1
|
Hong R, Wu Y, Su Y, Stavitski E, Wang H, Wu Z, Wu X, Weng X. Structural Dynamic Evolution of Pt Nanoclusters in Ultra-Low-Temperature Methane Combustion with Nitrous Oxide. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26523-26533. [PMID: 40336171 DOI: 10.1021/acsami.5c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Tailoring and stabilizing the active sites of supported noble-metal catalysts to a semioxidized state with unsaturated coordination remain a long-standing challenge in heterogeneous catalysis. Herein, we develop a reaction-atmosphere-driven evolution approach for dynamic structural tuning of semioxidized metal sites in supported Pt catalysts. N2O as an alternative oxidant is used over Pt/TiO2 in CH4 combustion to dynamically prompt the transformation of Pt0 nanoclusters into Ptδ+ (0 < δ < 2) nanoclusters. Compared to CH4 combustion with O2 that inclines to overoxidize Pt0, the catalytic activity of CH4-N2O combustion is distinctly boosted, achieving complete CH4 combustion at only 200 °C, outperforming the state-of-the-art catalysts using O2 as the oxidant. Computational and experimental studies validate that N2O triggers less electron transfer from Pt than from O2, thereby facilitating the formation and preservation of Ptδ+ species during CH4 combustion. The newly emerged semioxidized Ptδ+ species with oxygen-deficient coordination structures simultaneously enhance lattice oxygen activation and the first C-H bond dissociation of CH4, contributing to ultralow temperature activity. Our work demonstrates that modulating the reaction atmosphere to achieve the structural dynamic evolution of semioxidized metal sites can provide new strategies for designing highly efficient catalysts for low-temperature CH4 combustion.
Collapse
Affiliation(s)
- Rongrong Hong
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Air Pollution Monitoring and Synergistic Control, Hangzhou 310058, P.R. China
| | - Yunshuo Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Air Pollution Monitoring and Synergistic Control, Hangzhou 310058, P.R. China
| | - Yuetan Su
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Air Pollution Monitoring and Synergistic Control, Hangzhou 310058, P.R. China
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, New York 11973, United States
| | - Haiqiang Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Air Pollution Monitoring and Synergistic Control, Hangzhou 310058, P.R. China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Air Pollution Monitoring and Synergistic Control, Hangzhou 310058, P.R. China
| | - Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Air Pollution Monitoring and Synergistic Control, Hangzhou 310058, P.R. China
| | - Xiaole Weng
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Air Pollution Monitoring and Synergistic Control, Hangzhou 310058, P.R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
| |
Collapse
|
2
|
Xu L, Liu S, Li S, Wang L, Meng X, Xiao FS, De Baerdemaeker T, Parvulescu AN, Zhang W. Highly Efficient and Selective Synthesis of Renewable Isoprene Over Mo-Fe-O and MgO/Mg(OH) 2 Composite Catalysts. Chemistry 2025; 31:e202403375. [PMID: 39473242 DOI: 10.1002/chem.202403375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Indexed: 11/17/2024]
Abstract
Synthesis of renewable isoprene continues to attract significant interest, yet catalysts still need improvement for industrial applications. We report herein an efficient and novel Prins tandem approach for highly selective production of isoprene from bio-based methanol and isobutene over Mo-Fe-O and MgO/Mg(OH)2 acid-base bifunctional catalysts. Hydration decreases the number of strong basic sites O2- ions and increases OH groups over MgO, thus improving the isoprene selectivity. Basic OH on Mg(OH)2 promotes the Prins condensation of formaldehyde and isobutene, while acidic OH promotes dehydration of isoprenol to isoprene. Suitable contents and proportions of basic and acidic OH groups over Mg(OH)2 increase isoprene selectivity and methanol conversion to 90 and 92 % on the Mo-Fe-O+Mg(OH)2 composite catalysts, respectively. It exhibits good recycling stability, with isoprene selectivity remaining 90 % after five successive regenerations. DFT calculations reveal OH groups formed after hydration reduce the energy barrier of the H transfer step, thereby promoting the overall reaction.
Collapse
Affiliation(s)
- Lulu Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shuo Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shikun Li
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiangju Meng
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Feng-Shou Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | | | - Weiping Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
3
|
Wu X, Du J, Gao Y, Wang H, Zhang C, Zhang R, He H, Lu GM, Wu Z. Progress and challenges in nitrous oxide decomposition and valorization. Chem Soc Rev 2024; 53:8379-8423. [PMID: 39007174 DOI: 10.1039/d3cs00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Nitrous oxide (N2O) decomposition is increasingly acknowledged as a viable strategy for mitigating greenhouse gas emissions and addressing ozone depletion, aligning significantly with the UN's sustainable development goals (SDGs) and carbon neutrality objectives. To enhance efficiency in treatment and explore potential valorization, recent developments have introduced novel N2O reduction catalysts and pathways. Despite these advancements, a comprehensive and comparative review is absent. In this review, we undertake a thorough evaluation of N2O treatment technologies from a holistic perspective. First, we summarize and update the recent progress in thermal decomposition, direct catalytic decomposition (deN2O), and selective catalytic reduction of N2O. The scope extends to the catalytic activity of emerging catalysts, including nanostructured materials and single-atom catalysts. Furthermore, we present a detailed account of the mechanisms and applications of room-temperature techniques characterized by low energy consumption and sustainable merits, including photocatalytic and electrocatalytic N2O reduction. This article also underscores the extensive and effective utilization of N2O resources in chemical synthesis scenarios, providing potential avenues for future resource reuse. This review provides an accessible theoretical foundation and a panoramic vision for practical N2O emission controls.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Yanxia Gao
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Haiqiang Wang
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | | | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, China Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Xiao P, Wang Y, Lu Y, Nakamura K, Ozawa N, Kubo M, Gies H, Yokoi T. Direct Oxidation of Methane to Methanol over Transition-Metal-Free Ferrierite Zeolite Catalysts. J Am Chem Soc 2024; 146:10014-10022. [PMID: 38557129 PMCID: PMC11009945 DOI: 10.1021/jacs.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Direct oxidation of methane to methanol was reported to be highly dependent on the transition- or noble-metal-loading catalysts in the past decades. Here, we show that the transition-metal-free aluminosilicate ferrierite (FER) zeolite effectively catalyzed methane and N2O to methanol for the first time. The distorted tetracoordinated Al in the framework and pentacoordinated Al on the extra framework formed during calcination, activation, and reaction processes were confirmed as the potential active centers. The possible reaction pathway similar to the Fe-containing zeolites was advocated based on the reaction results using different oxidants, N2O adsorption FTIR spectra, and 27Al MAS NMR spectra. The stable and efficient methanol production capacity of FER zeolite was ascribed to the two-dimensional straight channels and its distinctive Al distribution of FER zeolite (CP914C) from Zeolyst. The transition-metal-free FER zeolite performed better than the record in the literature and our recent results using transition-metal-containing catalysts in terms of selectivity and formation rate of methanol and stability. This work has great significance and prospects for utilizing CH4 and N2O as resources and will open new avenues for methane oxidation.
Collapse
Affiliation(s)
- Peipei Xiao
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yong Wang
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yao Lu
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kengo Nakamura
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Nobuki Ozawa
- New
Industry Creation Hatchery Center, Tohoku
University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Momoji Kubo
- New
Industry Creation Hatchery Center, Tohoku
University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Hermann Gies
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Institute
of Geology, Mineralogy und Geophysics, Ruhr-University
Bochum, Bochum 44780, Germany
| | - Toshiyuki Yokoi
- Nanospace
Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- iPEACE223
Inc., Konwa Building,
1-12-22 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
5
|
Wu K, Zanina A, Kondratenko VA, Xu L, Li J, Chen J, Lund H, Bartling S, Li Y, Jiang G, Kondratenko EV. Fundamentals of Unanticipated Efficiency of Gd 2O 3-based Catalysts in Oxidative Coupling of Methane. Angew Chem Int Ed Engl 2024; 63:e202319192. [PMID: 38271543 DOI: 10.1002/anie.202319192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
Improving the selectivity in the oxidative coupling of methane to ethane/ethylene poses a significant challenge for commercialization. The required improvements are hampered by the uncertainties associated with the reaction mechanism due to its complexity. Herein, we report about 90 % selectivity to the target products at 11 % methane conversion over Gd2O3-based catalysts at 700 °C using N2O as the oxidant. Sophisticated kinetic studies have suggested the nature of adsorbed oxygen species and their binding strength as key parameters for undesired methane oxidation to carbon oxides. These descriptors can be controlled by a metal oxide promoter for Gd2O3.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Anna Zanina
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Vita A Kondratenko
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Lin Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Jianshu Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Juan Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Henrik Lund
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Stephan Bartling
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Yuming Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Evgenii V Kondratenko
- Department of Advanced methods for applied catalysis, Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
6
|
Jiang L, Li K, Porter WN, Wang H, Li G, Chen JG. Role of H 2O in Catalytic Conversion of C 1 Molecules. J Am Chem Soc 2024; 146:2857-2875. [PMID: 38266172 DOI: 10.1021/jacs.3c13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Due to their role in controlling global climate change, the selective conversion of C1 molecules such as CH4, CO, and CO2 has attracted widespread attention. Typically, H2O competes with the reactant molecules to adsorb on the active sites and therefore inhibits the reaction or causes catalyst deactivation. However, H2O can also participate in the catalytic conversion of C1 molecules as a reactant or a promoter. Herein, we provide a perspective on recent progress in the mechanistic studies of H2O-mediated conversion of C1 molecules. We aim to provide an in-depth and systematic understanding of H2O as a promoter, a proton-transfer agent, an oxidant, a direct source of hydrogen or oxygen, and its influence on the catalytic activity, selectivity, and stability. We also summarize strategies for modifying catalysts or catalytic microenvironments by chemical or physical means to optimize the positive effects and minimize the negative effects of H2O on the reactions of C1 molecules. Finally, we discuss challenges and opportunities in catalyst design, characterization techniques, and theoretical modeling of the H2O-mediated catalytic conversion of C1 molecules.
Collapse
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Kongzhai Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Southwest United Graduate School, Kunming 650000, Yunnan, China
| | - William N Porter
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Gengnan Li
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
7
|
Filardi LR, Vila FD, Hong J, Hoffman AS, Perez-Aguilar JE, Bare SR, Runnebaum RC, Kronawitter CX. Impact of Local Structure in Supported CaO Catalysts for Soft-Oxidant-Assisted Methane Coupling Assessed through Ca K-Edge X-ray Absorption Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:1165-1176. [PMID: 38293693 PMCID: PMC10823472 DOI: 10.1021/acs.jpcc.3c06527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024]
Abstract
Soft-oxidant-assisted methane coupling has emerged as a promising pathway to upgrade methane from natural gas sources to high-value commodity chemicals, such as ethylene, at selectivities higher than those associated with oxidative (O2) methane coupling (OCM). To date, few studies have reported investigations into the electronic structure and the microscopic physical structure of catalytic active sites present in the binary metal oxide catalyst systems that are known to be effective for this reaction. Correlating the catalyst activity to specific active site structures and electronic properties is an essential aspect of catalyst design. Here, we used X-ray absorption spectroscopy at the Ca K-edge to ascertain the most probable local environment of Ca in the ZnO-supported Ca oxide catalysts. These catalysts are shown here to be active for N2O-assisted methane coupling (N2O-OCM) and have previously been reported to be active for CO2-assisted methane coupling (CO2-OCM). X-ray absorption near edge structure features at multiple Ca loadings are interpreted through simulated spectra derived from ab initio full multiple scattering calculations. These simulations included consideration of CaO structures organized in multiple spatial arrangements-linear, planar, and cubic-with separate analyses of Ca atoms in the surfaces and bulk of the three-dimensional structures. The morphology of the oxide clusters was found to influence the various regions of the X-ray absorption spectrum differently. Experiment and theory show that for low-Ca-loading catalysts (≤1 mol %), which contain sites particularly active for methane coupling, Ca primarily exists in an oxidized state that is consistent with the coordination environment of Ca ions in one- and two-dimensional clusters. In addition to their unique nanoscale structures, the spectra also indicate that these clusters have varying degrees of undercoordinated surface Ca atoms that could further influence their catalytic activities. The local Ca structure was correlated to methane coupling activity from N2O-OCM and previously reported CO2-OCM reactor studies. This study provides a unique perspective on the relationship between the catalyst physical and electronic structure and active sites for soft-oxidant-assisted methane coupling, which can be used to inform future catalyst development.
Collapse
Affiliation(s)
- Leah R. Filardi
- Department
of Chemical Engineering, University of California,
Davis, Davis, California 95616, United States
| | - Fernando D. Vila
- Department
of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Jiyun Hong
- SSRL,
SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Adam S. Hoffman
- SSRL,
SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Simon R. Bare
- SSRL,
SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ron C. Runnebaum
- Department
of Chemical Engineering, University of California,
Davis, Davis, California 95616, United States
- Department
of Viticulture & Enology, University
of California, Davis, Davis, California 95616, United States
| | - Coleman X. Kronawitter
- Department
of Chemical Engineering, University of California,
Davis, Davis, California 95616, United States
| |
Collapse
|
8
|
Yang Q, Surin I, Geiger J, Eliasson H, Agrachev M, Kondratenko VA, Zanina A, Krumeich F, Jeschke G, Erni R, Kondratenko EV, López N, Pérez-Ramírez J. Lattice-Stabilized Chromium Atoms on Ceria for N 2O Synthesis. ACS Catal 2023; 13:15977-15990. [PMID: 38125976 PMCID: PMC10728900 DOI: 10.1021/acscatal.3c04463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
The development of selective catalysts for direct conversion of ammonia into nitrous oxide, N2O, will circumvent the conventional five-step manufacturing process and enable its wider utilization in oxidation catalysis. Deviating from commonly accepted catalyst design principles for this reaction, reliant on manganese oxide, we herein report an efficient system comprised of isolated chromium atoms (1 wt %) stabilized in the ceria lattice by coprecipitation. The latter, in contrast to a simple impregnation approach, ensures firm metal anchoring and results in stable and selective N2O production over 100 h on stream up to 79% N2O selectivity at full NH3 conversion. Raman, electron paramagnetic resonance, and in situ UV-vis spectroscopies reveal that chromium incorporation enhances the density of oxygen vacancies and the rate of their generation and healing. Accordingly, temporal analysis of products, kinetic studies, and atomistic simulations show lattice oxygen of ceria to directly participate in the reaction, establishing the cocatalytic role of the carrier. Coupled with the dynamic restructuring of chromium sites to stabilize intermediates of N2O formation, these factors enable catalytic performance on par with or exceeding benchmark systems. These findings demonstrate how nanoscale engineering can elevate a previously overlooked metal into a highly competitive catalyst for selective ammonia oxidation to N2O, paving the way toward industrial implementation.
Collapse
Affiliation(s)
- Qingxin Yang
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Ivan Surin
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Julian Geiger
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Henrik Eliasson
- Electron
Microscopy Center, Empa - Swiss Federal
Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mikhail Agrachev
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Vita A. Kondratenko
- Advanced
Methods for Applied Catalysis, Leibniz-Institut
für Katalyse e. V., Albert Einstein-Str. 29a, 18059 Rostock, Germany
| | - Anna Zanina
- Advanced
Methods for Applied Catalysis, Leibniz-Institut
für Katalyse e. V., Albert Einstein-Str. 29a, 18059 Rostock, Germany
| | - Frank Krumeich
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Gunnar Jeschke
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Rolf Erni
- Electron
Microscopy Center, Empa - Swiss Federal
Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Evgenii V. Kondratenko
- Advanced
Methods for Applied Catalysis, Leibniz-Institut
für Katalyse e. V., Albert Einstein-Str. 29a, 18059 Rostock, Germany
| | - Núria López
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Javier Pérez-Ramírez
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Performance-defining factors of (MnOx)-M2WO4/SiO2 (M=Na, K, Rb or Cs) catalysts in oxidative coupling of methane. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Si J, Zhao G, Lan T, Ni J, Sun W, Liu Y, Lu Y. Insight into the Role of Na 2WO 4 in a Low-Temperature Light-off Mn 7SiO 12–Na 2WO 4/Cristobalite Catalyst for Oxidative Coupling of Methane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiaqi Si
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Guofeng Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Tian Lan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Jiayong Ni
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Weidong Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Ye Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
| | - Yong Lu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, Shanghai200062, China
- Institute of Eco-Chongming, Shanghai202162, China
| |
Collapse
|
11
|
Zanina A, Kondratenko VA, Lund H, Li J, Chen J, Li Y, Jiang G, Kondratenko EV. The Role of Adsorbed and Lattice Oxygen Species in Product Formation in the Oxidative Coupling of Methane over M 2WO 4/SiO 2 (M = Na, K, Rb, Cs). ACS Catal 2022. [DOI: 10.1021/acscatal.2c04916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Anna Zanina
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059Rostock, Germany
| | - Vita A. Kondratenko
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059Rostock, Germany
| | - Henrik Lund
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059Rostock, Germany
| | - Jianshu Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing102249, People’s Republic of China
| | - Juan Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing102249, People’s Republic of China
| | - Yuming Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing102249, People’s Republic of China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing102249, People’s Republic of China
| | | |
Collapse
|
12
|
Li X, Chen Y, Chen Z, Guo H, Yang S, Ma X. The recent progress on gaseous chlorinated aromatics removal for environmental applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Sourav S, Kiani D, Wang Y, Baltrusaitis J, Fushimi RR, Wachs IE. Molecular structure and catalytic promotional effect of Mn on supported Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) reaction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|