1
|
Alghannam A, Bell AT. Effects of Cofeeding Hydrogen on Propane Dehydrogenation Catalyzed by Isolated Iron Sites Incorporated into Dealuminated BEA. J Am Chem Soc 2025; 147:1677-1693. [PMID: 39746209 DOI: 10.1021/jacs.4c12344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Iron sites dispersed on nonacidic siliceous supports have been reported to be catalytically active for propane dehydrogenation (PDH), yet the precise relationship between site structure and catalytic activity remains elusive. This study provides a comprehensive understanding of the catalytic performance of iron supported on dealuminated BEA (DeAlBEA) zeolites for PDH. Using XAS, UV-vis, and IR spectroscopy of adsorbed pyridine and deuterated acetonitrile, it was found that, at an Fe/Al0 of 0.04, isolated Fe sites form. These isolated sites exhibit a forward rate of PDH of 213 mol propene/mol Fe·h at 823 K and a feed containing 15 kPa propane. When 15 kPa of H2 is added to the feed, the forward rate of PDH rises to 391 mol of propene/mol of Fe·h. In both cases, the propene selectivity is over 99%. IR spectroscopy of d3-acetonitrile suggests that the open Lewis acid site ((-Si-O-)2Fe3+-OH) serves as the active site responsible for PDH, while Brønsted acid sites (≡Fe3+-O(H)-Si≡) contribute to propane cracking with increasing Fe/Al0 ratios. Kinetic analysis of the effects of H2 addition to the propane feed on PDH kinetics shows that H2 enhances the activity of 0.04FeDeAlBEA primarily by enhancing the strength of the propane adsorption.
Collapse
Affiliation(s)
- Afnan Alghannam
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexis T Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Xue F, Wang J, Li P, Yao Y, Li J, Lu Z, Yi D, Yuan F, Yan W, Wang X. Enhancing Stability and Activity of Fe-Based Catalysts for Propane Dehydrogenation via Anchoring Isolated Fe-Cl Sites. CHEMSUSCHEM 2025:e202402408. [PMID: 39757117 DOI: 10.1002/cssc.202402408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
The eco-friendly features and desirable catalytic activities of Fe-based catalysts make them highly promising for propane dehydrogenation (PDH). However, simultaneously improving their stability and activity remains a challenge. Here, we present a strategy to address these issues synergistically by anchoring single-atom Fe-Cl sites in Al3+ vacancies of Al2O3. The as-synthesized Fe-Cl/Al2O3 catalyst exhibited greater charge transfer between Cl and Fe than that between O and Fe in conventionally impregnated single-atom Fe/Al2O3 catalysts, resulting in higher effective magnetic moments for Fe-Cl/Al2O3 compared to Fe/Al2O3. When tested in PDH, the durability of Fe-Cl/Al2O3 exceptionally lasted for 250 h under continuous regeneration conditions comprising 60 % C3H8 (40 % N2), followed by pure C3H8 at 600 °C while maintaining a high propylene space-time yield of 1.2 molC3H6 gFe -1 h-1, surpassing the performance of previously developed Fe-based PDH catalysts. We demonstrate that anchoring Fe-Cl into Al3+ vacancies simultaneously enhances stability and suppresses coke formation, owing to unique atomically dispersed Fe-Cl active structures. Compared with Fe/Al2O3 catalysts, charge transfer between Cl and Fe active centers reduces the activation energy barrier for C-H activation during C3H8 dehydrogenation, thereby improving catalytic activity; this may be related to their spin state as observed in in-situ X-ray emission spectroscopy studies during PDH.
Collapse
Affiliation(s)
- Fan Xue
- Key Laboratory of Luminescence and Optical Information Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Jingnan Wang
- Molecular Engineering Plus, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Panpan Li
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan, 451162, P. R. China
| | - Yongbin Yao
- Key Laboratory of Luminescence and Optical Information Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Junmeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | - Zongjing Lu
- Institute of Photochemistry and Photofunctional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Ding Yi
- Key Laboratory of Luminescence and Optical Information Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Fangli Yuan
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| |
Collapse
|
3
|
DeMuth JC, Kim YL, Hall JN, Syed ZH, Deng K, Perras FA, Ferrandon MS, Kropf AJ, Liu C, Kaphan DM, Delferro M. Silicon Nitride Surface Enabled Propane Dehydrogenation Catalyzed by Supported Organozirconium. J Am Chem Soc 2024; 146:14404-14409. [PMID: 38754022 DOI: 10.1021/jacs.4c02776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Mesoporous silicon nitride (Si3N4) is a nontraditional support for the chemisorption of organometallic complexes with the potential for enhancing catalytic activity through features such as the increased Lewis basicity of nitrogen for heterolytic bond activation, increased ligand donor strength, and metal-ligand orbital overlap. Here, tetrabenzyl zirconium (ZrBn4) was chemisorbed on Si3N4, and the resulting supported organometallic species was characterized by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Dynamic Nuclear Polarization-enhanced Solid State Nuclear Magnetic Resonance (DNP-SSNMR), and X-ray Absorption Spectroscopy (XAS). Based on the hypothesis that the nitride might enable facile heterolytic C-H bond activation along the Zr-N bond, this material was found to be a highly active (1.53 molpropene molZr-1 h-1 at 450 °C) and selective (99% to propylene) catalyst for propane dehydrogenation. In contrast, the homologous silica supported complex exhibited negligible activity under these conditions.
Collapse
Affiliation(s)
- Joshua C DeMuth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yu Lim Kim
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jacklyn N Hall
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zoha H Syed
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaixi Deng
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Magali S Ferrandon
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - A Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David M Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
5
|
Xu G, Zhang X, Dong Z, Liang W, Xiao T, Chen H, Ma Y, Pan Y, Fu Y. Ferric Single-Site Catalyst Confined in a Zeolite Framework for Propane Dehydrogenation. Angew Chem Int Ed Engl 2023; 62:e202305915. [PMID: 37696765 DOI: 10.1002/anie.202305915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Non-oxidative dehydrogenation of propane is a highly efficient approach for industrial preparation of propene that is commonly catalyzed by noble Pt or toxic Cr catalysts and suffers from coking. In this work, ferric catalyst confined in a zeolite framework was synthesized by a hydrothermal procedure. The isolated Fe in the framework formed distorted tetrahedra, which were beneficial for the selective dehydrogenation of propane and reached over 95 % propene selectivity and over 99 % total olefins selectivity. This catalyst had a silanol-free structure and was oxygen tolerant, hydrothermally stable, and coke free, with a deactivation constant of 0.01 h-1 . This study provided guidance for the synthesis of structural heteroatomic zeolite and efficient propane non-oxidative dehydrogenation over early transition metals.
Collapse
Affiliation(s)
- Guangyue Xu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China
| | - Xiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| | - Zhuoya Dong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wanying Liang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| | - Tianci Xiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huiyong Chen
- School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yao Fu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Yuan Y, Zhao Z, Lobo RF, Xu B. Site Diversity and Mechanism of Metal-Exchanged Zeolite Catalyzed Non-Oxidative Propane Dehydrogenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207756. [PMID: 36897033 PMCID: PMC10161086 DOI: 10.1002/advs.202207756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/08/2023] [Indexed: 05/06/2023]
Abstract
Metal-exchanged zeolites are well-known propane dehydrogenation (PDH) catalysts; however, the structure of the active species remains unresolved. In this review, existing PDH catalysts are first surveyed, and then the current understanding of metal-exchanged zeolite catalysts is described in detail. The case of Ga/H-ZSM-5 is employed to showcase that advances in the understanding of structure-activity relations are often accompanied by technological or conceptional breakthroughs. The understanding of Ga speciation at PDH conditions has evolved owing to the advent of in situ/operando characterizations and to the realization that the local coordination environment of Ga species afforded by the zeolite support has a decisive impact on the active site structure. In situ/operando quantitative characterization of catalysts, rigorous determination of intrinsic reaction rates, and predictive computational modeling are all significant in identifying the most active structure in these complex systems. The reaction mechanism could be both intricately related to and nearly independent of the details of the assumed active structure, as in the two main proposed PDH mechanisms on Ga/H-ZSM-5, that is, the carbenium mechanism and the alkyl mechanism. Perspectives on potential approaches to further elucidate the active structure of metal-exchanged zeolite catalysts and reaction mechanisms are discussed in the final section.
Collapse
Affiliation(s)
- Yong Yuan
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
| | - Zhaoqi Zhao
- College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Raul F. Lobo
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
| | - Bingjun Xu
- Center for Catalytic Science and TechnologyDepartment of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDE19716USA
- College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
7
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
8
|
Lv X, Yang M, Song S, Xia M, Li J, Wei Y, Xu C, Song W, Liu J. Boosting Propane Dehydrogenation by the Regioselective Distribution of Subnanometric CoO Clusters in MFI Zeolite Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36898088 DOI: 10.1021/acsami.2c21076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct dehydrogenation of propane (PDH) has already been implemented worldwide in industrial processes to produce value-added propylene. The discovery of earth-abundant and environmentally friendly metal with high activity in C-H cleavage is of great importance. Co species encapsulated within zeolite are highly efficient for catalyzing direct dehydrogenation. However, exploring a promising Co catalyst remains a nontrivial target. Direct control of the regioselective distribution of Co species in the zeolite framework through altering their crystal morphology gives opportunities to modify the metallic Lewis acidic features, thus providing an active and appealing catalyst. Herein, we achieved the regioselective localization of highly active subnanometric CoO clusters in straight channels of siliceous MFI zeolite nanosheets with controllable thickness and aspect ratio. The subnanometric CoO species were identified by different types of spectroscopies, probe measurements, and density functional theory calculations, as the coordination site for the electron-donating propane molecules. The catalyst showed promising catalytic activity for the industrially important PDH with propane conversion of 41.8% and propylene selectivity higher than 95% and was durable during 10 successive regeneration cycles. These findings highlight a green and facile method to synthesize metal-containing zeolitic materials with regioselective metal distribution and also to open up a future perspectives for designing advanced catalysts with integrated advantages of the zeolitic matrix and metal structures.
Collapse
Affiliation(s)
- Xintong Lv
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Min Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Shaojia Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Mingji Xia
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jun Li
- Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
9
|
Zhao D, Gao M, Tian X, Doronkin DE, Han S, Grunwaldt JD, Rodemerck U, Linke D, Ye M, Jiang G, Jiao H, Kondratenko EV. Effect of Diffusion Constraints and ZnO x Speciation on Nonoxidative Dehydrogenation of Propane and Isobutane over ZnO-Containing Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Dan Zhao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, P. R. China
| | - Mingbin Gao
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xinxin Tian
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Dmitry E. Doronkin
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Shanlei Han
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, P. R. China
| | - Jan-Dierk Grunwaldt
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Uwe Rodemerck
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| | - David Linke
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| | - Mao Ye
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, P. R. China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| | - Evgenii V. Kondratenko
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| |
Collapse
|
10
|
Illustrating new understanding of adsorbed water on silica for inducing tetrahedral cobalt(II) for propane dehydrogenation. Nat Commun 2023; 14:100. [PMID: 36609564 PMCID: PMC9823098 DOI: 10.1038/s41467-022-35698-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Highly dispersed metal sites on the surface of silica, achieved from immobilization of metal precursor within hydroxyl groups, has gained increasing attention in the field of heterogeneous catalyst. However, the special role of adsorbed water derived by hydroxyl groups on the silica is generally ignored. Herein, a new understanding of adsorbed water on the formation of highly dispersed tetrahedral Co(II) (Td-cobalt(II)) sites is illustrated. It is indicated that sufficient adsorbed water induces the transformation of precursor of Co(NO3)2 into intermediate of [Co(H2O)6]2+. Subsequently, [Co(H2O)6]2+ makes the highly dispersed Td-cobalt(II) sites to be available during direct H2-reduction process. A systematic characterization and DFT calculation prove the existence of the adsorbed water and the importance of the intermediate of [Co(H2O)6]2+, respectively. The as-synthesized catalyst is attempted to the propane dehydrogenation, which shows better reactivity when compared with other reported Co based catalysts.
Collapse
|
11
|
Kinetics of Heterogeneous Single‐Site Catalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202201082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Li X, Gong Y, Lu Q, Lin M, Liu J, Wu Y. Mo, Cu Bimetallic Loaded Hierarchical Pore ZSM-5 Catalysts for the Hydrothermal Aromatization of Algal Bio-Oil Model Compounds. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Xiaoxian Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing100084, China
| | - Yuanzhe Gong
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing102249, China
| | - Qi Lu
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing102249, China
| | - Min Lin
- MOE Engineering Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing100083, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing102249, China
| | - Yulong Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing100084, China
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing100084, China
| |
Collapse
|
13
|
Feng F, Zhang H, Chu S, Zhang Q, Wang C, Wang G, Wang F, Bing L, Han D. Recent progress on the traditional and emerging catalysts for propane dehydrogenation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Recent strategies for synthesis of metallosilicate zeolites. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Chen X, Peng M, Xiao D, Liu H, Ma D. Fully Exposed Metal Clusters: Fabrication and Application in Alkane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaowen Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
16
|
Abou Nakad J, Rajapaksha R, Szeto KC, De Mallmann A, Taoufik M. Preparation of Tripodal Vanadium Oxo-Organometallic Species Supported on Silica, [(≡SiO) 3V(═O)], for Selective Nonoxidative Dehydrogenation of Propane. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jessy Abou Nakad
- Université Lyon 1, Institut de Chimie Lyon, CPE Lyon, CNRS, UMR 5128 CP2M, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France
| | - Remy Rajapaksha
- Université Lyon 1, Institut de Chimie Lyon, CPE Lyon, CNRS, UMR 5128 CP2M, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France
| | - Kai C. Szeto
- Université Lyon 1, Institut de Chimie Lyon, CPE Lyon, CNRS, UMR 5128 CP2M, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France
| | - Aimery De Mallmann
- Université Lyon 1, Institut de Chimie Lyon, CPE Lyon, CNRS, UMR 5128 CP2M, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France
| | - Mostafa Taoufik
- Université Lyon 1, Institut de Chimie Lyon, CPE Lyon, CNRS, UMR 5128 CP2M, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France
| |
Collapse
|
17
|
Yu K, Srinivas S, Wang C, Chen W, Ma L, Ehrlich SN, Marinkovic N, Kumar P, Stach EA, Caratzoulas S, Zheng W, Vlachos DG. High-Temperature Pretreatment Effect on Co/SiO 2 Active Sites and Ethane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kewei Yu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Sanjana Srinivas
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Cong Wang
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Weiqi Chen
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Lu Ma
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N. Ehrlich
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Nebojsa Marinkovic
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Pawan Kumar
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A. Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Stavros Caratzoulas
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Weiqing Zheng
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Catalysis Center for Energy Innovation, Delaware Energy Institute, Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
18
|
Yang F, Zhang J, Shi Z, Chen J, Wang G, He J, Zhao J, Zhuo R, Wang R. Advanced design and development of catalysts in propane dehydrogenation. NANOSCALE 2022; 14:9963-9988. [PMID: 35815671 DOI: 10.1039/d2nr02208g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Propane dehydrogenation (PDH) is an industrial technology for direct propylene production, which has received extensive attention and realized large-scale application. At present, the commercial Pt/Cr-based catalysts suffer from fast deactivation and inferior stability resulting from active species sintering and coke depositing. To overcome the above problems, several strategies such as the modification of the support and the introduction of additives have been proposed to strengthen the catalytic performance and prolong the robust stability of Pt/Cr-based catalysts. This review firstly gives a brief description of the development of PDH and PDH catalysts. Then, the advanced research progress of supported noble metals and non-noble metals together with metal-free materials for PDH is systematically summarized along with the material design and active origin as well as the existing problems in the development of PDH catalysts. Furthermore, the review also emphasizes advanced synthetic strategies based on novel design of PDH catalysts with improved dehydrogenation activity and stability. Finally, the future challenges and directions of PDH catalysts are provided for the development of their further industrial application.
Collapse
Affiliation(s)
- Fuwen Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zongbo Shi
- REZEL Catalysts Corporation, Shanghai 200120, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junjie He
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junyu Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | | | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Yuan Y, Lee JS, Lobo RF. Ga +-Chabazite Zeolite: A Highly Selective Catalyst for Nonoxidative Propane Dehydrogenation. J Am Chem Soc 2022; 144:15079-15092. [PMID: 35793461 DOI: 10.1021/jacs.2c03941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ga-chabazite zeolites (Ga-CHA) have been found to efficiently catalyze propane dehydrogenation with high propylene selectivity (96%). In situ Fourier transform infrared spectroscopy and pulse titrations are employed to determine that upon reduction, surface Ga2O3 is reduced and diffuses into the zeolite pores, displacing the Brønsted acid sites and forming extra-framework Ga+ sites. This isolated Ga+ site reacts reversibly with H2 to form GaHx (2034 cm-1) with an enthalpy of formation of ∼-51.2 kJ·mol-1, a result supported by density functional theory calculations. The initial C3H8 dehydrogenation rates decrease rapidly (40%) during the first 100 min and then decline slowly afterward, while the C3H6 selectivity is stable at ∼96%. The reduction in the reaction rate is correlated with the formation of polycyclic aromatics inside the zeolite (using UV-vis spectroscopy) indicating that the accumulation of polycyclic aromatics is the main cause of the deactivation. The carbon species formed can be easily oxidized at 600 °C with complete recovery of the PDH catalytic properties. The correlations between GaHx vs Ga/Al ratio and PDH rates vs Ga/Al ratio show that extra-framework Ga+ is the active center catalyzing propane dehydrogenation. The higher reaction rate on Ga+ than In+ in CHA zeolites, by a factor of 43, is the result of differences in the stabilization of the transition state due to the higher stability of Ga3+ vs In3+. The uniformity of the Ga+ sites in this material makes it an excellent model for the molecular understanding of metal cation-exchanged hydrocarbon interactions in zeolites.
Collapse
Affiliation(s)
- Yong Yuan
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jason S Lee
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Raul F Lobo
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
20
|
Bian K, Zhang G, Zhu J, Wang X, Wang M, Lou F, Liu Y, Song C, Guo X. Promoting Propane Dehydrogenation with CO 2 over the PtFe Bimetallic Catalyst by Eliminating the Non-selective Fe(0) Phase. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kai Bian
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jie Zhu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiang Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Mingrui Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Feijian Lou
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT Hong Kong 999077, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
21
|
Song S, Yang K, Zhang P, Wu Z, Li J, Su H, Dai S, Xu C, Li Z, Liu J, Song W. Silicalite-1 Stabilizes Zn-Hydride Species for Efficient Propane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shaojia Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Kun Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Peng Zhang
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jun Li
- Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Su
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Sheng Dai
- Department of Chemistry, University of Tennessee−Knoxville, Knoxville, Tennessee 37996-1600, United States
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhenxing Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
22
|
Rodriguez-Gomez A, Ould-Chikh S, Castells-Gil J, Aguilar-Tapia A, Bordet P, Alrushaid MA, Marti-Gastaldo C, Gascon J. Fe-MOF Materials as Precursors for the Catalytic Dehydrogenation of Isobutane. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alberto Rodriguez-Gomez
- KAUST Catalysis Center, Advanced Functional Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samy Ould-Chikh
- KAUST Catalysis Center, Advanced Functional Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Javier Castells-Gil
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | | | - Pierre Bordet
- Institut Neel, UPR 2940 CNRS─Université Grenoble Alpes, 38000 Grenoble, France
| | - Mogbel A. Alrushaid
- Surface Science and Advanced Characterizations Department, SABIC-CRD at KAUST, Thuwal 23955, Saudi Arabia
| | - Carlos Marti-Gastaldo
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Jorge Gascon
- KAUST Catalysis Center, Advanced Functional Materials, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
23
|
Wang ZY, He ZH, Li LY, Yang SY, He MX, Sun YC, Wang K, Chen JG, Liu ZT. Research progress of CO 2 oxidative dehydrogenation of propane to propylene over Cr-free metal catalysts. RARE METALS 2022; 41:2129-2152. [PMID: 35291268 PMCID: PMC8913863 DOI: 10.1007/s12598-021-01959-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
CO2-assisted oxidative dehydrogenation of propane (CO2-ODHP) is an attractive strategy to offset the demand gap of propylene due to its potentiality of reducing CO2 emissions, especially under the demands of peaking CO2 emissions and carbon neutrality. The introduction of CO2 as a soft oxidant into the reaction not only averts the over-oxidation of products, but also maintains the high oxidation state of the redox-active sites. Furthermore, the presence of CO2 increases the conversion of propane by coupling the dehydrogenation of propane (DHP) with the reverse water gas reaction (RWGS) and inhibits the coking formation to prolong the lifetime of catalysts via the reverse Boudouard reaction. An effective catalyst should selectively activate the C-H bond but suppress the C-C cleavage. However, to prepare such a catalyst remains challenging. Chromium-based catalysts are always applied in industrial application of DHP; however, their toxic properties are harmful to the environment. In this aspect, exploring environment-friendly and sustainable catalytic systems with Cr-free is an important issue. In this review, we outline the development of the CO2-ODHP especially in the last ten years, including the structural information, catalytic performances, and mechanisms of chromium-free metal-based catalyst systems, and the role of CO2 in the reaction. We also present perspectives for future progress in the CO2-ODHP.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Zhen-Hong He
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Long-Yao Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 China
| | - Shao-Yan Yang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 China
| | - Meng-Xin He
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Yong-Chang Sun
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Kuan Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 China
| | - Jian-Gang Chen
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 China
| | - Zhao-Tie Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710119 China
| |
Collapse
|
24
|
Wang W, Wu Y, Liu T, Zhao Y, Qu Y, Yang R, Xue Z, Wang Z, Zhou F, Long J, Yang Z, Han X, Lin Y, Chen M, Zheng L, Zhou H, Lin X, Wu F, Wang H, Yang Y, Li Y, Dai Y, Wu Y. Single Co Sites in Ordered SiO2 Channels for Boosting Nonoxidative Propane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenyu Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tianyang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Yafei Zhao
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunteng Qu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhenggang Xue
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiyuan Wang
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fangyao Zhou
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiangping Long
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengkun Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiao Han
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Lin
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Min Chen
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lirong Zheng
- Institute of High Energy Physics, Beijing 100049, China
| | - Huang Zhou
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingen Lin
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Feng Wu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Yihu Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuen Wu
- First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
25
|
Wu Q, Xu C, Zhu L, Meng X, Xiao FS. Recent Strategies for Synthesis of Metallosilicate Zeolites. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Liu Y, Zhang G, Wang J, Zhu J, Zhang X, Miller JT, Song C, Guo X. Promoting propane dehydrogenation with CO2 over Ga2O3/SiO2 by eliminating Ga-hydrides. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63900-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Rational design of intermetallic compound catalysts for propane dehydrogenation from a descriptor-based microkinetic analysis. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Praveen CS, Comas-Vives A. Activity Trends in the Propane Dehydrogenation Reaction Catalyzed by MIII Sites on an Amorphous SiO2 Model: A Theoretical Perspective. Top Catal 2021. [DOI: 10.1007/s11244-021-01535-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractOne class of particularly active catalysts for the Propane Dehydrogenation (PDH) reaction are well-defined M(III) sites on amorphous SiO2. In the present work, we focus on evaluating the catalytic trends of the PDH for four M(III) single-sites (Cr, Mo, Ga and In) on a realistic amorphous model of SiO2 using density functional theory-based calculations and the energetic span model. We considered a catalytic pathway spanned by three reaction steps taking place on selected MIII–O pair of the SiO2 model: σ-bond metathesis of propane on a MIII–O bond to form M-propyl and O–H group, a β-H transfer step forming M–H and propene, and the H–H coupling step producing H2 and regenerating the initial M–O bond. With the application of the energetic span model, we found that the calculated catalytic activity for Ga and Cr is comparable to the ones reported at the experimental level, enabling us to benchmark the model and the methodology used. Furthermore, results suggest that both In(III) and Mo(III) on SiO2 are potential active catalysts for PDH, provided they can be synthesized and are stable under PDH reaction conditions.
Collapse
|
29
|
C3N Non-metallic Catalyst for Propane Dehydrogenation: A Density Functional Theory Study. Catal Letters 2021. [DOI: 10.1007/s10562-021-03564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Kou J, Zhu Chen J, Gao J, Zhang X, Zhu J, Ghosh A, Liu W, Kropf AJ, Zemlyanov D, Ma R, Guo X, Datye AK, Zhang G, Guo L, Miller JT. Structural and Catalytic Properties of Isolated Pt 2+ Sites in Platinum Phosphide (PtP 2). ACS Catal 2021. [DOI: 10.1021/acscatal.1c03970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiajing Kou
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, China
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Johnny Zhu Chen
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Junxian Gao
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Xiaoben Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jie Zhu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Arnab Ghosh
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Wei Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - A. Jeremy Kropf
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 W State Street, West Lafayette, Indiana 47907, United States
| | - Rui Ma
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Abhaya K. Datye
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Liejin Guo
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an, Shaanxi 710049, China
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
31
|
Sharma L, Jiang X, Wu Z, DeLaRiva A, Datye AK, Baltrus J, Rangarajan S, Baltrusaitis J. Atomically Dispersed Tin-Modified γ-alumina for Selective Propane Dehydrogenation under H 2S Co-feed. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lohit Sharma
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Xiao Jiang
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zili Wu
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Andrew DeLaRiva
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Abhaya K. Datye
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - John Baltrus
- U. S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Srinivas Rangarajan
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
32
|
Wang P, Senftle TP. Modeling phase formation on catalyst surfaces: Coke formation and suppression in hydrocarbon environments. AIChE J 2021. [DOI: 10.1002/aic.17454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Wang
- Department of Chemical and Biomolecular Engineering Rice University Houston Texas USA
| | - Thomas P. Senftle
- Department of Chemical and Biomolecular Engineering Rice University Houston Texas USA
| |
Collapse
|
33
|
Zhou Y, Xi W, Xie Z, You Z, Jiang X, Han B, Lang R, Wu C. High-Loading Pt Single-Atom Catalyst on CeO 2 -Modified Diatomite Support. Chem Asian J 2021; 16:2622-2625. [PMID: 34403212 DOI: 10.1002/asia.202100730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Indexed: 11/09/2022]
Abstract
Single-atom catalysis has become a new branch in heterogeneous catalysis. Although the naturally produced SiO2 -based materials are abundant and stable, fabrication of single-atom catalysts on such supports with high loading remains as a formidable challenge due to the lack of bonding sites to anchor the isolated metal species. Herein, modifying the diatomite, a kind of pure SiO2 mineral, with CeO2 nanoparticles is demonstrated to increase the defect sites on the support. The enhanced metal-support interaction maintains the atomic dispersion of Pt species with above 1 wt.% loading, exhibiting good performance in the selective hydrogenation of phenylacetylene to styrene.
Collapse
Affiliation(s)
- Yang Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wei Xi
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials, School of Materials, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zixin Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhixin You
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xunzhu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R.China
| | - Bing Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R.China
| | - Rui Lang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Chuande Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.,State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
34
|
Liu J, Liu Y, Liu H, Fu Y, Chen Z, Zhu W. Silicalite‐1 Supported ZnO as an Efficient Catalyst for Direct Propane Dehydrogenation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Liu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yong Liu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Hongchao Liu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Yi Fu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhiyang Chen
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Wenliang Zhu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| |
Collapse
|
35
|
Motagamwala AH, Almallahi R, Wortman J, Igenegbai VO, Linic S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 2021; 373:217-222. [PMID: 34244414 DOI: 10.1126/science.abg7894] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/28/2021] [Indexed: 01/20/2023]
Abstract
Intentional ("on-purpose") propylene production through nonoxidative propane dehydrogenation (PDH) holds great promise for meeting the increasing global demand for propylene. For stable performance, traditional alumina-supported platinum-based catalysts require excess tin and feed dilution with hydrogen; however, this reduces per-pass propylene conversion and thus lowers catalyst productivity. We report that silica-supported platinum-tin (Pt1Sn1) nanoparticles (<2 nanometers in diameter) can operate as a PDH catalyst at thermodynamically limited conversion levels, with excellent stability and selectivity to propylene (>99%). Atomic mixing of Pt and Sn in the precursor is preserved upon reduction and during catalytic operation. The benign interaction of these nanoparticles with the silicon dioxide support does not lead to Pt-Sn segregation and formation of a tin oxide phase that can occur over traditional catalyst supports.
Collapse
Affiliation(s)
- Ali Hussain Motagamwala
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.,Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, MI, USA
| | - Rawan Almallahi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.,Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, MI, USA
| | - James Wortman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.,Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, MI, USA
| | - Valentina Omoze Igenegbai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.,Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, MI, USA
| | - Suljo Linic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Praveen CS, Borosy AP, Copéret C, Comas-Vives A. Strain in Silica-Supported Ga(III) Sites: Neither Too Much nor Too Little for Propane Dehydrogenation Catalytic Activity. Inorg Chem 2021; 60:6865-6874. [PMID: 33545002 PMCID: PMC8483445 DOI: 10.1021/acs.inorgchem.0c03135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Well-defined Ga(III) sites on SiO2 are highly active, selective, and stable catalysts in the propane dehydrogenation (PDH) reaction. In this contribution, we evaluate the catalytic activity toward PDH of tricoordinated and tetracoordinated Ga(III) sites on SiO2 by means of first-principles calculations using realistic amorphous periodic SiO2 models. We evaluated the three reaction steps in PDH, namely, the C-H activation of propane to form propyl, the β-hydride (β-H) transfer to form propene and a gallium hydride, and the H-H coupling to release H2, regenerating the initial Ga-O bond and closing the catalytic cycle. Our work shows how Brønsted-Evans-Polanyi relationships are followed to a certain extent for these three reaction steps on Ga(III) sites on SiO2 and highlights the role of the strain of the reactive Ga-O pairs on such sites of realistic amorphous SiO2 models. It also shows how transition-state scaling holds very well for the β-H transfer step. While highly strained sites are very reactive sites for the initial C-H activation, they are more difficult to regenerate. The corresponding less strained sites are not reactive enough, pointing to the need for the right balance in strain to be an effective site for PDH. Overall, our work provides an understanding of the intrinsic activity of acidic Ga single sites toward the PDH reaction and paves the way toward the design and prediction of better single-site catalysts on SiO2 for the PDH reaction.
Collapse
Affiliation(s)
- C S Praveen
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - A P Borosy
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - C Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - A Comas-Vives
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
37
|
Docherty SR, Rochlitz L, Payard PA, Copéret C. Heterogeneous alkane dehydrogenation catalysts investigated via a surface organometallic chemistry approach. Chem Soc Rev 2021; 50:5806-5822. [PMID: 33972978 PMCID: PMC8111541 DOI: 10.1039/d0cs01424a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The selective conversion of light alkanes (C2–C6 saturated hydrocarbons) to the corresponding alkene is an appealing strategy for the petrochemical industry in view of the availability of these feedstocks, in particular with the emergence of Shale gas. Here, we present a review of model dehydrogenation catalysts of light alkanes prepared via surface organometallic chemistry (SOMC). A specific focus of this review is the use of molecular strategies for the deconvolution of complex heterogeneous materials that are proficient in enabling dehydrogenation reactions. The challenges associated with the proposed reactions are highlighted, as well as overriding themes that can be ascertained from the systematic study of these challenging reactions using model SOMC catalysts. Alkane dehydrogenation over heterogeneous catalysts has attracted renewed attention in recent years. Here, well-defined catalysts based on isolated metal sites and supported Pt-alloys prepared via SOMC are discussed and compared to classical systems.![]()
Collapse
Affiliation(s)
- Scott R Docherty
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| | - Lukas Rochlitz
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| | - Pierre-Adrien Payard
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences - ETH Zürich, Vladimir Prelog 2, CH8093 Zürich, Switzerland.
| |
Collapse
|
38
|
|
39
|
Olefin oligomerization by main group Ga 3+ and Zn 2+ single site catalysts on SiO 2. Nat Commun 2021; 12:2322. [PMID: 33875664 PMCID: PMC8055657 DOI: 10.1038/s41467-021-22512-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/08/2021] [Indexed: 11/08/2022] Open
Abstract
In heterogeneous catalysis, olefin oligomerization is typically performed on immobilized transition metal ions, such as Ni2+ and Cr3+. Here we report that silica-supported, single site catalysts containing immobilized, main group Zn2+ and Ga3+ ion sites catalyze ethylene and propylene oligomerization to an equilibrium distribution of linear olefins with rates similar to that of Ni2+. The molecular weight distribution of products formed on Zn2+ is similar to Ni2+, while Ga3+ forms higher molecular weight olefins. In situ spectroscopic and computational studies suggest that oligomerization unexpectedly occurs by the Cossee-Arlman mechanism via metal hydride and metal alkyl intermediates formed during olefin insertion and β-hydride elimination elementary steps. Initiation of the catalytic cycle is proposed to occur by heterolytic C-H dissociation of ethylene, which occurs at about 250 °C where oligomerization is catalytically relevant. This work illuminates new chemistry for main group metal catalysts with potential for development of new oligomerization processes.
Collapse
|
40
|
Abstract
In the past several decades, light alkane dehydrogenation to mono-olefins, especially propane dehydrogenation to propylene has gained widespread attention and much development in the field of research and commercial application. Under suitable conditions, the supported Pt-Sn and CrOx catalysts widely used in industry exhibit satisfactory dehydrogenation activity and selectivity. However, the high cost of Pt and the potential environmental problems of CrOx have driven researchers to improve the coking and sintering resistance of Pt catalysts, and to find new non-noble metal and environment-friendly catalysts. As for the development of the reactor, it should be noted that low operation pressure is beneficial for improving the single-pass conversion, decreasing the amount of unconverted alkane recycled back to the reactor, and reducing the energy consumption of the whole process. Therefore, the research direction of reactor improvement is towards reducing the pressure drop. This review is aimed at introducing the characteristics of the dehydrogenation reaction, the progress made in the development of catalysts and reactors, and a new understanding of reaction mechanism as well as its guiding role in the development of catalyst and reactor.
Collapse
Affiliation(s)
- Chunyi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, P. R. China.
| | | |
Collapse
|
41
|
|
42
|
Wang P, Senftle TP. Theoretical insights into non-oxidative propane dehydrogenation over Fe 3C. Phys Chem Chem Phys 2021; 23:1401-1413. [PMID: 33393543 DOI: 10.1039/d0cp04669h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identifying catalysts for non-oxidative propane dehydrogenation has become increasingly important due to the increasing demand for propylene coupled to decreasing propylene production from steam cracking as we shift to lighter hydrocarbon feedstocks. Commercialized propane dehydrogenation (PDH) catalysts are based on Pt or Cr, which are expensive or toxic, respectively. Recent experimental work has demonstrated that earth-abundant and environmentally-benign metals, such as iron, form in situ carbide phases that exhibit good activity and high selectivity for PDH. In this work, we used density functional theory (DFT) to better understand why the PDH reaction is highly selective on Fe3C surfaces. We use ab initio thermodynamics to identify stable Fe3C surface terminations as a function of reaction conditions, which then serve as our models for investigating rate-determining and selectivity-determining kinetic barriers during PDH. We find that carbon-rich surfaces show much higher selectivity for propylene production over competing cracking reactions compared to iron-rich surfaces, which is determined by comparing the propylene desorption barrier to the C-H scission barrier for dehydrogenation steps beyond propylene. Electronic structure analyses of the d-band center and the crystal orbital Hamilton population (COHP) of the carbides demonstrate that the high selectivity of carbon-rich surfaces originates from the disruption of surface Fe ensembles via carbon. Finally, we investigated the role of phosphate in suppressing coke formation and found that the electron-withdrawing character of phosphate destabilizes surface carbon.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
43
|
Chen S, Chang X, Sun G, Zhang T, Xu Y, Wang Y, Pei C, Gong J. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem Soc Rev 2021; 50:3315-3354. [DOI: 10.1039/d0cs00814a] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review describes recent advances in the propane dehydrogenation process in terms of emerging technologies, catalyst development and new chemistry.
Collapse
Affiliation(s)
- Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Guodong Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Tingting Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yiyi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yang Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering & Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
44
|
Dai Y, Gao X, Wang Q, Wan X, Zhou C, Yang Y. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem Soc Rev 2021; 50:5590-5630. [DOI: 10.1039/d0cs01260b] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal and metal oxide catalysts for non-oxidative ethane/propane dehydrogenation are outlined with respect to catalyst synthesis, structure–property relationship and catalytic mechanism.
Collapse
Affiliation(s)
- Yihu Dai
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xing Gao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Qiaojuan Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xiaoyue Wan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Chunmei Zhou
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yanhui Yang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
45
|
Chen L, Qi Z, Zhang S, Su J, Somorjai GA. Application of Single-Site Catalysts in the Hydrogen Economy. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
46
|
Xie Z, Yu T, Song W, Li J, Zhao Z, Liu B, Gao Z, Li D. Highly Active Nanosized Anatase TiO2–x Oxide Catalysts In Situ Formed through Reduction and Ostwald Ripening Processes for Propane Dehydrogenation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02825] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zean Xie
- Institute of Catalysis for Energy and Environment, Shenyang Normal University, Shenyang 110034, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Tingting Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Jianmei Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, Shenyang Normal University, Shenyang 110034, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Baijun Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Zhenfei Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| | - Dong Li
- Institute of Catalysis for Energy and Environment, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
47
|
Lang R, Du X, Huang Y, Jiang X, Zhang Q, Guo Y, Liu K, Qiao B, Wang A, Zhang T. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem Rev 2020; 120:11986-12043. [DOI: 10.1021/acs.chemrev.0c00797] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rui Lang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaorui Du
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunzhu Jiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaipeng Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
48
|
Perechodjuk A, Kondratenko VA, Lund H, Rockstroh N, Kondratenko EV. Oxide of lanthanoids can catalyse non-oxidative propane dehydrogenation: mechanistic concept and application potential of Eu 2O 3- or Gd 2O 3-based catalysts. Chem Commun (Camb) 2020; 56:13021-13024. [PMID: 33000811 DOI: 10.1039/d0cc05496h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper demonstrates the potential of Eu2O3 and Gd2O3 as catalysts for non-oxidative propane dehydrogenation to propene. They reveal a higher activity than the state-of-the-art bare ZrO2-based catalysts due to the higher intrinsic activity of Gdcus or Eucus in comparison with that of Zrcus (cus = coordinatively unsaturated).
Collapse
Affiliation(s)
- Anna Perechodjuk
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, 18059, Germany.
| | - Vita A Kondratenko
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, 18059, Germany.
| | - Henrik Lund
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, 18059, Germany.
| | - Nils Rockstroh
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, 18059, Germany.
| | - Evgenii V Kondratenko
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, 18059, Germany.
| |
Collapse
|
49
|
Yang Z, Li H, Zhou H, Wang L, Wang L, Zhu Q, Xiao J, Meng X, Chen J, Xiao FS. Coking-Resistant Iron Catalyst in Ethane Dehydrogenation Achieved through Siliceous Zeolite Modulation. J Am Chem Soc 2020; 142:16429-16436. [DOI: 10.1021/jacs.0c07792] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiyuan Yang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Huan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hang Zhou
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lingxiang Wang
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Qiuyan Zhu
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiangju Meng
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Junxiang Chen
- Division of China, TILON Group Technology Limited, Shanghai 200090, China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
50
|
Wang G, Zhang S, Zhu X, Li C, Shan H. Dehydrogenation versus hydrogenolysis in the reaction of light alkanes over Ni-based catalysts. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|