug Discovery TechnologyNingbo UniversityNingbo315211, ZhejiangChina
| | - Zheng‐Wang Qu
- Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische ChemieRheinische Friedrich-Wilhelms-Universität BonnBeringstrasse 453115BonnGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische ChemieRheinische Friedrich-Wilhelms-Universität BonnBeringstrasse 453115BonnGermany
| | - Douglas W. Stephan
- Institute of Drug Discovery TechnologyNingbo UniversityNingbo315211, ZhejiangChina
- Department of ChemistryUniversity of Toronto80 St. George StTorontoON M5S3H6Canada
| |
Collapse
|
17
|
Dasgupta A, van Ingen Y, Guerzoni MG, Farshadfar K, Rawson JM, Richards E, Ariafard A, Melen RL. Lewis Acid Assisted Brønsted Acid Catalysed Decarbonylation of Isocyanates: A Combined DFT and Experimental Study. Chemistry 2022; 28:e202201422. [PMID: 35560742 PMCID: PMC9541586 DOI: 10.1002/chem.202201422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 12/16/2022]
Abstract
An efficient and mild reaction protocol for the decarbonylation of isocyanates has been developed using catalytic amounts of Lewis acidic boranes. The electronic nature (electron withdrawing, electron neutral, and electron donating) and the position of the substituents (ortho/meta/para) bound to isocyanate controls the chain length and composition of the products formed in the reaction. Detailed DFT studies were undertaken to account for the formation of the mono/di-carboxamidation products and benzoxazolone compounds.
Collapse
Affiliation(s)
- Ayan Dasgupta
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University main BuildingPark PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| | - Yara van Ingen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University main BuildingPark PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| | - Michael G. Guerzoni
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University main BuildingPark PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| | - Kaveh Farshadfar
- Department of ChemistryIslamic Azad UniversityCentral TehranBranch, PoonakTehran1469669191Iran
| | - Jeremy M. Rawson
- Department of Chemistry and BiochemistryUniversity of Windsor401 Sunset Ave.WindsorON N9B 3P4Canada
| | - Emma Richards
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University main BuildingPark PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| | - Alireza Ariafard
- School of Natural Sciences-ChemistryUniversity of TasmaniaPrivate Bag 75HobartTasmania7001Australia
| | - Rebecca L. Melen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff University main BuildingPark PlaceCardiffCF10 3ATCymru/WalesUnited Kingdom
| |
Collapse
|
18
|
Roy S, Chatterjee I. Visible-Light-Mediated ( sp 3)Cα-H Functionalization of Ethers Enabled by Electron Donor-Acceptor Complex. ACS ORGANIC & INORGANIC AU 2022; 2:306-311. [PMID: 36855592 PMCID: PMC9955270 DOI: 10.1021/acsorginorgau.2c00008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A synthetically beneficial visible-light-mediated protocol has been disclosed to achieve C-H amination of readily available feedstocks cyclic and acyclic ethers. A rarely identified N-bromosuccinamide-tetrahydrofuran electron donor-acceptor complex served as an initiator to functionalize both α-diazoketones and dialkyl azodicarboxylates. This developed methodology gives an alternative and milder way to construct the C-N bond and can be explored for the formation of C-C bond to perform arylation and allylation reactions.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| |
Collapse
|
19
|
Dattatri, Singam MKR, Nanubolu JB, Reddy MS. Cu-Catalyzed tandem cyclization and coupling of enynones with enaminones for multisubstituted furans & furano-pyrroles. Org Biomol Chem 2022; 20:6363-6367. [PMID: 35861157 DOI: 10.1039/d2ob00839d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic strategy that efficiently constructs complex molecular diversity in a few steps will always be embraced by organic chemists. Here, we report a cascade reaction of enynones with enaminones via carbene insertion and aryl migration to engineer distinctive multisubstituted furans with an all-carbon quaternary center, and could extend the protocol in the same pot towards furano-pyrrole bis-heterocycles. Heterogeneity of this protocol was proved with the upshot of divergent chemical space under a relatively mild reaction environment.
Collapse
Affiliation(s)
- Dattatri
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Maneesh Kumar Reddy Singam
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
20
|
Mandal D, Chen T, Qu ZW, Grimme S, Stephan DW. <p class="Title1">Reactions of Frustrated Lewis Pairs with Chloro‐Diazirines: Cleavage of N=N Double Bonds<o:p></o:p></p>. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dipendu Mandal
- University of Toronto - St George Campus: University of Toronto Chemistry CANADA
| | | | - Zheng-Wang Qu
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Theoretical chemistry GERMANY
| | - Stefan Grimme
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Theoretical chemistry GERMANY
| | | |
Collapse
|
21
|
Devi L, Kumar P, Kant R, Rastogi N. Exploiting the umpolung reactivity of diazo groups: direct access to triazolyl-azaarenes from azaarenes. Chem Commun (Camb) 2022; 58:7062-7065. [PMID: 35648386 DOI: 10.1039/d2cc01897g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The present work documents electrophilic substitution of azaarenes, mainly isoquinolines, with hypervalent iodine diazo reagents (HIDR) followed by formal [3+2]-dipolar cycloaddition in a tandem fashion. Other azaarenes viz. pyridines and phenanthridines too could be successfully used in the reaction. The methodology capitalizes on the umpolung nature of α-aryliodonio diazo compounds for installing a nucleophile, i.e. azaarene, at their α-position. Subsequent ylide formation and intramolecular 1,5-cyclization furnished 4,3-fused 1,2,4-triazolyl-azaarenes in good yields. The reaction is notable for its mild conditions, operational simplicity and fairly general scope.
Collapse
Affiliation(s)
- Lalita Devi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prashant Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Ruchir Kant
- Biochemistry & Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
22
|
Wang P, Gong Y, Wang X, Ren Y, Wang L, Zhai L, Li H, She X. Solvent-free, B(C 6 F 5 ) 3 -Catalyzed S-H Insertion of Thiophenols and Thiols with α-Diazoesters. Chem Asian J 2022; 17:e202200465. [PMID: 35678551 DOI: 10.1002/asia.202200465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Indexed: 11/11/2022]
Abstract
Described herein is a B(C6 F5 )3 -catalyzed S-H insertion reaction of thiophenols and thiols with α-diazoesters to access valuable α-thioesters. With the established protocol, an array of α-thioester products are generated in moderate to good yields with broad scope and functional group tolerance. In addition, this reaction maintains its high efficiency on gram scale and the product can be easily transformed into other useful motifs. This reaction proceeds under solvent-free conditions at room temperature, and generally finishes in twenty minutes upon magnet stirring, which offers an expedient way for synthesis of thioether-containing compounds.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yulin Gong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yangqing Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Lei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Lele Zhai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
23
|
Kaehler T, Lorenz J, Ould DMC, Engl D, Santi M, Gierlichs L, Wirth T, Melen RL. Borane promoted aryl transfer reaction for the synthesis of α-aryl functionalised β-hydroxy and β-keto esters. Org Biomol Chem 2022; 20:4298-4302. [PMID: 35575126 DOI: 10.1039/d2ob00643j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a series of α-aryl or α-alkyl functionalised β-hydroxy and β-keto esters has been achieved by reacting α-diazoesters with boranes, and aldehydes, ketones, anhydrides, nitriles, esters or isocyanates. In a mild reaction protocol, 26 examples are presented in yields up to 73%.
Collapse
Affiliation(s)
- Tanja Kaehler
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Jonas Lorenz
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Darren M C Ould
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Dorothea Engl
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Micol Santi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Lukas Gierlichs
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Thomas Wirth
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| | - Rebecca L Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
24
|
Chen CY, Zhao JH, Xiong LX, Wang F, Yang G, Ma C. Borane-catalyzed arylation of aryldiazoacetates with N, N-dialkylanilines. Org Biomol Chem 2022; 20:4101-4104. [PMID: 35537202 DOI: 10.1039/d2ob00447j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A selective arylation of donor-acceptor diazo compounds with aniline derivatives catalyzed by Lewis acidic boranes is developed. This simple reaction protocol provides an efficient method for the synthesis of diarylacetates under metal-free conditions.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Jing-Hao Zhao
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Li-Xue Xiong
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Feiyi Wang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Guichun Yang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| | - Chao Ma
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China.
| |
Collapse
|
25
|
Qu ZW, Zhu H, Grimme S. Acid‐Catalyzed Carbene Transfer from Diazo Compounds: Carbocation versus Carbene as Key Intermediate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zheng-Wang Qu
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Mulliken Center for Theoretical Chemistry Beringstr. 4 D-53115 Bonn GERMANY
| | - Hui Zhu
- Universität Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Mulliken Center for Theoretical Chemistry Bonn GERMANY
| | - Stefan Grimme
- Universität Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Mulliken Center for Theoretical Chemistry Bonn GERMANY
| |
Collapse
|
26
|
Babaahmadi R, Dasgupta A, Hyland CJT, Yates BF, Melen RL, Ariafard A. Understanding the Influence of Donor-Acceptor Diazo Compounds on the Catalyst Efficiency of B(C 6 F 5 ) 3 Towards Carbene Formation. Chemistry 2022; 28:e202104376. [PMID: 34958698 PMCID: PMC9303686 DOI: 10.1002/chem.202104376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/25/2022]
Abstract
Diazo compounds have been largely used as carbene precursors for carbene transfer reactions in a variety of functionalization reactions. However, the ease of carbene generation from the corresponding diazo compounds depends upon the electron donating/withdrawing substituents either side of the diazo functionality. These groups strongly impact the ease of N2 release. Recently, tris(pentafluorophenyl)borane [B(C6 F5 )3 ] has been shown to be an alternative transition metal-free catalyst for carbene transfer reactions. Herein, a density functional theory (DFT) study on the generation of carbene species from α-aryl α-diazocarbonyl compounds using catalytic amounts of B(C6 F5 )3 is reported. The significant finding is that the efficiency of the catalyst depends directly on the nature of the substituents on both the aryl ring and the carbonyl group of the substrate. In some cases, the boron catalyst has negligible effect on the ease of the carbene formation, while in other cases there is a dramatic reduction in the activation energy of the reaction. This direct dependence is not commonly observed in catalysis and this finding opens the way for intelligent design of this and other similar catalytic reactions.
Collapse
Affiliation(s)
- Rasool Babaahmadi
- School of Natural Sciences (Chemistry)University of TasmaniaPrivate Bag 75HobartTasmania7001Australia
| | - Ayan Dasgupta
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3AT, Cymru/WalesUK
| | - Christopher J. T. Hyland
- School of Chemistry and Molecular BioscienceMolecular Horizons Research InstituteUniversity of WollongongWollongongNew South Wales2522Australia
| | - Brian F. Yates
- School of Natural Sciences (Chemistry)University of TasmaniaPrivate Bag 75HobartTasmania7001Australia
| | - Rebecca L. Melen
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3AT, Cymru/WalesUK
| | - Alireza Ariafard
- School of Natural Sciences (Chemistry)University of TasmaniaPrivate Bag 75HobartTasmania7001Australia
| |
Collapse
|
27
|
Jin L, Zhou X, Zhao Y, Guo J, Stephan DW. Catalyst-dependent chemoselective insertion of diazoalkanes into N-H\C-H\O-H\C-O bonds of 2-hydroxybenzothiazoles. Org Biomol Chem 2022; 20:7781-7786. [DOI: 10.1039/d2ob01048h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The control of chemoselective insertions of diazoalkanes with 2-hydroxybenzothiazoles is challenging. Herein, the chemoselective N-H, O-H, C-O or C-H bond insertions of diazoalkanes with 2-hydroxybenzothiazoles are achieved using B(C6F5)3, Rh2(OAc)4...
Collapse
|
28
|
Dasgupta A, Guerzoni MG, Alotaibi N, van Ingen Y, Farshadfar K, Richards E, Ariafard A, Melen RL. Chemo- and regio-selective amidation of indoles with isocyanates using borane Lewis acids. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01441f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free synthetic route using boranes has been developed for the amidation of indoles. A detailed mechanistic study was carried out to understand the reaction mechanism.
Collapse
Affiliation(s)
- Ayan Dasgupta
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Michael G. Guerzoni
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Nusaybah Alotaibi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Yara van Ingen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Kaveh Farshadfar
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, 1469669191, Iran
- Research Group of Computational Chemistry, Department of Chemistry and Materials Science, Aalto University, FI-00076 Aalto, Finland
| | - Emma Richards
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Alireza Ariafard
- School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Rebecca L. Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK
| |
Collapse
|
29
|
Chandrasekharan SP, Dhami A, Kumar S, Mohanan K. Recent advances in pyrazole synthesis employing diazo compounds and synthetic analogues. Org Biomol Chem 2022; 20:8787-8817. [DOI: 10.1039/d2ob01918c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review summarizes the recent developments in the construction of pyrazoles using diazo compounds, nitrile imines and their synthetic equivalents.
Collapse
Affiliation(s)
- Sanoop P. Chandrasekharan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anamika Dhami
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sandeep Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kishor Mohanan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| |
Collapse
|