1
|
Hayashida K, Nakamura J, Takeyasu K. Why Does the Performance of Nitrogen-Doped Carbon Electrocatalysts Decrease in Acidic Conditions? Angew Chem Int Ed Engl 2025:e202502702. [PMID: 40314138 DOI: 10.1002/anie.202502702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
Nitrogen-doped carbon has emerged as a promising low-cost and durable alternative to platinum catalysts for the oxygen reduction reaction (ORR) in fuel cells. However, its catalytic activity decreases significantly in acidic electrolytes, limiting the practical applications. Here, we report the degradation mechanisms of nitrogen-doped carbon catalysts, focusing on the acid-base equilibrium of pyridinic nitrogen (pyri-N), which serves the primary active site. We found that the electrochemical hydrogenation of pyri-N to pyri-NH, coupled with oxygen adsorption, is a critical process. Although this reaction occurs at higher potentials in basic electrolytes, it shifts to lower potentials in acidic environments due to the protonation and stabilization of pyri-N. These results demonstrate that the decrease of the catalytic activity in acidic electrolytes is tied to the basicity of pyri-N. By controlling the basicity of pyri-N, specifically its pKa, a guideline for enhancing the ORR and other electrode reactions has been established.
Collapse
Affiliation(s)
- Kenji Hayashida
- Graduate School of Science and Technology, University of Tsukuba, Sapporo, Hokkaido, 0010021, Japan
| | - Junji Nakamura
- International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka Fukuoka, Nishi-ku, Japan
| | - Kotaro Takeyasu
- Institute of Pure and Applied Sciences, University of Tsukuba, Japan
- Institute for Catalysis, Hokkaido University, N21W10, Sapporo, Hokkaido, 001-0021, Japan
| |
Collapse
|
2
|
Zhang D, She F, Chen J, Wei L, Li H. Why Do Weak-Binding M-N-C Single-Atom Catalysts Possess Anomalously High Oxygen Reduction Activity? J Am Chem Soc 2025; 147:6076-6086. [PMID: 39924878 PMCID: PMC11848820 DOI: 10.1021/jacs.4c16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Single-atom catalysts (SACs) with metal-nitrogen-carbon (M-N-C) structures are widely recognized as promising candidates in oxygen reduction reactions (ORR). According to the classical Sabatier principle, optimal 3d metal catalysts, such as Fe/Co-N-C, achieve superior catalytic performance due to the moderate binding strength. However, the substantial ORR activity demonstrated by weakly binding M-N-C catalysts such as Ni/Cu-N-C challenges current understandings, emphasizing the need to explore new underlying mechanisms. In this work, we integrated a pH-field coupled microkinetic model with detailed experimental electron state analyses to verify a novel key step in the ORR reaction pathway of weak-binding SACs─the oxygen adsorption at the metal-nitrogen bridge site. This step significantly altered the adsorption scaling relations, electric field responses, and solvation effects, further impacting the key kinetic reaction barrier from HOO* to O* and pH-dependent performance. Synchrotron spectra analysis further provides evidence for the new weak-binding M-N-C model, showing an increase in electron density on the antibonding π orbitals of N atoms in weak-binding M-N-C catalysts and confirming the presence of N-O bonds. These findings redefine the understanding of weak-binding M-N-C catalyst behavior, opening up new perspectives for their application in clean energy.
Collapse
Affiliation(s)
- Di Zhang
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- State
Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fangxin She
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jiaxiang Chen
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Li Wei
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hao Li
- Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
3
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
4
|
Pedersen A, Kumar K, Ku YP, Martin V, Dubau L, Santos KT, Barrio J, Saveleva VA, Glatzel P, Paidi VK, Li X, Hutzler A, Titirici MM, Bonnefont A, Cherevko S, Stephens IEL, Maillard F. Operando Fe dissolution in Fe-N-C electrocatalysts during acidic oxygen reduction: impact of local pH change. ENERGY & ENVIRONMENTAL SCIENCE 2024; 17:6323-6337. [PMID: 39205876 PMCID: PMC11348952 DOI: 10.1039/d4ee01995d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Atomic Fe in N-doped C (Fe-N-C) catalysts provide the most promising non-precious metal O2 reduction activity at the cathodes of proton exchange membrane fuel cells. However, one of the biggest remaining challenges to address towards their implementation in fuel cells is their limited durability. Fe demetallation has been suggested as the primary initial degradation mechanism. However, the fate of Fe under different operating conditions varies. Here, we monitor operando Fe dissolution of a highly porous and >50% FeN x electrochemical utilization Fe-N-C catalyst in 0.1 M HClO4, under O2 and Ar at different temperatures, in both flow cell and gas diffusion electrode (GDE) half-cell coupled to inductively coupled plasma mass spectrometry (ICP-MS). By combining these results with pre- and post-mortem analyses, we demonstrate that in the absence of oxygen, Fe cations diffuse away within the liquid phase. Conversely, at -15 mA cm-2 geo and more negative O2 reduction currents, the Fe cations reprecipitate as Fe-oxides. We support our conclusions with a microkinetic model, revealing that the local pH in the catalyst layer predominantly accounts for the observed trend. Even at a moderate O2 reduction current density of -15 mA cm-2 geo at 25 °C, a significant H+ consumption and therefore pH increase (pH = 8-9) within the bulk Fe-N-C layer facilitate precipitation of Fe cations. This work provides a unified view on the Fe dissolution degradation mechanism for a model Fe-N-C in both high-throughput flow cell and practical operating GDE conditions, underscoring the crucial role of local pH in regulating the stability of the active sites.
Collapse
Affiliation(s)
- Angus Pedersen
- Imperial College London, Department of Materials, Royal School of Mines London SW7 2AZ UK
- Imperial College London, Department of Chemical Engineering London SW7 2AZ UK
- Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Kavita Kumar
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN) Cauerstraße 1 91058 Erlangen Germany
| | - Yu-Ping Ku
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN) Cauerstraße 1 91058 Erlangen Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemical and Biological Engineering Cauerstraße 1 91058 Erlangen Germany
| | - Vincent Martin
- Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Laetitia Dubau
- Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Keyla Teixeira Santos
- Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Jesús Barrio
- Imperial College London, Department of Materials, Royal School of Mines London SW7 2AZ UK
- Imperial College London, Department of Chemical Engineering London SW7 2AZ UK
| | - Viktoriia A Saveleva
- ESRF, The European Synchrotron 71 Avenue des Martyrs, CS40220 38043 Grenoble Cedex 9 France
| | - Pieter Glatzel
- ESRF, The European Synchrotron 71 Avenue des Martyrs, CS40220 38043 Grenoble Cedex 9 France
| | - Vinod K Paidi
- ESRF, The European Synchrotron 71 Avenue des Martyrs, CS40220 38043 Grenoble Cedex 9 France
| | - Xiaoyan Li
- Laboratoire de Physique des Solides CNRS, Université Paris Sud 91405 Orsay France
| | - Andreas Hutzler
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN) Cauerstraße 1 91058 Erlangen Germany
| | | | - Antoine Bonnefont
- Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN) Cauerstraße 1 91058 Erlangen Germany
| | - Ifan E L Stephens
- Imperial College London, Department of Materials, Royal School of Mines London SW7 2AZ UK
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| |
Collapse
|
5
|
Zhang Y, Chen ZW, Liu X, Wen Z, Singh CV, Yang CC, Jiang Q. Vacancy-Enhanced Sb-N 4 Sites for the Oxygen Reduction Reaction and Zn-Air Battery. NANO LETTERS 2024; 24:4291-4299. [PMID: 38551180 DOI: 10.1021/acs.nanolett.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
With the advantages of a Fenton-inactive characteristic and unique p electrons that can hybridize with O2 molecules, p-block metal-based single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) have tremendous potential. Nevertheless, their undesirable intrinsic activity caused by the closed d10 electronic configuration remains a major challenge. Herein, an Sb-based SAC featuring carbon vacancy-enhanced Sb-N4 active centers, corroborated by the results of high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure, has been developed for an incredibly effective ORR. The obtained SbSA-N-C demonstrates a positive half-wave potential of 0.905 V and excellent structural stability in alkaline environments. Density functional theory calculations reveal that the carbon vacancies weaken the adsorption between Sb atoms and the OH* intermediate, thus promoting the ORR performance. Practically, the SbSA-N-C-based Zn-air batteries achieve impressive outcomes, such as a high power density of 181 mW cm-2, showing great potential in real-world applications.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zhi-Wen Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - Xu Liu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Chun Cheng Yang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
6
|
He Y, Yang J, Wang Y, Jia Y, Li H, Liu Y, Liu L, Tan Q. Atomically Dispersed Dual-Metal ORR Catalyst with Hierarchical Porous Structure for Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38412364 DOI: 10.1021/acsami.3c16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The metal-nitrogen-carbon (M-N-C)-based catalysts are promising to replace PGM (platinum group metal) to accelerate oxygen reduction reaction due to their excellent electrocatalytic performance. However, the inferior intrinsic activity and poor active site density confining further improvement in their performance. Modulating the electronic structure and reasonably designing the pore structure are widely acknowledged effective strategies to boost the activity of the M-N-C catalysts. However, it is a great challenge to form abundant pores to regulate the electronic structure via the facile method. Herein, a hierarchical, porous dual-atom catalyst FeNi-NPC-1000 has been architectured by the Na2CO3 template method and bimetallic doping modification strategy. Benefitting from the optimized pore and electronic structure, the as-prepared FeNi-NPC-1000 possesses a high specific surface area (1412.8 m2 g-1) and improved ORR activity (E1/2 = 0.877 V vs RHE), which is superior to that of Pt/C (E1/2 = 0.867 V vs RHE). With the evidence of AC-STEM, XAS, and DFT, the FeNi-N8-C moiety is proven to be the key active site to realize high-efficiency ORR catalysis. When assembled it as an air cathode of ZABs, FeNi-NPC-1000 displays superior discharge performance (Pmax = 367.1 mW cm-2) and a stable battery long-life. This article will provide a new strategy for designing dual-metal atomic catalysts applied in metal-air batteries.
Collapse
Affiliation(s)
- Yuting He
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Junbo Yang
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yi Wang
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yufei Jia
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Hongtao Li
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yongning Liu
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Liting Liu
- Analytical and Testing Center, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Tan
- State Key Laboratory for Mechanical Behaviour of Materials, School of Materials Science & Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
7
|
Bates JS, Martinez JJ, Hall MN, Al-Omari AA, Murphy E, Zeng Y, Luo F, Primbs M, Menga D, Bibent N, Sougrati MT, Wagner FE, Atanassov P, Wu G, Strasser P, Fellinger TP, Jaouen F, Root TW, Stahl SS. Chemical Kinetic Method for Active-Site Quantification in Fe-N-C Catalysts and Correlation with Molecular Probe and Spectroscopic Site-Counting Methods. J Am Chem Soc 2023; 145:26222-26237. [PMID: 37983387 PMCID: PMC10782517 DOI: 10.1021/jacs.3c08790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Mononuclear Fe ions ligated by nitrogen (FeNx) dispersed on nitrogen-doped carbon (Fe-N-C) serve as active centers for electrocatalytic O2 reduction and thermocatalytic aerobic oxidations. Despite their promise as replacements for precious metals in a variety of practical applications, such as fuel cells, the discovery of new Fe-N-C catalysts has relied primarily on empirical approaches. In this context, the development of quantitative structure-reactivity relationships and benchmarking of catalysts prepared by different synthetic routes and by different laboratories would be facilitated by the broader adoption of methods to quantify atomically dispersed FeNx active centers. In this study, we develop a kinetic probe reaction method that uses the aerobic oxidation of a model hydroquinone substrate to quantify the density of FeNx centers in Fe-N-C catalysts. The kinetic method is compared with low-temperature Mössbauer spectroscopy, CO pulse chemisorption, and electrochemical reductive stripping of NO derived from NO2- on a suite of Fe-N-C catalysts prepared by diverse routes and featuring either the exclusive presence of Fe as FeNx sites or the coexistence of aggregated Fe species in addition to FeNx. The FeNx site densities derived from the kinetic method correlate well with those obtained from CO pulse chemisorption and Mössbauer spectroscopy. The broad survey of Fe-N-C materials also reveals the presence of outliers and challenges associated with each site quantification approach. The kinetic method developed here does not require pretreatments that may alter active-site distributions or specialized equipment beyond reaction vessels and standard analytical instrumentation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Jesse J. Martinez
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Melissa N. Hall
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Abdulhadi A. Al-Omari
- Department of Chemical and Biomolecular Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Eamonn Murphy
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Fang Luo
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Mathias Primbs
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Davide Menga
- Chair of Technical Electrochemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München (TUM), 85748 Garching, Germany
| | - Nicolas Bibent
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | - Friedrich E. Wagner
- Department of Physics, Technische Universität München (TUM), 85748 Garching, Germany
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Peter Strasser
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Tim-Patrick Fellinger
- Chair of Technical Electrochemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München (TUM), 85748 Garching, Germany
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12203 Berlin, Germany
| | - Frédéric Jaouen
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Thatcher W. Root
- Department of Chemical and Biomolecular Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
8
|
Pedersen A, Bagger A, Barrio J, Maillard F, Stephens IEL, Titirici MM. Atomic metal coordinated to nitrogen-doped carbon electrocatalysts for proton exchange membrane fuel cells: a perspective on progress, pitfalls and prospectives. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:23211-23222. [PMID: 38013915 PMCID: PMC10629202 DOI: 10.1039/d3ta04711c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
Proton exchange membrane fuel cells require reduced construction costs to improve commercial viability, which can be fueled by elimination of platinum as the O2 reduction electrocatalyst. The past 10 years has seen significant developments in synthesis, characterisation, and electrocatalytic performance of the most promising alternative electrocatalyst; single metal atoms coordinated to nitrogen-doped carbon (M-N-C). In this Perspective we recap some of the important achievements of M-N-Cs in the last decade, as well as discussing current knowledge gaps and future research directions for the community. We provide a new outlook on M-N-C stability and atomistic understanding with a set of original density functional theory simulations.
Collapse
Affiliation(s)
- Angus Pedersen
- Department of Materials, Royal School of Mines, Imperial College London London SW7 2AZ England UK
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Alexander Bagger
- Department of Materials, Royal School of Mines, Imperial College London London SW7 2AZ England UK
- Department of Physics, Technical University of Denmark Kongens Lyngby 2800 Denmark
| | - Jesús Barrio
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Frédéric Maillard
- University Grenoble Alpes, University Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Ifan E L Stephens
- Department of Materials, Royal School of Mines, Imperial College London London SW7 2AZ England UK
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University 2-1-1 Katahira, Aobaku Sendai Miyagi 980-8577 Japan
| |
Collapse
|