1
|
Liu WL, Wen ZH, Li QY, Liu HB, Li QL, Deng SZ, Zeng ZY, Luo MC, Tang AX, Liu YY. New insights into exploring new functional enzymes through the enzyme promiscuity. Int J Biol Macromol 2025; 304:140576. [PMID: 39904435 DOI: 10.1016/j.ijbiomac.2025.140576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Enzyme promiscuity, defined as the ability of enzymes to catalyze reactions beyond their primary physiological functions, has emerged as a pivotal concept in modern enzyme engineering. This review provides a comprehensive exploration of enzyme promiscuity and its implications for the discovery and development of novel functional enzymes. Through targeted strategies such as (semi-)rational design, directed evolution, and de novo design, enzyme promiscuity has been harnessed to broaden substrate scopes, enhance catalytic efficiencies, and adapt enzymes to diverse reaction conditions. These modifications often involve subtle alterations to the active site, which impact catalytic mechanisms and open new pathways for the synthesis and degradation of complex organic compounds. Striking a balance between maintaining native activity and enhancing promiscuous functions remains a significant challenge in enzyme engineering. Nevertheless, advances in structural biology and computational modeling offer promising strategies to overcome these obstacles. By elucidating the mechanistic basis of enzyme promiscuity, this review aims to deepen our understanding of this phenomenon. It underscores the necessity of further investigating the mechanisms underlying promiscuous enzymatic activity and highlights the importance of leveraging promiscuous enzymes to address industrial application demands and drive the development of next-generation biocatalysts.
Collapse
Affiliation(s)
- Wen-Long Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Zong-Hong Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Qing-Yun Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Key Laboratory of Guangxi Biorefinery, Nanning 530003, PR China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Qun-Liang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Shun-Zhang Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Zheng-Yun Zeng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Meng-Cheng Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Ai-Xing Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Key Laboratory of Guangxi Biorefinery, Nanning 530003, PR China.
| | - You-Yan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Key Laboratory of Guangxi Biorefinery, Nanning 530003, PR China.
| |
Collapse
|
2
|
Ren Y, Cheng Z, Cheng L, Liu Y, Li M, Yuan T, Shen Z. Theoretical calculation on degradation mechanism of novel copolyesters under CALB enzyme. J Environ Sci (China) 2025; 149:242-253. [PMID: 39181639 DOI: 10.1016/j.jes.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 12/23/2023] [Indexed: 08/27/2024]
Abstract
Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.
Collapse
Affiliation(s)
- Yuanyang Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwen Cheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luwei Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yawei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China.
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Taylor M, Mun H, Ho J. Predicting Carbonic Anhydrase Binding Affinity: Insights from QM Cluster Models. J Phys Chem B 2025; 129:1475-1485. [PMID: 39874048 DOI: 10.1021/acs.jpcb.4c06393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
A systematic series of QM cluster models has been developed to predict the trend in the carbonic anhydrase binding affinity of a structurally diverse dataset of ligands. Reference DLPNO-CCSD(T)/CBS binding energies were generated for a cluster model and used to evaluate the performance of contemporary density functional theory methods, including Grimme's "3c" DFT composite methods (r2SCAN-3c and ωB97X-3c). It is demonstrated that when validated QM methods are used, the predictive power of the cluster models improves systematically with the size of the cluster models. This provided valuable insights into the key interactions that need to be modeled quantum mechanically and could inform how the QM region should be defined in hybrid quantum mechanics/molecular mechanics (QM/MM) models. The use of r2SCAN-3c on the largest cluster model composed of 16 residues appears to be an economical approach to predicting binding trends compared with using more robust DFT methods such as ωB97M-V and provides a significant improvement compared with docking.
Collapse
Affiliation(s)
- Mackenzie Taylor
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Haedam Mun
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Junming Ho
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Wang X, Liu H, Wang J, Chang L, Cai J, Wei Z, Pan J, Gu X, Li WL, Li J. Enzyme Tunnel Dynamics and Catalytic Mechanism of Norcoclaurine Synthase: Insights from a Combined LiGaMD and DFT Study. J Phys Chem B 2024; 128:9385-9395. [PMID: 39315758 DOI: 10.1021/acs.jpcb.4c04243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This study conducts a systematic investigation into the catalytic mechanism of norcoclaurine synthase (NCS), a key enzyme in the biosynthesis of tetrahydroisoquinolines (THIQs) with therapeutic applications. By integration of LiGaMD and DFT calculations, the reaction pathway of NCS is mapped, providing detailed insights into its catalytic activity and selectivity. Our findings underscore the critical role of E103 in substrate capture and reveal the hitherto unappreciated influence of nonpolar residues M183 and L76 on tunnel dynamics. A prominent discovery is the identification of a high-energy barrier (44.2 kcal/mol) associated with the aromatic electrophilic attack, which pinpoints the rate-limiting step. Moreover, we disclose the existence of dual transition states leading to different products with the energetically favored six-membered ring formation consistent with experimental evidence. These mechanistic revelations not only refine our understanding of NCS but also advocate for a renewed emphasis on enzyme tunnel engineering for optimizing THIQs biosynthesis. The research sets the stage for translating these findings into practical enzyme modifications. Our results highlight the potential of NCS as a biocatalyst to overcome the limitations of current synthetic methodologies, such as low yields and environmental impacts, and provide a theoretical contribution to the efficient, eco-friendly production of THIQs-based pharmaceuticals.
Collapse
Affiliation(s)
- Xujian Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, San Diego, California 92093, United States
| | - Haodong Liu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jingyao Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Le Chang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiayang Cai
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zexuan Wei
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiayu Pan
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaohui Gu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wan-Lu Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, San Diego, California 92093, United States
- Program of Materials Science and Engineering, University of California San Diego, San Diego, California 92093, United States
| | - Jiahuang Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
- Changzhou High-Tech Research Institute, Nanjing University, Changzhou 213164, China
| |
Collapse
|
5
|
Terholsen H, Huerta-Zerón HD, Möller C, Junge H, Beller M, Bornscheuer UT. Photocatalytic CO 2 Reduction Using CO 2-Binding Enzymes. Angew Chem Int Ed Engl 2024; 63:e202319313. [PMID: 38324458 DOI: 10.1002/anie.202319313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Novel concepts to utilize carbon dioxide are required to reach a circular carbon economy and minimize environmental issues. To achieve these goals, photo-, electro-, thermal-, and biocatalysis are key tools to realize this, preferentially in aqueous solutions. Nevertheless, catalytic systems that operate efficiently in water are scarce. Here, we present a general strategy for the identification of enzymes suitable for CO2 reduction based on structural analysis for potential carbon dioxide binding sites and subsequent mutations. We discovered that the phenolic acid decarboxylase from Bacillus subtilis (BsPAD) promotes the aqueous photocatalytic CO2 reduction selectively to carbon monoxide in the presence of a ruthenium photosensitizer and sodium ascorbate. With engineered variants of BsPAD, TONs of up to 978 and selectivities of up to 93 % (favoring the desired CO over H2 generation) were achieved. Mutating the active site region of BsPAD further improved turnover numbers for CO generation. This also revealed that electron transfer is rate-limiting and occurs via multistep tunneling. The generality of this approach was proven by using eight other enzymes, all showing the desired activity underlining that a range of proteins is capable of photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Henrik Terholsen
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | | | - Christina Möller
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Henrik Junge
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| |
Collapse
|
6
|
Bierbaumer S, Nattermann M, Schulz L, Zschoche R, Erb TJ, Winkler CK, Tinzl M, Glueck SM. Enzymatic Conversion of CO 2: From Natural to Artificial Utilization. Chem Rev 2023; 123:5702-5754. [PMID: 36692850 PMCID: PMC10176493 DOI: 10.1021/acs.chemrev.2c00581] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 01/25/2023]
Abstract
Enzymatic carbon dioxide fixation is one of the most important metabolic reactions as it allows the capture of inorganic carbon from the atmosphere and its conversion into organic biomass. However, due to the often unfavorable thermodynamics and the difficulties associated with the utilization of CO2, a gaseous substrate that is found in comparatively low concentrations in the atmosphere, such reactions remain challenging for biotechnological applications. Nature has tackled these problems by evolution of dedicated CO2-fixing enzymes, i.e., carboxylases, and embedding them in complex metabolic pathways. Biotechnology employs such carboxylating and decarboxylating enzymes for the carboxylation of aromatic and aliphatic substrates either by embedding them into more complex reaction cascades or by shifting the reaction equilibrium via reaction engineering. This review aims to provide an overview of natural CO2-fixing enzymes and their mechanistic similarities. We also discuss biocatalytic applications of carboxylases and decarboxylases for the synthesis of valuable products and provide a separate summary of strategies to improve the efficiency of such processes. We briefly summarize natural CO2 fixation pathways, provide a roadmap for the design and implementation of artificial carbon fixation pathways, and highlight examples of biocatalytic cascades involving carboxylases. Additionally, we suggest that biochemical utilization of reduced CO2 derivates, such as formate or methanol, represents a suitable alternative to direct use of CO2 and provide several examples. Our discussion closes with a techno-economic perspective on enzymatic CO2 fixation and its potential to reduce CO2 emissions.
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Maren Nattermann
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luca Schulz
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | | | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Christoph K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Matthias Tinzl
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silvia M. Glueck
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
7
|
Abstract
ConspectusThe quantum chemical cluster approach has been used for modeling enzyme active sites and reaction mechanisms for more than two decades. In this methodology, a relatively small part of the enzyme around the active site is selected as a model, and quantum chemical methods, typically density functional theory, are used to calculate energies and other properties. The surrounding enzyme is modeled using implicit solvation and atom fixing techniques. Over the years, a large number of enzyme mechanisms have been solved using this method. The models have gradually become larger as a result of the faster computers, and new kinds of questions have been addressed. In this Account, we review how the cluster approach can be utilized in the field of biocatalysis. Examples from our recent work are chosen to illustrate various aspects of the methodology. The use of the cluster model to explore substrate binding is discussed first. It is emphasized that a comprehensive search is necessary in order to identify the lowest-energy binding mode(s). It is also argued that the best binding mode might not be the productive one, and the full reactions for a number of enzyme-substrate complexes have therefore to be considered to find the lowest-energy reaction pathway. Next, examples are given of how the cluster approach can help in the elucidation of detailed reaction mechanisms of biocatalytically interesting enzymes, and how this knowledge can be exploited to develop enzymes with new functions or to understand the reasons for lack of activity toward non-natural substrates. The enzymes discussed in this context are phenolic acid decarboxylase and metal-dependent decarboxylases from the amidohydrolase superfamily. Next, the application of the cluster approach in the investigation of enzymatic enantioselectivity is discussed. The reaction of strictosidine synthase is selected as a case study, where the cluster calculations could reproduce and rationalize the selectivities of both the natural and non-natural substrates. Finally, we discuss how the cluster approach can be used to guide the rational design of enzyme variants with improved activity and selectivity. Acyl transferase from Mycobacterium smegmatis serves as an instructive example here, for which the calculations could pinpoint the factors controlling the reaction specificity and enantioselectivity. The cases discussed in this Account highlight thus the value of the cluster approach as a tool in biocatalysis. It complements experiments and other computational techniques in this field and provides insights that can be used to understand existing enzymes and to develop new variants with tailored properties.
Collapse
Affiliation(s)
- Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
8
|
Prejanò M, Sheng X, Himo F. Computational Study of Mechanism and Enantioselectivity of Imine Reductase from Amycolatopsis orientalis. ChemistryOpen 2022; 11:e202100250. [PMID: 34825518 PMCID: PMC8734122 DOI: 10.1002/open.202100250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
Imine reductases (IREDs) are NADPH-dependent enzymes (NADPH=nicotinamide adenine dinucleotide phosphate) that catalyze the reduction of imines to amines. They exhibit high enantioselectivity for a broad range of substrates, making them of interest for biocatalytic applications. In this work, we have employed density functional theory (DFT) calculations to elucidate the reaction mechanism and the origins of enantioselectivity of IRED from Amycolatopsis orientalis. Two substrates are considered, namely 1-methyl-3,4-dihydroisoquinoline and 2-propyl-piperideine. A model of the active site is built on the basis of the available crystal structure. For both substrates, different binding modes are first evaluated, followed by calculation of the hydride transfer transition states from each complex. We have also investigated the effect of mutations of certain important active site residues (Tyr179Ala and Asn241Ala) on the enantioselectivity. The calculated energies are consistent with the experimental observations and the analysis of transition states geometries provides insights into the origins of enantioselectivity of this enzyme.
Collapse
Affiliation(s)
- Mario Prejanò
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Xiang Sheng
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences and National Technology Innovation Center of Synthetic BiologyTianjin300308China
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| |
Collapse
|
9
|
Özkılıç Y, Tüzün NŞ. Computational Survey of Recent Experimental Developments in the Hydroxylation Mechanism of Kynurenine 3-Monooxygenase. J Phys Chem A 2021; 125:9459-9477. [PMID: 34676771 DOI: 10.1021/acs.jpca.1c05397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, two new mechanistic proposals for the kynurenine 3-monooxygenase (KMO) catalyzed hydroxylation reaction of l-Kynurenine (l-Kyn) have been proposed. According to the first proposal, instead of the distal oxygen, the proximal oxygen of the hydroperoxide intermediate of flavin adenine dinucleotide (FAD) is transferred to the substrate ring. The second study proposes that l-Kyn participates in its base form in the reaction. To address these proposals, the reaction was reconsidered with a 386 atom quantum cluster model that is based on a recent X-ray structure (PDB id: 6FOX). The computations were carried out at the UB3LYP/6-311+G(2d,2p)//UB3LYP/6-31G(d,p) level with solvation (polarizable continuum model) and dispersion (DFT-D3(BJ)) corrections. To supplement the results of the density functional theory (DFT) calculations, molecular dynamics (MD) simulations of the protein-substrate complex were employed. The comparison of a proximal oxygen transfer mechanism to the distal oxygen transfer mechanism revealed that the former requires too high of a barrier energy while the latter validated our previous results. According to the MD simulations, the hydroperoxy moiety does not favor an alignment that might promote the proximal oxygen transfer mechanism. In the second part of the study, hydroxylation reaction with the base form of l-Kyn was sought. Although DFT calculations confirmed a much more facile reaction with the base form of l-Kyn, a mechanism which would allow the deprotonation of the l-Kyn before the oxygen transfer could not be determined with the X-ray-based positions. A concerted mechanism with both the oxygen transfer and the deprotonation required a high barrier energy. A stepwise mechanism involving the deprotonation of l-Kyn was found, starting from an MD frame. The overall barrier of the oxygen transfer step of this model was found to be in the range of that of with neutral l-Kyn. MD simulations supported the idea of ineffectiveness of the nearby shell surrounding the utilized active site core on the deprotonation of l-Kyn.
Collapse
Affiliation(s)
- Yılmaz Özkılıç
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Nurcan Ş Tüzün
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
10
|
Wu L, Qin L, Nie Y, Xu Y, Zhao YL. Computer-aided understanding and engineering of enzymatic selectivity. Biotechnol Adv 2021; 54:107793. [PMID: 34217814 DOI: 10.1016/j.biotechadv.2021.107793] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Enzymes offering chemo-, regio-, and stereoselectivity enable the asymmetric synthesis of high-value chiral molecules. Unfortunately, the drawback that naturally occurring enzymes are often inefficient or have undesired selectivity toward non-native substrates hinders the broadening of biocatalytic applications. To match the demands of specific selectivity in asymmetric synthesis, biochemists have implemented various computer-aided strategies in understanding and engineering enzymatic selectivity, diversifying the available repository of artificial enzymes. Here, given that the entire asymmetric catalytic cycle, involving precise interactions within the active pocket and substrate transport in the enzyme channel, could affect the enzymatic efficiency and selectivity, we presented a comprehensive overview of the computer-aided workflow for enzymatic selectivity. This review includes a mechanistic understanding of enzymatic selectivity based on quantum mechanical calculations, rational design of enzymatic selectivity guided by enzyme-substrate interactions, and enzymatic selectivity regulation via enzyme channel engineering. Finally, we discussed the computational paradigm for designing enzyme selectivity in silico to facilitate the advancement of asymmetric biosynthesis.
Collapse
Affiliation(s)
- Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Sheng X, Himo F. Mechanisms of metal-dependent non-redox decarboxylases from quantum chemical calculations. Comput Struct Biotechnol J 2021; 19:3176-3186. [PMID: 34141138 PMCID: PMC8187880 DOI: 10.1016/j.csbj.2021.05.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Quantum chemical calculations are today an extremely valuable tool for studying enzymatic reaction mechanisms. In this mini-review, we summarize our recent work on several metal-dependent decarboxylases, where we used the so-called cluster approach to decipher the details of the reaction mechanisms, including elucidation of the identity of the metal cofactors and the origins of substrate specificity. Decarboxylases are of growing potential for biocatalytic applications, as they can be used in the synthesis of novel compounds of, e.g., pharmaceutical interest. They can also be employed in the reverse direction, providing a strategy to synthesize value‐added chemicals by CO2 fixation. A number of non-redox metal-dependent decarboxylases from the amidohydrolase superfamily have been demonstrated to have promiscuous carboxylation activities and have attracted great attention in the recent years. The computational mechanistic studies provide insights that are important for the further modification and utilization of these enzymes in industrial processes. The discussed enzymes are: 5‐carboxyvanillate decarboxylase, γ‐resorcylate decarboxylase, 2,3‐dihydroxybenzoic acid decarboxylase, and iso-orotate decarboxylase.
Collapse
Key Words
- 2,3-DHBD, 2,3‐dihydroxybenzoic acid decarboxylase
- 2,6-DHBD, 2,6‐dihydroxybenzoic acid decarboxylase
- 2-NR, 2-nitroresorcinol
- 5-CV, 5-carboxyvanillate
- 5-NV, 5-nitrovanillate
- 5caU, 5-carboxyuracil
- AHS, amidohydrolase superfamily
- Biocatalysis
- Decarboxylase
- Density functional theory
- IDCase, iso-orotate decarboxylase
- LigW, 5‐carboxyvanillate decarboxylase
- MIMS, membrane inlet mass spectrometry
- QM/MM, quantum mechanics/molecular mechanics
- Reaction mechanism
- Transition state
- γ-RS, γ-resorcylate
- γ-RSD, γ‐resorcylate decarboxylase
Collapse
Affiliation(s)
- Xiang Sheng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, and National Technology Innovation Center for Synthetic Biology, Tianjin 300308, PR China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
12
|
Ohde D, Thomas B, Bubenheim P, Liese A. Enhanced CO2 fixation in the biocatalytic carboxylation of resorcinol: Utilization of amines for amine scrubbing and in situ product precipitation. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Sheng X, Himo F. Computational Study of Pictet–Spenglerase Strictosidine Synthase: Reaction Mechanism and Origins of Enantioselectivity of Natural and Non-Natural Substrates. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
14
|
Parvaneh S, Parsa H, Irani M. Can a quantum mechanical cluster model explain the special stereospecificity of glyoxalase I? COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Mao H, Zhang C, Meng T, Wang H, Hu X, Xiao Z, Wang C, Liu J. Effect and Mechanism of Aluminum(III) for Guaiacol-Glyoxylic Acid Condensation Reaction in Vanillin Production. ACS OMEGA 2020; 5:24526-24536. [PMID: 33015470 PMCID: PMC7528326 DOI: 10.1021/acsomega.0c03003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
3-methoxy-4-hydroxymandelic acid (VMA) was the critical intermediate for the synthesis of vanillin by the glyoxylic acid method. Meanwhile, a valuable byproduct (2-hydroxy-3-methoxy-mandelic acid, o-VMA) was obtained during the reaction. Al3+ was found to be a helpful catalyst in increasing the selectivity for VMA and o-VMA. In the presence of Al3+, the selectivity for VMA and o-VMA increased from 83 to 88% and from 3 to 8%, respectively, while that of the helpless byproduct 2-hydroxy-3-methoxy-1,5-mandelic acid (di-VMA) decreased from 14% to less than 4%. The kinetics based on the kinetic equation of the condensation reaction was studied by the initial concentration method. The results indicated that the involvement of Al3+ could reduce the activation energy of the reaction on the basis of the Arrhenius equation. Combined with thermogravimetric analysis, in situ Fourier transform-infrared spectroscopy, and 1H NMR research, Al3+ was found to interact with guaiacol through Al-O and Al···H, which further improved the selectivity of the VMA and o-VMA and reduced the selectivity of di-VMA by adding the electronegativity of the ortho- and para-positions of hydroxyl groups of guaiacol.
Collapse
Affiliation(s)
- Haifang Mao
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Chiyuan Zhang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Tao Meng
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Hongzhao Wang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaojun Hu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School
of Perfume and Aroma Technology, Shanghai
Institute of Technology, 100 Haiquan Road, 201418 Shanghai, China
| | - Chaoyang Wang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Jibo Liu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
16
|
Sheng X, Kazemi M, Planas F, Himo F. Modeling Enzymatic Enantioselectivity using Quantum Chemical Methodology. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00983] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Masoud Kazemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Ferran Planas
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
17
|
Li H, Liu Y. Mechanistic Investigation of Isonitrile Formation Catalyzed by the Nonheme Iron/α-KG-Dependent Decarboxylase (ScoE). ACS Catal 2020. [DOI: 10.1021/acscatal.9b05411] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hong Li
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
18
|
Mittmann E, Gallus S, Bitterwolf P, Oelschlaeger C, Willenbacher N, Niemeyer CM, Rabe KS. A Phenolic Acid Decarboxylase-Based All-Enzyme Hydrogel for Flow Reactor Technology. MICROMACHINES 2019; 10:E795. [PMID: 31757029 PMCID: PMC6953023 DOI: 10.3390/mi10120795] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/22/2023]
Abstract
Carrier-free enzyme immobilization techniques are an important development in the field of efficient and streamlined continuous synthetic processes using microreactors. Here, the use of monolithic, self-assembling all-enzyme hydrogels is expanded to phenolic acid decarboxylases. This provides access to the continuous flow production of p-hydroxystyrene from p-coumaric acid for more than 10 h with conversions ≥98% and space time yields of 57.7 g·(d·L)-1. Furthermore, modulation of the degree of crosslinking in the hydrogels resulted in a defined variation of the rheological behavior in terms of elasticity and mesh size of the corresponding materials. This work is addressing the demand of sustainable strategies for defunctionalization of renewable feedstocks.
Collapse
Affiliation(s)
- Esther Mittmann
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Sabrina Gallus
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Patrick Bitterwolf
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Claude Oelschlaeger
- Institute for Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (C.O.); (N.W.)
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (C.O.); (N.W.)
| | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| | - Kersten S. Rabe
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany; (E.M.); (S.G.); (P.B.); (C.M.N.)
| |
Collapse
|
19
|
Kazemi M, Sheng X, Himo F. Origins of Enantiopreference of
Mycobacterium smegmatis
Acyl Transferase: A Computational Analysis. Chemistry 2019; 25:11945-11954. [DOI: 10.1002/chem.201902351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Masoud Kazemi
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Xiang Sheng
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
20
|
Sheng X, Himo F. Enzymatic Pictet–Spengler Reaction: Computational Study of the Mechanism and Enantioselectivity of Norcoclaurine Synthase. J Am Chem Soc 2019; 141:11230-11238. [DOI: 10.1021/jacs.9b04591] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
21
|
Payer SE, Faber K, Glueck SM. Non-Oxidative Enzymatic (De)Carboxylation of (Hetero)Aromatics and Acrylic Acid Derivatives. Adv Synth Catal 2019; 361:2402-2420. [PMID: 31379472 PMCID: PMC6644310 DOI: 10.1002/adsc.201900275] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/16/2019] [Indexed: 12/20/2022]
Abstract
The utilization of carbon dioxide as a C1-building block for the production of valuable chemicals has recently attracted much interest. Whereas chemical CO2 fixation is dominated by C-O and C-N bond forming reactions, the development of novel concepts for the carboxylation of C-nucleophiles, which leads to the formation of carboxylic acids, is highly desired. Beside transition metal catalysis, biocatalysis has emerged as an attractive method for the highly regioselective (de)carboxylation of electron-rich (hetero)aromatics, which has been recently further expanded to include conjugated α,β-unsaturated (acrylic) acid derivatives. Depending on the type of substrate, different classes of enzymes have been explored for (i) the ortho-carboxylation of phenols catalyzed by metal-dependent ortho-benzoic acid decarboxylases and (ii) the side-chain carboxylation of para-hydroxystyrenes mediated by metal-independent phenolic acid decarboxylases. Just recently, the portfolio of bio-carboxylation reactions was complemented by (iii) the para-carboxylation of phenols and the decarboxylation of electron-rich heterocyclic and acrylic acid derivatives mediated by prenylated FMN-dependent decarboxylases, which is the main focus of this review. Bio(de)carboxylation processes proceed under physiological reaction conditions employing bicarbonate or (pressurized) CO2 when running in the energetically uphill carboxylation direction. Aiming to facilitate the application of these enzymes in preparative-scale biotransformations, their catalytic mechanism and substrate scope are analyzed in this review.
Collapse
Affiliation(s)
- Stefan E. Payer
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Kurt Faber
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Silvia M. Glueck
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
22
|
Planas F, McLeish MJ, Himo F. Computational Study of Enantioselective Carboligation Catalyzed by Benzoylformate Decarboxylase. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ferran Planas
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Michael J. McLeish
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
23
|
Alonso-Cotchico L, Sciortino G, Vidossich P, Rodríguez-Guerra Pedregal J, Drienovská I, Roelfes G, Lledós A, Maréchal JD. Integrated Computational Study of the Cu-Catalyzed Hydration of Alkenes in Water Solvent and into the Context of an Artificial Metallohydratase. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lur Alonso-Cotchico
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Pietro Vidossich
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
- COBO Computational Bio-Organic Chemistry Bogotá, Department of Chemistry, Universidad de los Andes, Carrera 1 N° 18A 10, Bogotá 111711, Colombia
| | | | - Ivana Drienovská
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Agusti Lledós
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| |
Collapse
|
24
|
Özkılıç Y, Tüzün NŞ. Mechanism of Kynurenine 3-Monooxygenase-Catalyzed Hydroxylation Reaction: A Quantum Cluster Approach. J Phys Chem A 2019; 123:3149-3159. [PMID: 30888816 DOI: 10.1021/acs.jpca.8b11831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mechanism of the hydroxylation reaction between l-Kyn and model flavin adenine dinucleotide (FAD)-hydroperoxide was investigated via density functional theory (DFT) calculations in the absence and in the presence of the kynurenine 3-monooxygenase (KMO) enzyme by considering possible pathways that can lead to the product 3-hydroxykynurenine (3-HK). Crystal structure (pdb code: 5NAK )-based calculations involved a quantum cluster model in which the active site of the enzyme with the substrate l-Kyn was represented with 348 atoms. According to the deduced mechanism, KMO-catalyzed hydroxylation reaction takes place with four transformations. In the initial transition state, FAD delivers its peroxy hydroxyl to the l-Kyn ring, creating an sp3-hybridized carbon center. Then, the hydrogen on the hydroxyl moiety is immediately transferred back to the proximal oxygen that remained on FAD. These consequent transformations are in line with the somersault rearrangement previously described for similar enzymatic systems. The second step corresponds to a hydride shift from the sp3-hybridized carbon of the substrate ring to its adjacent carbon, producing the keto form of 3-HK. Then, keto-3-HK is transformed into its enol form (3-HK) with a water-assisted tautomerization. Lastly, FAD is oxidized with a water-assisted dehydration, which also involves 3-HK as a catalyst. In the proposed pathway, Asn54, Pro318, and a crystal water molecule were seen to play significant roles in the proton relays. The energies obtained via the cluster approach were calculated at the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d,p) level with solvation (polarizable continuum model) and dispersion (DFT-D3(BJ)) corrections.
Collapse
Affiliation(s)
- Yılmaz Özkılıç
- Department of Chemistry, Faculty of Science and Letters , Istanbul Technical University , Maslak, Istanbul 34469 , Turkey
| | - Nurcan Ş Tüzün
- Department of Chemistry, Faculty of Science and Letters , Istanbul Technical University , Maslak, Istanbul 34469 , Turkey
| |
Collapse
|
25
|
Carboxylation of Hydroxyaromatic Compounds with HCO3− by Enzyme Catalysis: Recent Advances Open the Perspective for Valorization of Lignin-Derived Aromatics. Catalysts 2019. [DOI: 10.3390/catal9010037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This review focuses on recent advances in the field of enzymatic carboxylation reactions of hydroxyaromatic compounds using HCO3− (as a CO2 source) to produce hydroxybenzoic and other phenolic acids in mild conditions with high selectivity and moderate to excellent yield. Nature offers an extensive portfolio of enzymes catalysing reversible decarboxylation of hydroxyaromatic acids, whose equilibrium can be pushed towards the side of the carboxylated products. Extensive structural and mutagenesis studies have allowed recent advances in the understanding of the reaction mechanism of decarboxylase enzymes, ultimately enabling an improved yield and expansion of the scope of the reaction. The topic is of particular relevance today as the scope of the carboxylation reactions can be extended to include lignin-related compounds in view of developing lignin biorefinery technology.
Collapse
|
26
|
Wei WJ, Qian HX, Wang WJ, Liao RZ. Computational Understanding of the Selectivities in Metalloenzymes. Front Chem 2018; 6:638. [PMID: 30622942 PMCID: PMC6308299 DOI: 10.3389/fchem.2018.00638] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 01/26/2023] Open
Abstract
Metalloenzymes catalyze many different types of biological reactions with high efficiency and remarkable selectivity. The quantum chemical cluster approach and the combined quantum mechanics/molecular mechanics methods have proven very successful in the elucidation of the reaction mechanism and rationalization of selectivities in enzymes. In this review, recent progress in the computational understanding of various selectivities including chemoselectivity, regioselectivity, and stereoselectivity, in metalloenzymes, is discussed.
Collapse
Affiliation(s)
| | | | | | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Ni J, Wu YT, Tao F, Peng Y, Xu P. A Coenzyme-Free Biocatalyst for the Value-Added Utilization of Lignin-Derived Aromatics. J Am Chem Soc 2018; 140:16001-16005. [DOI: 10.1021/jacs.8b08177] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jun Ni
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yu-Tong Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yuan Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
28
|
Payer SE, Pollak H, Schmidbauer B, Hamm F, Juričić F, Faber K, Glueck SM. Multienzyme One-Pot Cascade for the Stereoselective Hydroxyethyl Functionalization of Substituted Phenols. Org Lett 2018; 20:5139-5143. [PMID: 30110168 PMCID: PMC6131518 DOI: 10.1021/acs.orglett.8b02058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The operability and
substrate scope of a redesigned vinylphenol
hydratase as a single biocatalyst or as part of multienzyme cascades
using either substituted coumaric acids or phenols as stable, cheap,
and readily available substrates are reported.
Collapse
Affiliation(s)
- Stefan E Payer
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria
| | - Hannah Pollak
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria
| | - Benjamin Schmidbauer
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria
| | - Florian Hamm
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria
| | - Filip Juričić
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria
| | - Kurt Faber
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria
| | - Silvia M Glueck
- Institute of Chemistry, Organic and Bioorganic Chemistry , University of Graz , Heinrichstrasse 28/2 , 8010 Graz , Austria.,Austrian Centre of Industrial Biotechnology (ACIB) , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
29
|
Engleder M, Pichler H. On the current role of hydratases in biocatalysis. Appl Microbiol Biotechnol 2018; 102:5841-5858. [PMID: 29785499 PMCID: PMC6013536 DOI: 10.1007/s00253-018-9065-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 11/06/2022]
Abstract
Water addition to carbon-carbon double bonds provides access to value-added products from inexpensive organic feedstock. This interesting but relatively little-studied reaction is catalysed by hydratases in a highly regio- and enantiospecific fashion with excellent atom economy. Considering that asymmetric hydration of (non-activated) carbon-carbon double bonds is virtually impossible with current organic chemistry, enzymatic hydration reactions are highly attractive for industrial applications. Hydratases have been known for several decades but their biocatalytic potential has only been explored over the past 15 years. As a result, a considerable amount of information on this enzyme group has become available, enabling their development for practical applications. This review focuses on hydratases catalysing water addition to non-activated carbon-carbon double bonds, and examines hydratases from a biochemical, structural and mechanistic angle. Current challenges and opportunities in hydration biocatalysis are discussed, and, ultimately, their potential for organic synthesis is highlighted.
Collapse
Affiliation(s)
- Matthias Engleder
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, 8010, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Petersgasse 8010, Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, 8010, Graz, Austria.
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Petersgasse 8010, Graz, Austria.
| |
Collapse
|
30
|
Jafari S, Kazemi N, Ryde U, Irani M. Higher Flexibility of Glu-172 Explains the Unusual Stereospecificity of Glyoxalase I. Inorg Chem 2018; 57:4944-4958. [PMID: 29634252 DOI: 10.1021/acs.inorgchem.7b03215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite many studies during the latest two decades, the reason for the unusual stereospecificity of glyoxalase I (GlxI) is still unknown. This metalloenzyme converts both enantiomers of its natural substrate to only one enantiomer of its product. In addition, GlxI catalyzes reactions involving some substrate and product analogues with a stereospecificity similar to that of its natural substrate reaction. For example, the enzyme exchanges the pro- S, but not the pro- R, hydroxymethyl proton of glutathiohydroxyacetone (HOC-SG) with a deuterium from D2O. To find some clues to the unusual stereospecificity of GlxI, we have studied the stereospecific proton exchange of the hydroxymethyl proton of HOC-SG by this enzyme. We employed density functional theory and molecular dynamics (MD) simulations to study the proton exchange mechanism and origin of the stereospecificity. The results show that a rigid cluster model with the same flexibility for the two active-site glutamate residues cannot explain the unusual stereospecificity of GlxI. However, using a cluster model with full flexibility of Glu-172 or a larger model with the entire glutamates, extending the backbone into the neighboring residues, the results showed that there is no way for HOC-SG to exchange its protons if the alcoholic proton is directed toward Glu-99. However, if the hydroxymethyl proton instead is directed toward the more flexible Glu-172, we find a catalytic reaction mechanism for the exchange of the HS proton by a deuterium, in accordance with experimental findings. Thus, our results indicate that the special stereospecificity of GlxI is caused by the more flexible environment of Glu-172 in comparison to that of Glu-99. This higher flexibility of Glu-172 is also confirmed by MD simulations. We propose a reaction mechanism for the stereospecific proton exchange of the hydroxymethyl proton of HOC-SG by GlxI with an overall energy barrier of 15 kcal/mol.
Collapse
Affiliation(s)
- Sonia Jafari
- Department of Chemistry , University of Kurdistan , P.O. Box 66175-416, Sanandaj , Iran.,Department of Theoretical Chemistry , Lund University , P.O. Box 124, SE-221 00 Lund , Sweden
| | - Nadia Kazemi
- Department of Chemistry , University of Kurdistan , P.O. Box 66175-416, Sanandaj , Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry , Lund University , P.O. Box 124, SE-221 00 Lund , Sweden
| | - Mehdi Irani
- Department of Chemistry , University of Kurdistan , P.O. Box 66175-416, Sanandaj , Iran
| |
Collapse
|
31
|
Payer SE, Pollak H, Glueck SM, Faber K. A Rational Active-Site Redesign Converts a Decarboxylase into a C=C Hydratase: "Tethered Acetate" Supports Enantioselective Hydration of 4-Hydroxystyrenes. ACS Catal 2018. [PMID: 29527405 PMCID: PMC5838639 DOI: 10.1021/acscatal.7b04293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The promiscuous regio- and stereoselective hydration of 4-hydroxystyrenes catalyzed by ferulic acid decarboxylase from Enterobacter sp. (FDC_Es) depends on bicarbonate bound in the active site, which serves as a proton relay activating a water molecule for nucleophilic attack on a quinone methide electrophile. This "cofactor" is crucial for achieving improved conversions and high stereoselectivities for (S)-configured benzylic alcohol products. Similar effects were observed with simple aliphatic carboxylic acids as additives. A rational redesign of the active site by replacing the bicarbonate or acetate "cofactor" with a newly introduced side-chain carboxylate from an adjacent amino acid yielded mutants that efficiently acted as C=C hydratases. A single-point mutation of valine 46 to glutamate or aspartate improved the hydration activity by 40% and boosted the stereoselectivity 39-fold in the absence of bicarbonate or acetate.
Collapse
Affiliation(s)
- Stefan E. Payer
- Austrian Centre of
Industrial Biotechnology and ‡Department of Chemistry, University of Graz, Heinrichstrasse 28/2, 8010 Graz, Austria
| | - Hannah Pollak
- Austrian Centre of
Industrial Biotechnology and ‡Department of Chemistry, University of Graz, Heinrichstrasse 28/2, 8010 Graz, Austria
| | - Silvia M. Glueck
- Austrian Centre of
Industrial Biotechnology and ‡Department of Chemistry, University of Graz, Heinrichstrasse 28/2, 8010 Graz, Austria
| | - Kurt Faber
- Austrian Centre of
Industrial Biotechnology and ‡Department of Chemistry, University of Graz, Heinrichstrasse 28/2, 8010 Graz, Austria
| |
Collapse
|
32
|
Cao S, Yuan H, Yang Y, Wang M, Zhang X, Zhang J. Mechanistic investigation inspired "on water" reaction for hydrobromic acid-catalyzed Friedel-Crafts-type reaction of β-naphthol and formaldehyde. J Comput Chem 2017; 38:2268-2275. [PMID: 28696541 DOI: 10.1002/jcc.24877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/07/2023]
Abstract
The mechanism of the HBr-catalyzed Friedel-Crafts-type reaction between β-naphthol and HCHO was investigated by DFT to improve this reaction. The HBr-H2 O co-catalyzed the preferential pathway undergoes the concerted nucleophilic addition and hydrogen shift, stepwise followed by H2 O elimination and the CC bond formation. The origin of the high catalytic activity of HBr is ascribed to CH···Br- and OH···Br- interactions, which suggest that the active species is Br- . Moreover, water molecules efficiently assist in improving the activity of Br- . The computational results show that solvent polarity profoundly affects the activation barriers. To our delight, the activation barrier of the rate-determining step for the favored pathway in water is comparable (0.6 kcal/mol difference) with that in acetonitrile. The experimental observation further confirmed our results and demonstrated that the title reaction can be successfully achieved "on water." Therefore, we open a new efficient and green strategy for the synthesis of biphenol derivatives. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shanshan Cao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Advanced Energy Materials Research Center, Faculty of Chemistry Northeast Normal University Changchun, 130024, China
| | - Haiyan Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Advanced Energy Materials Research Center, Faculty of Chemistry Northeast Normal University Changchun, 130024, China
| | - Yang Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Advanced Energy Materials Research Center, Faculty of Chemistry Northeast Normal University Changchun, 130024, China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Advanced Energy Materials Research Center, Faculty of Chemistry Northeast Normal University Changchun, 130024, China
| | - Xiaoying Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Advanced Energy Materials Research Center, Faculty of Chemistry Northeast Normal University Changchun, 130024, China
| | - Jingping Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Advanced Energy Materials Research Center, Faculty of Chemistry Northeast Normal University Changchun, 130024, China
| |
Collapse
|
33
|
Drienovská I, Alonso-Cotchico L, Vidossich P, Lledós A, Maréchal JD, Roelfes G. Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid. Chem Sci 2017; 8:7228-7235. [PMID: 29081955 PMCID: PMC5633786 DOI: 10.1039/c7sc03477f] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/01/2017] [Indexed: 01/04/2023] Open
Abstract
The design of artificial metalloenzymes is a challenging, yet ultimately highly rewarding objective because of the potential for accessing new-to-nature reactions. One of the main challenges is identifying catalytically active substrate-metal cofactor-host geometries. The advent of expanded genetic code methods for the in vivo incorporation of non-canonical metal-binding amino acids into proteins allow to address an important aspect of this challenge: the creation of a stable, well-defined metal-binding site. Here, we report a designed artificial metallohydratase, based on the transcriptional repressor lactococcal multidrug resistance regulator (LmrR), in which the non-canonical amino acid (2,2'-bipyridin-5yl)alanine is used to bind the catalytic Cu(ii) ion. Starting from a set of empirical pre-conditions, a combination of cluster model calculations (QM), protein-ligand docking and molecular dynamics simulations was used to propose metallohydratase variants, that were experimentally verified. The agreement observed between the computationally predicted and experimentally observed catalysis results demonstrates the power of the artificial metalloenzyme design approach presented here.
Collapse
Affiliation(s)
- Ivana Drienovská
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , Netherlands .
| | - Lur Alonso-Cotchico
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Pietro Vidossich
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Agustí Lledós
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Jean-Didier Maréchal
- Departament de Química , Universitat Autònoma de Barcelona , Edifici C.n. , 08193 Cerdanyola del Vallés , Barcelona , Spain .
| | - Gerard Roelfes
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , Netherlands .
| |
Collapse
|
34
|
Moa S, Himo F. Quantum chemical study of mechanism and stereoselectivity of secondary alcohol dehydrogenase. J Inorg Biochem 2017; 175:259-266. [PMID: 28803132 DOI: 10.1016/j.jinorgbio.2017.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/02/2017] [Accepted: 07/18/2017] [Indexed: 11/17/2022]
Abstract
Secondary alcohol dehydrogenase from Thermoanaerobacter brockii (TbSADH) is a Zn- and NADP-dependent enzyme that catalyses the reversible transformation of secondary alcohols into ketones. It is of potential biocatalytic interest as it can be used in the synthesis of chiral alcohols by asymmetric reduction of ketones. In this paper, density functional theory calculations are employed to elucidate the origins of the enantioselectivity of TbSADH using a large model of the active site and considering two different substrates, 2-butanol and 3-hexanol. For these two substrates the enzyme has experimentally been shown to have the opposite enantioselectivity. The energy profiles for the reactions are calculated and the stationary points along the reaction path are characterised. The calculations first confirm that the general mechanism proposed for other alcohol dehydrogenases is energetically viable. In this mechanism, a proton is first transferred from the substrate to a histidine residue at the surface, followed by a hydride transfer to the NADP cofactor. The calculated overall energy barrier is consistent with the measured rate constant. Very importantly, the calculations are able to reproduce and rationalise the enantioselectivity of the enzyme for both substrates. The detailed characterisation of the energies and geometries of the involved transition states will be valuable in the rational engineering of TbSADH to expand its utility in biocatalysis.
Collapse
Affiliation(s)
- Sara Moa
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
35
|
Sheng X, Zhu W, Huddleston J, Xiang DF, Raushel FM, Richards NGJ, Himo F. A Combined Experimental-Theoretical Study of the LigW-Catalyzed Decarboxylation of 5-Carboxyvanillate in the Metabolic Pathway for Lignin Degradation. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01166] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiang Sheng
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Wen Zhu
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Jamison Huddleston
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dao Fen Xiang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Frank M. Raushel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Fahmi Himo
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
36
|
Abstract
The quantum chemical cluster approach is a powerful method for investigating enzymatic reactions. Over the past two decades, a large number of highly diverse systems have been studied and a great wealth of mechanistic insight has been developed using this technique. This Perspective reviews the current status of the methodology. The latest technical developments are highlighted, and challenges are discussed. Some recent applications are presented to illustrate the capabilities and progress of this approach, and likely future directions are outlined.
Collapse
Affiliation(s)
- Fahmi Himo
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University , SE-106 91 Stockholm, Sweden
| |
Collapse
|
37
|
Payer SE, Sheng X, Pollak H, Wuensch C, Steinkellner G, Himo F, Glueck SM, Faber K. Exploring the Catalytic Promiscuity of Phenolic Acid Decarboxylases: Asymmetric, 1,6-Conjugate Addition of Nucleophiles Across 4-Hydroxystyrene. Adv Synth Catal 2017; 359:2066-2075. [PMID: 28713228 PMCID: PMC5488193 DOI: 10.1002/adsc.201700247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/02/2017] [Indexed: 01/29/2023]
Abstract
The catalytic promiscuity of a ferulic acid decarboxylase from Enterobacter sp. (FDC_Es) and phenolic acid decarboxylases (PADs) for the asymmetric conjugate addition of water across the C=C bond of hydroxystyrenes was extended to the N‐, C‐ and S‐nucleophiles methoxyamine, cyanide and propanethiol to furnish the corresponding addition products in up to 91% ee. The products obtained from the biotransformation employing the most suitable enzyme/nucleophile pairs were isolated and characterized after optimizing the reaction conditions. Finally, a mechanistic rationale supported by quantum mechanical calculations for the highly (S)‐selective addition of cyanide is proposed. ![]()
Collapse
Affiliation(s)
- Stefan E Payer
- Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria
| | - Xiang Sheng
- Arrhenius Laboratory Department of Organic Chemistry Stockholm University SE-106 91 Stockholm Sweden
| | - Hannah Pollak
- Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria
| | - Christiane Wuensch
- Austrian Centre of Industrial Biotechnology (ACIB) c/o Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria.,Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria
| | - Georg Steinkellner
- Austrian Centre of Industrial Biotechnology (ACIB) c/o Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria.,Center for Molecular Biosciences University of Graz Humboldtstrasse 508010 Graz Austria
| | - Fahmi Himo
- Arrhenius Laboratory Department of Organic Chemistry Stockholm University SE-106 91 Stockholm Sweden
| | - Silvia M Glueck
- Austrian Centre of Industrial Biotechnology (ACIB) c/o Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria.,Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria
| | - Kurt Faber
- Department of Chemistry University of Graz Heinrichstrasse 28, A-8010 Graz Austria
| |
Collapse
|