1
|
Luo Y, Zhang M, Xia Y. Isatoic anhydride as a masked directing group and internal oxidant for Rh(III)-catalyzed decarbonylative annulation through C-H activation: insights from DFT calculations. Chem Commun (Camb) 2024; 60:12770-12773. [PMID: 39400304 DOI: 10.1039/d4cc03733b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Density functional theory calculations uncovered a new mechanism for the rhodium-catalyzed decarbonylative annulation of isatoic anhydride with alkynes, in which the acyloxy group formed from the N-H deprotonation and C-O bond cleavage of isatoic anhydride acts as the directing group to assist the ortho C-H activation. From the generated five-membered rhodacycle intermediate, the final aminoisocoumarin product could be formed by subsequent steps of alkyne insertion, reductive elimination, decarbonylation, and protonation. The isocyanate moiety contained in the annulation intermediate was uncovered as a novel internal oxidant for the reaction, which oxidizes the Rh(I) to Rh(III) by decarbonylation.
Collapse
Affiliation(s)
- Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Maosheng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Kianmehr E, Shafiee-Pour M. Ruthenium(II)-Catalyzed Annulation of Oximes with Maleimides: Synthesis of Pyrrolo[3,4- c]isoquinoline-1,3-diones. Org Lett 2024; 26:6977-6982. [PMID: 39102365 DOI: 10.1021/acs.orglett.4c02330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A series of pyrroloisoquinoline-1,3-diones has been synthesized using ruthenium(II) as the catalyst and oxygen as the oxidant in a straightforward manner. The reaction proceeds through a tandem C-C/C-N bond formation process between maleimides and ketoximes, providing a direct approach for the synthesis of the titled products. This operationally simple reaction procedure supplies suitable conditions for synthesizing diverse isoquinoline-based heterocycles with a range of functional groups in moderate to good yields and compatible with gram-scale synthesis. Furthermore, the compatibility of this reaction with oxygen as a green and environmentally friendly oxidant raises the importance of the present method.
Collapse
Affiliation(s)
- Ebrahim Kianmehr
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Maryam Shafiee-Pour
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| |
Collapse
|
3
|
Lin CY, Huang WW, Huang YT, Dhole S, Barve IJ, Sun CM. Rh(III)-Catalyzed Switchable [4 + 1] and [4 + 2] Annulation of N-Aryl Pyrazolones with Maleimides: An Access to Spiro Pyrazolo[1,2- a]indazole-pyrrolidine and Fused Pyrazolopyrrolo Cinnolines. J Org Chem 2023; 88:3424-3435. [PMID: 36864685 DOI: 10.1021/acs.joc.2c02338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A rhodium(III)-catalyzed controllable [4 + 1] and [4 + 2] annulation of N-aryl pyrazolones with maleimides as C1 and C2 synthon has been explored for the synthesis of spiro[pyrazolo[1,2-a]indazole-pyrrolidines] and fused pyrazolopyrrolo cinnolines. The product selectivity was achieved through time-dependent annulation. The [4 + 1] annulation reaction involves sequential Rh(III)-catalyzed C-H alkenylation of N-aryl pyrazolone, followed by an intramolecular spirocyclization via aza-Michael-type addition to afford spiro[pyrazolo[1,2-a]indazole-pyrrolidine]. However, prolonged reaction time converts in situ formed spiro[pyrazolo[1,2-a]indazole-pyrrolidine] into fused pyrazolopyrrolocinnoline. This unique product formation switch proceeds via strain-driven ring expansion through a 1,2-shift of the C-C bond.
Collapse
Affiliation(s)
- Chih-Yu Lin
- Department of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan, ROC
| | - Wan-Wen Huang
- Department of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan, ROC
| | - Ying-Ti Huang
- Department of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan, ROC
| | - Sandip Dhole
- Department of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan, ROC
| | - Indrajeet J Barve
- Department of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan, ROC.,Department of Chemistry, MES Abasaheb Garware College, Pune 411004, Maharashtra, India
| | - Chung-Ming Sun
- Department of Applied Chemistry, National Chiao-Tung University, 1001 Ta-Hsueh Road, Hsinchu 300-10, Taiwan, ROC.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 807-08, Taiwan, ROC
| |
Collapse
|
4
|
Wang X, Weintraub RA. Recent Developments in Isoindole Chemistry. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractIsoindoles are highly reactive aromatic heterocycles that have a variety of important applications in areas such as medicine, analytical detection, and solar energy. Due to their highly reactive nature, isoindoles can be used to access their derivatives, which possess a diverse array of biological activities. However, their reactivity also makes isoindoles unstable and thus, difficult to prepare. Consequently, there has been a need for the development of novel methods that address some of the synthetic challenges and limitations, as well as reactions that utilize isoindoles to access potentially useful compounds. This review will give an overview of the novel reactions reported within the past decade (2012 to 2022) that involve 2H- and 1H-isoindoles and fused isoindoles as reactants, key intermediates, or products. This review is divided into two parts, with the first part focusing on the synthesis of isoindoles and the second part focusing on reactions of isoindoles. The scopes and limitations of the methods described therein will be discussed and the significance of their contributions to the literature will be highlighted. Similar reactions will also be compared.1 Introduction2 Synthesis of Isoindoles2.1 Synthesis of 2H-Isoindoles2.2 Synthesis of 1H-Isoindoles3 Reactions of Isoindoles3.1 Reactions of 2H-Isoindoles3.2 Reactions of 1H-Isoindoles4 Conclusions
Collapse
|
5
|
Liang B, Wen T, Chen G, Cai Z, Xu J, Chen X, Zhu Z. Copper‐Catalyzed Acylhalogenation of 3‐Methylanthranils with Acid Halides: Synthesis of N‐(2‐(2‐Haloyl)phenyl)amides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Liu SL, Ye C, Wang X. Recent advances in transition-metal-catalyzed directed C-H alkenylation with maleimides. Org Biomol Chem 2022; 20:4837-4845. [PMID: 35635524 DOI: 10.1039/d2ob00604a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transition-metal-catalyzed directed C-H alkenylation with maleimides has attracted much attention in recent years, as maleimide core moieties are present in various natural products and pharmaceuticals. In addition, these derivatives can be readily modified into biologically important compounds including succinimides, pyrrolidines and γ-lactams. The efficient chelation-assisted inert C-H bond activation strategy provides straightforward access to a wide array of structurally diverse molecules containing maleimide units. This review describes the major progress and mechanistic investigations on Heck-type reaction/cyclization of maleimides with organic molecules until early 2022.
Collapse
Affiliation(s)
- Shuang-Liang Liu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Kexue avenue 136, Zhengzhou, 450001, P.R. China.
| | - Changchun Ye
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Kexue avenue 136, Zhengzhou, 450001, P.R. China.
| | - Xiaoge Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Kexue avenue 136, Zhengzhou, 450001, P.R. China.
| |
Collapse
|
7
|
Liu YY, Qu YL, Kang YS, Zhu YL, Sun WY, Lu Y. Mild Three-Step Consecutive C-H Activations. Org Lett 2022; 24:3118-3122. [PMID: 35475650 DOI: 10.1021/acs.orglett.2c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, the Rh-catalyzed consecutive C-H bond olefination/annulation/olefination cascade, tandemly directed by sulfonamide and ester groups, has been developed under mild conditions with the assistance of 1-adamantane carboxylic acid. A seven-membered metallacycle including an ester group was preferred to the five-membered one including a sulfonamide group for the third C-H activation. In this transformation, the Rh catalyst exhibits its high reactivity by catalyzing a triple C-H activation process with a low catalyst loading at 50 °C. This method can be applied in the construction of various pharmaceutical derivatives.
Collapse
Affiliation(s)
- Yao-Yao Liu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Yuan-Lu Qu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Yan-Shang Kang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Yue-Lu Zhu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| | - Yi Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Micro-structures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Prusty P, Jambu S, Jeganmohan M. Rh(III)-Catalyzed Selective Olefination of N-Carboxamide Indoles with Unactivated Olefins at Room Temperature via an Internal Oxidation. Org Lett 2022; 24:1121-1126. [DOI: 10.1021/acs.orglett.1c03905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Priyambada Prusty
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Subramanian Jambu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
9
|
Zhai R, Xu D, Bai L, Wang S, Kong D, Chen X. Synthesis of Isoquinolines via Rh(III)‐Catalyzed C−H Annulation of Primary Benzylamines with α‐Cl Ketones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ruirui Zhai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| | - Dan Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| | - Lili Bai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| | - Shuojin Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| | - Dulin Kong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| | - Xun Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs School of Pharmacy Hainan Medical University Haikou 571199 P. R. China
| |
Collapse
|
10
|
Sarmah D, Tahu M, Bora U. Recent advances in the synthesis of indoles via C–H activation aided by N–N and N–S cleavage in the directing group. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Debasish Sarmah
- Department of Chemical Sciences Tezpur University Tezpur India
| | - Mohendra Tahu
- Department of Chemical Sciences Tezpur University Tezpur India
| | - Utpal Bora
- Department of Chemical Sciences Tezpur University Tezpur India
| |
Collapse
|
11
|
Nagashima Y, Ishigaki S, Tanaka J, Tanaka K. Acceleration Mechanisms of C–H Bond Functionalization Catalyzed by Electron-Deficient CpRh(III) Complexes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shiho Ishigaki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Jin Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
12
|
Wang J, Li L, Chai M, Ding S, Li J, Shang Y, Zhao H, Li D, Zhu Q. Enantioselective Construction of 1 H-Isoindoles Containing Tri- and Difluoromethylated Quaternary Stereogenic Centers via Palladium-Catalyzed C–H Bond Imidoylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Lianjie Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Minxue Chai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, People’s Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Dan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, People’s Republic of China
| |
Collapse
|
13
|
Wang F, Jing J, Zhao Y, Zhu X, Zhang XP, Zhao L, Hu P, Deng WQ, Li X. Rhodium-Catalyzed C-H Activation-Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angew Chem Int Ed Engl 2021; 60:16628-16633. [PMID: 34008279 DOI: 10.1002/anie.202105093] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 12/20/2022]
Abstract
Reported herein is asymmetric [3+2] annulation of arylnitrones with different classes of alkynes catalyzed by chiral rhodium(III) complexes, with the nitrone acting as an electrophilic directing group. Three classes of chiral indenes/indenones have been effectively constructed, depending on the nature of the substrates. The coupling system features mild reaction conditions, excellent enantioselectivity, and high atom-economy. In particular, the coupling of N-benzylnitrones and different classes of sterically hindered alkynes afforded C-C or C-N atropochiral pentatomic biaryls with a C-centered point-chirality in excellent enantio- and diastereoselectivity (45 examples, average 95.6 % ee). These chiral center and axis are disposed in a distal fashion and they are constructed via two distinct migratory insertions that are stereo-determining and are under catalyst control.
Collapse
Affiliation(s)
- Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Jierui Jing
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Yanliang Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Xue-Peng Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Liujie Zhao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Wei-Qiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.,Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
14
|
Li XH, Gong JF, Song MP. Diastereoselective synthesis of chiral 3-substituted isoindolinones via rhodium(III)-catalyzed oxidative C-H olefination/annulation. Org Biomol Chem 2021; 19:5876-5887. [PMID: 34126629 DOI: 10.1039/d1ob00656h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A new method for the direct and stereoselective synthesis of 3-substituted isoindolinones via Rh(iii)-catalyzed chiral N-sulfinyl amide directed asymmetric [4 + 1] annulation of benzamides with acrylic esters has been developed. The reaction proceeded through an oxidative C-H olefination and a subsequent cyclization by intramolecular aza-Michael addition, producing a series of diastereoisomeric chiral isoindolinones (20 examples) in generally good yields with a dr value up to 5.5 : 1. The absolute configurations of the newly formed C-stereocenters in the major and minor diastereomers of the catalysis product have been determined by X-ray crystal diffraction analysis to be S and R, respectively. The separation of the major diastereoisomers from the catalysis products and subsequent removal of the N-sulfinyl chiral auxiliary afforded enantiomerically pure (S)-isoindolinones. The application of the obtained (S)-isoindolinones in the synthesis of several biologically active isoindolinones such as (S)-PD172938, (S)-pazinaclone and (S)-pagoclone is presented.
Collapse
Affiliation(s)
- Xue-Hong Li
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Jun-Fang Gong
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Mao-Ping Song
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
15
|
Wang F, Jing J, Zhao Y, Zhu X, Zhang X, Zhao L, Hu P, Deng W, Li X. Rhodium‐Catalyzed C−H Activation‐Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fen Wang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Jierui Jing
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Yanliang Zhao
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xue‐Peng Zhang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Liujie Zhao
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Panjie Hu
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Wei‐Qiao Deng
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| |
Collapse
|
16
|
Peng H, Zhang Y, Deng G, Deng H. Silver( i)-catalyzed tandem reaction of enynones and 4-alkynyl isoxazoles: regioselective synthesis of highly functionalized 4 H-furan[3,4- c]pyrroles. Org Chem Front 2021. [DOI: 10.1039/d1qo00510c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This work reports a silver(i)-catalyzed tandem reaction of enynones with 4-alkynyl isoxazoles.
Collapse
Affiliation(s)
- Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yangyi Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Hongmei Deng
- Key Laboratory of Water Safety and Protection in Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
17
|
Xu M, Xia Y. Mechanistic Understanding of Rh(III)-Catalyzed Redox-Neutral C—H Activation/Annulation Reactions of N-Phenoxyacetamides and Methyleneoxetanones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Zhang Y, Liu JQ, Wang XS. Copper(I)-catalyzed synthesis of isoindolo[1,2-b]quinazoline derivatives via an α-arylation under Pd and ligand free conditions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Li X, Huang T, Song Y, Qi Y, Li L, Li Y, Xiao Q, Zhang Y. Co(III)-Catalyzed Annulative Vinylene Transfer via C–H Activation: Three-Step Total Synthesis of 8-Oxopseudopalmatine and Oxopalmatine. Org Lett 2020; 22:5925-5930. [DOI: 10.1021/acs.orglett.0c02016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xinghua Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Ting Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Ying Song
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Yue Qi
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Limin Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Yanping Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Yuanfei Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
20
|
Vivek Kumar S, Banerjee S, Punniyamurthy T. Transition metal-catalyzed coupling of heterocyclic alkenes via C–H functionalization: recent trends and applications. Org Chem Front 2020. [DOI: 10.1039/d0qo00279h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heterocyclic alkenes and their derivatives are an important class of reactive feedstock and valuable synthons. This review highlights the transition-metal-catalyzed coupling of heterocyclic alkenes via a C–H functionalization strategy.
Collapse
|
21
|
Mihara G, Noguchi T, Nishii Y, Hayashi Y, Kawauchi S, Miura M. Rhodium-Catalyzed Annulative Coupling of Isothiazoles with Alkynes through N-S Bond Cleavage. Org Lett 2019; 22:661-665. [PMID: 31886679 DOI: 10.1021/acs.orglett.9b04437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A Rh(III)-catalyzed annulative coupling of 3,5-diarylisothiazoles and alkynes is reported. The N-S bond in the isothiazole ring acts as an internal oxidant to regenerate the Rh(III) species in combination with an external Cu(II) oxidant, and the corresponding 1:2 coupling products are obtained. The remarkable difference in the reaction outcome between isothiazoles and the relevant isoxazoles has been investigated by DFT calculations, revealing that the relative stability of the enolate intermediates dictates the product selectivity.
Collapse
Affiliation(s)
| | | | | | - Yoshihiro Hayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Ookayama, Meguro-ku, Tokyo 152-8552 , Japan
| | - Susumu Kawauchi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Ookayama, Meguro-ku, Tokyo 152-8552 , Japan
| | | |
Collapse
|
22
|
Wang P, Xu Y, Sun J, Li X. Rhodium(III)-Catalyzed Chemo-divergent Couplings of Sulfoxonium Ylides with Oxa/azabicyclic Olefins. Org Lett 2019; 21:8459-8463. [DOI: 10.1021/acs.orglett.9b03226] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peiyuan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Youwei Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116923, China
| | - Jiaqiong Sun
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Xingwei Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116923, China
| |
Collapse
|
23
|
Rh(III)-Catalyzed C–H Bond Activation for the Construction of Heterocycles with sp3-Carbon Centers. Catalysts 2019. [DOI: 10.3390/catal9100823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rh(III)-catalyzed C–H activation features mild reaction conditions, good functional group tolerance, high reaction efficiency, and regioselectivity. Recently, it has attracted tremendous attention and has been employed to synthesize various heterocycles, such as indoles, isoquinolines, isoquinolones, pyrroles, pyridines, and polyheterocycles, which are important privileged structures in biological molecules, natural products, and agrochemicals. In this short review, we attempt to present an overview of recent advances in Rh(III)-mediated C–H bond activation to generate diverse heterocyclic scaffolds with sp3 carbon centers.
Collapse
|
24
|
Qi B, Li L, Wang Q, Zhang W, Fang L, Zhu J. Rh(III)-Catalyzed Coupling of N-Chloroimines with α-Diazo-α-phosphonoacetates for the Synthesis of 2 H-Isoindoles. Org Lett 2019; 21:6860-6863. [PMID: 31423795 DOI: 10.1021/acs.orglett.9b02501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report herein the first use of N-chloroimines as effective synthons for directed C-H functionalization. Rh(III)-catalyzed coupling of N-chloroimines with α-diazo-α-phosphonoacetates allows for efficient dechlorinative/dephosphonative access to 2H-isoindoles. Further deesterification under Ni(II) catalysis enables the complete elimination of reactivity-assisting groups and full exposure of reactivity of C3 and N2 ring atoms for attaching structurally distinct appendages.
Collapse
Affiliation(s)
- Bing Qi
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lei Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Qi Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenjing Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lili Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
25
|
Vaughn LT, Baseden KA, Tye JW. Factors Affecting the Regiochemical Outcome of Alkene Insertions into Rhodium–Carbon and Rhodium–Nitrogen Bonds. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Logan T. Vaughn
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Kyle A. Baseden
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Jesse W. Tye
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| |
Collapse
|
26
|
Han F, Xun S, Jia L, Zhang Y, Zou L, Hu X. Traceless-Activation Strategy for Rh-Catalyzed Csp2–H Arylation of Coumarins. Org Lett 2019; 21:5907-5911. [DOI: 10.1021/acs.orglett.9b02040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fuzhong Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shanshan Xun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Lina Jia
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yutong Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Liwei Zou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
27
|
Manoharan R, Jeganmohan M. Alkylation, Annulation, and Alkenylation of Organic Molecules with Maleimides by Transition‐Metal‐Catalyzed C‐H Bond Activation. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900054] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ramasamy Manoharan
- Department of ChemistryIndian Institute of Technology Madras Chennai 600036 India
| | | |
Collapse
|
28
|
Rej S, Chatani N. Rhodiumkatalysierte sp 2‐ und sp 3‐C‐H‐Funktionalisierungen mit entfernbaren dirigierenden Gruppen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201808159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Supriya Rej
- Department of Applied ChemistryFaculty of EngineeringOsaka University, Suita Osaka 565-0871 Japan
| | - Naoto Chatani
- Department of Applied ChemistryFaculty of EngineeringOsaka University, Suita Osaka 565-0871 Japan
| |
Collapse
|
29
|
Rej S, Chatani N. Rhodium-Catalyzed C(sp 2 )- or C(sp 3 )-H Bond Functionalization Assisted by Removable Directing Groups. Angew Chem Int Ed Engl 2019; 58:8304-8329. [PMID: 30311719 DOI: 10.1002/anie.201808159] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/12/2018] [Indexed: 12/25/2022]
Abstract
In recent years, transition-metal-catalyzed C-H activation has become a key strategy in the field of organic synthesis. Rhodium complexes are widely used as catalysts in a variety of C-H functionalization reactions because of their high reactivity and selectivity. The availability of a number of rhodium complexes in various oxidation states enables diverse reaction patterns to be obtained. Regioselectivity, an important issue in C-H activation chemistry, can be accomplished by using a directing group to assist the reaction. However, to obtain the target functionalized compounds, it is also necessary to use a directing group that can be easily removed. A wide range of directed C-H functionalization reactions catalyzed by rhodium complexes have been reported to date. In this Review, we discuss Rh-catalyzed C-H functionalization reactions that are aided by the use of a removable directing group such as phenol, amine, aldehyde, ketones, ester, acid, sulfonic acid, and N-heteroaromatic derivatives.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
30
|
Ramesh B, Tamizmani M, Jeganmohan M. Rhodium(III)-Catalyzed Redox-Neutral 1,1-Cyclization of N-Methoxy Benzamides with Maleimides via C–H/N–H/N–O Activation: Detailed Mechanistic Investigation. J Org Chem 2019; 84:4058-4071. [DOI: 10.1021/acs.joc.9b00051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Balu Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Tamizmani
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
31
|
Chang H, Zheng W, Zheng Y, Zhu D, Wang J. The DFT study on Rh–C bond dissociation enthalpies of (iminoacyl)rhodium(III)hydride and (iminoacyl)rhodium(III)alkyl. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Li Y, Zhou J, Fang F, Xu B, Liu H, Zhou Y. Rhodium(III)-Catalyzed C-H Activation of α-Iminonitriles or α-Imino Esters and Cyclization with Acrylates to 2 H-Isoindoles. J Org Chem 2018; 83:11736-11746. [PMID: 30153732 DOI: 10.1021/acs.joc.8b01664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rh(III) catalysts have played increasingly important roles in the activation of C-H bonds to build heterocyclic scaffolds. However, there are few reports on the more challenging synthesis of pharmaceutically important 2 H-isoindoles and fused 2 H-isoindoles. The process reported herein is an effective strategy to produce 2 H-isoindole or fused 2 H-isoindole derivatives via a Rh(III)-catalyzed transformation of α-iminonitriles or α-imino esters with acrylates.
Collapse
Affiliation(s)
- Yazhou Li
- Department of Chemistry , Shanghai University , Shanghai 200444 , People's Republic of China
| | - Jianhui Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zu Chong Zhi Road , Shanghai 201203 , People's Republic of China
| | - Feifei Fang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zu Chong Zhi Road , Shanghai 201203 , People's Republic of China
| | - Bin Xu
- Department of Chemistry , Shanghai University , Shanghai 200444 , People's Republic of China
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zu Chong Zhi Road , Shanghai 201203 , People's Republic of China
| | - Yu Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zu Chong Zhi Road , Shanghai 201203 , People's Republic of China
| |
Collapse
|
33
|
Grosheva D, Cramer N. Enantioselective Access to 1H
-Isoindoles with Quaternary Stereogenic Centers by Palladium(0)-Catalyzed C−H Functionalization. Angew Chem Int Ed Engl 2018; 57:13644-13647. [DOI: 10.1002/anie.201809173] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Daria Grosheva
- Laboratory of Asymmetric Catalysis and Synthesis; EPFL SB ISIC LCSA, BCH 4305; 1015 Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis; EPFL SB ISIC LCSA, BCH 4305; 1015 Lausanne Switzerland
| |
Collapse
|
34
|
Grosheva D, Cramer N. Enantioselective Access to 1H
-Isoindoles with Quaternary Stereogenic Centers by Palladium(0)-Catalyzed C−H Functionalization. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Daria Grosheva
- Laboratory of Asymmetric Catalysis and Synthesis; EPFL SB ISIC LCSA, BCH 4305; 1015 Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis; EPFL SB ISIC LCSA, BCH 4305; 1015 Lausanne Switzerland
| |
Collapse
|
35
|
Yang Y, Hou X, Zhang T, Ma J, Zhang W, Tang S, Sun H, Zhang J. Mechanistic Insights into the Nickel-Catalyzed Cross-Coupling Reaction of Benzaldehyde with Benzyl Alcohol via C–H Activation: A Theoretical Investigation. J Org Chem 2018; 83:11905-11916. [DOI: 10.1021/acs.joc.8b01807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Yang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| | - Xiaoying Hou
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| | - Tong Zhang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| | - Junmei Ma
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| | - Wanqiao Zhang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| | - Shuwei Tang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, People’s Republic of China
| | - Hao Sun
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
- National & Local United Engineering Lab for Power Battery, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| | - Jingping Zhang
- National & Local United Engineering Lab for Power Battery, Northeast Normal University, Changchun, Jilin 130024, People’s Republic of China
| |
Collapse
|
36
|
Li Q, Li B, Wang B. Rhodium-catalyzed intramolecular cascade sequence for the formation of fused carbazole-annulated medium-sized rings by cleavage of C(sp 2)-H/C(sp 3)-H bonds. Chem Commun (Camb) 2018; 54:9147-9150. [PMID: 30059082 DOI: 10.1039/c8cc04428g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rhodium(iii)-catalyzed intramolecular annulation of alkyne-tethered 3-(indol-3-yl)-3-oxopropanenitriles for the synthesis of fused carbazole scaffolds via C-H activation has been developed. A series of six-, seven-, and eight-membered hydroazepino[3,2,1-jk]carbazoles were achieved. This reaction proceeded under mild reaction conditions and with a broad substrate scope. The reaction involved sequential cleavage of C(sp2)-H/C(sp3)-H bonds and annulation with the tethered alkyne.
Collapse
Affiliation(s)
- Qiuyun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | | | | |
Collapse
|
37
|
Li Y, Xu S. Transition-Metal-Catalyzed C−H Functionalization for Construction of Quaternary Carbon Centers. Chemistry 2018; 24:16218-16245. [DOI: 10.1002/chem.201800921] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/19/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Yang Li
- Department of Chemistry; School of Science and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Silong Xu
- Department of Chemistry; School of Science and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| |
Collapse
|
38
|
Chiou MF, Jayakumar J, Cheng CH, Chuang SC. Impact of the Valence Charge of Transition Metals on the Cobalt- and Rhodium-Catalyzed Synthesis of Indenamines, Indenols, and Isoquinolinium Salts: A Catalytic Cycle Involving M III/M V [M = Co, Rh] for [4 + 2] Annulation. J Org Chem 2018; 83:7814-7824. [PMID: 29896964 DOI: 10.1021/acs.joc.8b00711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reaction mechanisms for the synthesis of indenamines, indenols, and isoquinolinium salts through cobalt- and rhodium-catalysis were investigated using density functional theory calculations. We found that the valence charge of transition metals dramatically influences the reaction pathways. Catalytic reactions involving lower-oxidation-state transition metals (MI/MIII, M = Co and Rh) generally favor a [3 + 2] cyclization pathway, whereas those involving higher oxidation states (MIII/MV) proceed through a [4 + 2] cyclization pathway. A catalytic cycle with novel MIII/MV as a crucial species was successfully revealed for isoquinolinium salts synthesis, in which highly valent MV was encountered not only in the [RhCp*]-catalysis but also in the [CoCp*]-catalysis.
Collapse
Affiliation(s)
- Mong-Feng Chiou
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | | | - Chien-Hong Cheng
- Department of Chemistry , National Tsing Hua University , Hsinchu 30010 , Taiwan
| | - Shih-Ching Chuang
- Department of Applied Chemistry , National Chiao Tung University , Hsinchu 30010 , Taiwan
| |
Collapse
|
39
|
Hu L, Chen H. Comparative computational study on C-C/C-N/C-Br bond formations in Rh(III)-catalyzed C-H functionalizations: Stepwise versus concerted mechanisms. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Counterion effect and directing group effect in Rh-mediated C H bond activation processes: A theoretical study. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
Ru(II)‐Catalyzed Hydroarylation of Maleimides with Cyclic
N
‐SulfonylKetimines through
ortho
‐C‐H Bond Activation. ChemistrySelect 2018. [DOI: 10.1002/slct.201800352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Ni SF, Zhang P, Chu CQ, Qin P, Dang L. Computational Studies on the Mechanism of Rh-Catalyzed Decarbonylative [5+2-1] Reaction between Isatins and Alkynes: High Selectivity by Directing Group. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province; Shantou University; 515063 Guangdong P. R. China
| | - Pan Zhang
- Department of Chemistry in; Southern University of Science and Technology; 518055 Shenzhen P. R. China
| | - Chang-qing Chu
- Department of Chemistry in; Southern University of Science and Technology; 518055 Shenzhen P. R. China
| | - Peng Qin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province; Shantou University; 515063 Guangdong P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province; Shantou University; 515063 Guangdong P. R. China
- Department of Chemistry in; Southern University of Science and Technology; 518055 Shenzhen P. R. China
| |
Collapse
|
43
|
Vivek Kumar S, Ellairaja S, Satheesh V, Sivasamy Vasantha V, Punniyamurthy T. Rh-Catalyzed regioselective C–H activation and C–C bond formation: synthesis and photophysical studies of indazolo[2,3-a]quinolines. Org Chem Front 2018. [DOI: 10.1039/c8qo00557e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Rh(iii)-Catalyzed oxidative annulation of 2-aryl-2H-indazoles with alkynes and their photophysical studies are reported with high quantum yields.
Collapse
Affiliation(s)
| | | | - Vanaparthi Satheesh
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | | | | |
Collapse
|
44
|
Han L, Ma X, Liu Y, Yu Z, Liu T. Mechanistic insight into the C7-selective C–H functionalization of N-acyl indole catalyzed by a rhodium complex: a theoretical study. Org Chem Front 2018. [DOI: 10.1039/c7qo00911a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The role of the additive AgNTf2 and the origins of the reaction are clarified through our calculations.
Collapse
Affiliation(s)
- Lingli Han
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
| | - Xiaoying Ma
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Zhangyu Yu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
- School of Chemistry and Chemical Engineering
| | - Tao Liu
- Department of Chemistry and Chemical Engineering
- Jining University
- Qufu 273155
- China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
45
|
Han SH, Mishra NK, Jeon M, Kim S, Kim HS, Jung S, Jung YH, Ku J, Kim IS. Rhodium(III)‐Catalyzed Diastereoselective Synthesis of 1‐Aminoindanes via C−H Activation. Adv Synth Catal 2017; 359:3900-3904. [DOI: 10.1002/adsc.201701082] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractThe rhodium(III)‐catalyzed cross‐coupling reaction between N‐sulfonyl aldimines and various olefins such as maleimides, fumarates, maleates, α,β‐unsaturated ketones, acrylate and nitroalkenes is described. This transformation efficiently leads to the diastereoselective synthesis of pharmacologically privileged 1‐aminoindane derivatives via the C−H alkylation followed by subsequent intramolecular cyclization. Notably, single diastereomers in all cases were observed, and the relative stereochemistry of products was confirmed by the X‐ray crystallographic data.magnified image
Collapse
Affiliation(s)
- Sang Hoon Han
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | | | - Mijin Jeon
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Saegun Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Seung‐Young Jung
- Biocenter, Gyeonggido Business & Science Accelerator (GBSA) Suwon 16229 Republic of Korea
| | - Young Hoon Jung
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
- Biocenter, Gyeonggido Business & Science Accelerator (GBSA) Suwon 16229 Republic of Korea
| | - Jin‐Mo Ku
- Biocenter, Gyeonggido Business & Science Accelerator (GBSA) Suwon 16229 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
46
|
Qi X, Li Y, Bai R, Lan Y. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation. Acc Chem Res 2017; 50:2799-2808. [PMID: 29112396 DOI: 10.1021/acs.accounts.7b00400] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transition-metal-catalyzed cross-coupling has emerged as an effective strategy for chemical synthesis. Within this area, direct C-H bond transformation is one of the most efficient and environmentally friendly processes for the construction of new C-C or C-heteroatom bonds. Over the past decades, rhodium-catalyzed C-H functionalization has attracted considerable attention because of the versatility and wide use of rhodium catalysts in chemistry. A series of C-X (X = C, N, or O) bond formation reactions could be realized from corresponding C-H bonds using rhodium catalysts. Various experimental studies on rhodium-catalyzed C-H functionalization reactions have been reported, and in tandem, mechanistic and computational studies have also progressed significantly. Since 2012, our group has performed theoretical studies to reveal the mechanism of rhodium-catalyzed C-H functionalization reactions. We have studied the changes in the oxidation state of rhodium and compared the Rh(I)/Rh(III) catalytic cycle to the Rh(III)/Rh(V) catalytic cycle using density functional theory calculation. The development of advanced computational methods and improvements in computing power make theoretical calculation a powerful tool for the mechanistic study of rhodium chemistry. Computational study is able to not only provide mechanistic insights but also explain the origin of regioselectivity, enantioselectivity, and stereoselectivity in rhodium-catalyzed C-H functionalization reactions. This Account summarizes our computational work on rhodium-catalyzed C-H functionalization reactions. The mechanistic study under discussion is divided into three main parts: C-H bond cleavage step, transformation of the C-Rh bond, and regeneration of the active catalyst. In the C-H bond cleavage step, computational results of four possible mechanisms, including concerted metalation-deprotonation (CMD), oxidative addition (OA), Friedel-Crafts-type electrophilic aromatic substitution (SEAr), and σ-complex assisted metathesis (σ-CAM) are discussed. Subsequent transformation of the C-Rh bond, for example, via insertion of CO, olefin, alkyne, carbene, or nitrene, constructs new C-C or C-heteroatom bonds. For the regeneration of the active catalyst, reductive elimination of a high-valent rhodium complex and protonation of the C-Rh bond are emphasized as potential mechanism candidates. In addition to detailing the reaction pathway, the regioselectivity and diastereoselectivity of rhodium-catalyzed C-H functionalization reactions are also commented upon in this Account. The origin of the selectivity is clarified through theoretical analysis. Furthermore, we summarize and compare the changes in the oxidation state of rhodium along the complete reaction pathway. The work described in this Account demonstrates that rhodium catalysis might proceed via Rh(I)/Rh(III), Rh(II)/Rh(IV), Rh(III)/Rh(V), or non-redox-Rh(III) catalytic cycles.
Collapse
Affiliation(s)
- Xiaotian Qi
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yingzi Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
47
|
Zhou X, Luo Y, Kong L, Xu Y, Zheng G, Lan Y, Li X. Cp*CoIII-Catalyzed Branch-Selective Hydroarylation of Alkynes via C–H Activation: Efficient Access to α-gem-Vinylindoles. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02248] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xukai Zhou
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yixin Luo
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Lingheng Kong
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Youwei Xu
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Guangfan Zheng
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yu Lan
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Xingwei Li
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
48
|
Han SH, Mishra NK, Jo H, Oh Y, Jeon M, Kim S, Kim WJ, Lee JS, Kim HS, Kim IS. One‐pot Synthesis of Oxindoles through C−H Alkylation and Intramolecular Cyclization of Azobenzenes with Internal Olefins. Adv Synth Catal 2017; 359:2396-2401. [DOI: 10.1002/adsc.201700147] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractThe rhodium(III)‐catalyzed site‐selective C−H alkylation of azobenzenes and internal olefins, such as maleimides, maleates and fumarates, followed by reductive intramolecular cyclization is described. A cationic rhodium catalyst in the presence of acetic acid additive in dichloroethane solvent was found to be the optimal catalytic system for the construction of ortho‐alkylated azobenzenes, which smoothly underwent the intramolecular cyclization leading to the formation of C3‐functionalized oxindoles in the presence of zinc powder and acetic acid. The formed oxindole scaffold could be an important asset towards the development of novel bioactive compounds.magnified image
Collapse
Affiliation(s)
- Sang Hoon Han
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | | | - Hyeim Jo
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Yongguk Oh
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Mijin Jeon
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Saegun Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Woo Jung Kim
- Biocenter Gyeonggido Business & Science Accelerator (GBSA) Suwon 16229 Republic of Korea
| | - Jong Suk Lee
- Biocenter Gyeonggido Business & Science Accelerator (GBSA) Suwon 16229 Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
49
|
Zheng L, Hua R. C-H Activation and Alkyne Annulation via Automatic or Intrinsic Directing Groups: Towards High Step Economy. CHEM REC 2017; 18:556-569. [PMID: 28681990 DOI: 10.1002/tcr.201700024] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022]
Abstract
Direct transformation of carbon-hydrogen bond (C-H) has emerged to be a trend for construction of molecules from building blocks with no or less prefunctionalization, leading high atom and step economy. Directing group (DG) strategy is widely used to achieve higher reactivity and selectivity, but additional steps are usually needed for installation and/or cleavage of DGs, limiting step economy of the overall transformation. To meet this challenge, we proposed a concept of automatic DG (DGauto ), which is auto-installed and/or auto-cleavable. Multifunctional oxime and hydrazone DGauto were designed for C-H activation and alkyne annulation to furnish diverse nitrogen-containing heterocycles. Imidazole was employed as an intrinsic DG (DGin ) to synthesize ring-fused and π-extended functional molecules. The alkyne group in the substrates can also be served as DGin for ortho-C-H activation to afford carbocycles. In this account, we intend to give a review of our progress in this area and brief introduction of other related advances on C-H functionalization using DGauto or DGin strategies.
Collapse
Affiliation(s)
- Liyao Zheng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P.R. China
| | - Ruimao Hua
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
50
|
Liu XG, Gao H, Zhang SS, Li Q, Wang H. N–O Bond as External Oxidant in Group 9 Cp*M(III)-Catalyzed Oxidative C–H Coupling Reactions. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00677] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xu-Ge Liu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui Gao
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shang-Shi Zhang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingjiang Li
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Honggen Wang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|