1
|
Lal N, Deepshikha, Singh P, Shaikh AC. Red-light mediated formylation of indoles using a helical carbenium ion as a photoredox catalyst. Chem Commun (Camb) 2025; 61:3005-3008. [PMID: 39851032 DOI: 10.1039/d4cc06225f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Low-energy photoredox catalysis has gained significant attention in developing organic transformations due to its ability to achieve high penetration depth and minimum health risks. Herein, we disclose a red-light (λ = 640 nm)-mediated C-3 formylation of indoles utilizing a helical carbenium ion as a photocatalyst and 2,2-dimethoxy-N,N-dimethylethanamine as a formylating source. These protocols exhibit a broad substrate scope under mild conditions with efficient scalability for the synthesis of C-3 formylated indoles.
Collapse
Affiliation(s)
- Nand Lal
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| | - Deepshikha
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| | - Puja Singh
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| |
Collapse
|
2
|
Guo S, Jiang H, Yang S, Wu W. Transient Directing Group-Assisted Palladium-Catalyzed C4-Alkynylation of Indoles. J Org Chem 2025; 90:1455-1459. [PMID: 39792797 DOI: 10.1021/acs.joc.4c02478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Pd-catalyzed C4-selective alkynylation of indoles was established by employing glycine as a transient directing group. This reaction exhibits high regioselectivity with the tolerance of a wide scope of functional groups to afford diverse alkynylated indoles in moderate to good yields. Moreover, the readily accessible scale-up synthesis and further decorations to achieve multifunctionalized indoles demonstrate the synthetic potential of this protocol.
Collapse
Affiliation(s)
- Shuqi Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shaorong Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Wang J, Ji N, Gao Z, Tang XY, Wang L. Synthesis of 2-Sulfonyl Carbazoles via Oxidative C-H Functionalization of Tetrahydrocarbazoles with Sulfonyl Hydrazides. Org Lett 2025; 27:821-826. [PMID: 39797814 DOI: 10.1021/acs.orglett.4c04374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Herein, we report an approach for the synthesis of 2-sulfonyl carbazoles from the oxidative C-H sulfonylation of tetrahydrocarbazoles. The mechanistic study reveals that this special selectivity is realized by the addition of a sulfonyl radical to the 3,4-dihydrocabazole intermediate via dehydrogenative desaturation of tetrahydrocarbazoles. This approach features readily available starting materials, high regioselectivity, broad substrate scope, and attractive synthetic utility.
Collapse
Affiliation(s)
- Jiahua Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Na Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zifeng Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
4
|
Li JW, Shi S, Chen XH, Huang MG, Ban YL, Zhang H, Liu YJ. Cobalt(II)-Catalyzed Selective C2-H Heck Reaction of Native (N-H) Indoles Enabled by Salicylaldehyde Ligand. J Org Chem 2025; 90:1126-1136. [PMID: 39772629 DOI: 10.1021/acs.joc.4c02735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Direct functionalization of native (N-H) indoles via C-H activation remains a challenge. Herein, we report a salicylaldehyde-promoted cobalt-catalyzed selective C2-H Heck reaction of native (N-H) indoles with both active and unactivated olefins in the presence of free N-H bonds. A series of structurally diverse C2-alkenylated native (N-H) indoles including natural product and drug derivatives were prepared directly and effectively without additional preprotection and deprotection procedures.
Collapse
Affiliation(s)
- Jia-Wei Li
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Shuai Shi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiao-Hong Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Mao-Gui Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yong-Liang Ban
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Hui Zhang
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
5
|
Zhou W, Chen P, Xie XQ, Wu Y, Ding H, Yang R, Song XR, Luo MJ, Xiao Q. Electrochemical Three-Component C-H Functionalization of Indoles with Sodium Bisulfite and Alcohols to Access Indole-Containing Sulfonate Esters. J Org Chem 2025; 90:1085-1095. [PMID: 39754573 DOI: 10.1021/acs.joc.4c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Herein, an efficient electrochemical three-component C-H functionalization of indoles with sodium bisulfite and alcohols is described, providing a sustainable and convenient synthetic route for the construction of structurally valuable indole-containing sulfonate esters in moderate to good yields. This protocol proceeds in an undivided cell without any metal catalysts or oxidants, features a broad substrate scope, and has an excellent functional group tolerance. Preliminary mechanistic studies suggest that a radical-radical pathway may be involved in this three-component reaction system.
Collapse
Affiliation(s)
- Wei Zhou
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Peng Chen
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xiao-Qing Xie
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yanli Wu
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Haixin Ding
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ruchun Yang
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xian-Rong Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Mu-Jia Luo
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Qiang Xiao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
6
|
Hosseininezhad S, Pirani Ahmad Abad S, Ramazani A. Exploring the capabilities of 2-alkynyl aryl/benzyl azides: synthesis approaches for indoles, quinolines, and their derivatives via transition metal catalysis. RSC Adv 2025; 15:1163-1204. [PMID: 39811016 PMCID: PMC11729253 DOI: 10.1039/d4ra08280j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
In recent research, quinoline and indole structures have gained recognition for their significant clinical relevance and effectiveness. These compounds are known for their wide-ranging pharmacological effects, which include anticancer, antibacterial, antifungal, antiviral, and anti-inflammatory properties. Researchers have successfully implemented a variety of innovative synthetic strategies, leading to the creation of numerous compounds that display fascinating biological activities in diverse fields. This has sparked growing interest in developing quinoline and indole-based analogues, given their impressive variety of biological effects. Over the past few years, new, efficient, and more accessible synthetic techniques-such as green chemistry and microwave-assisted synthesis-have been introduced to produce a diverse array of quinoline and indole structures. This development reflects an expanding area of interest in both academic and industrial settings, making it easier to investigate their biological capabilities. In this review, we examine the intriguing transformations of 2-alkynyl aryl and benzyl azide derivatives into indoles and quinolines, emphasizing the role of metal catalysts such as Au, Cu, Rh, Pd, and Ag, from 2011 to 2024. We showcase the variety of substrates involved, highlight notable advancements in this area of research, and address the limitations faced by chemists. Additionally, we offer insights into the mechanisms driving these important reactions, aiming to enhance understanding and inspire future work in this dynamic field.
Collapse
Affiliation(s)
- Seyedmohammad Hosseininezhad
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Sina Pirani Ahmad Abad
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
- The Convergent Sciences & Technologies Laboratory (CSTL), Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
7
|
Nagesh VV, Pawar AB. Harnessing Dual Reactivity of N-Chloroamides for Cascade C-H Amidation/Chlorination of Indoles under Cobalt-Catalysis: Overriding Hofmann Rearrangement Pathway Leading to Aminocarbonylation. Org Lett 2024; 26:10523-10528. [PMID: 39601445 DOI: 10.1021/acs.orglett.4c03925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Herein, we have developed a Cp*Co(III)-catalyzed cascade C-2 amidation/C-3 chlorination of indoles by leveraging the dual functionality of N-chloroamides at ambient temperature. This protocol avoids the aminocarbonylation pathway that may result from the C-H functionalization of isocyanates formed via a potential Hofmann rearrangement of N-chloroamides. In fact, this represents the first example of directed C-H amidation using N-chloroamides as amidating agent. The control experiment indicated that the C-2 C-H amidation occurs prior to C-3 chlorination. Additionally, chloro functionality has been effectively utilized for the construction of C-S and C-N bonds, thereby expanding the molecular diversity of the synthesized compounds.
Collapse
Affiliation(s)
- Vinod V Nagesh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Amit B Pawar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
8
|
Zhao R, Lv X, Yang HR, Gao L, Zhou L, Fang S, Liu SL. Rhodium(III)-Catalyzed Regioselective C4 Alkylation of Indoles with Nitroalkenes. J Org Chem 2024; 89:17844-17849. [PMID: 39565168 DOI: 10.1021/acs.joc.4c02236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The Rh(III)-catalyzed indole C4-H bond addition to nitroalkenes is disclosed under mild and redox-neutral reaction conditions, offering straightforward access to various 4-(2-nitroalkyl)indoles (34 examples) with excellent chemo- and regioselectivity. Furthermore, late-stage diversifications and mechanistic studies were also performed.
Collapse
|
9
|
Zhang BS, Homölle SL, Bauch T, Oliveira JCA, Warratz S, Yuan B, Gou XY, Ackermann L. Electrochemical Skeletal Indole Editing via Nitrogen Atom Insertion by Sustainable Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2024; 63:e202407384. [PMID: 38959168 DOI: 10.1002/anie.202407384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Skeletal molecular editing gained considerable recent momentum and emerged as a uniquely powerful tool for late-stage diversifications. Thus far, superstoichiometric amounts of costly hypervalent iodine(III) reagents were largely required for skeletal indole editing. In contrast, we herein show that electricity enables sustainable nitrogen atom insertion reactions to give bio-relevant quinazoline scaffolds without stoichiometric chemical redox-waste product. The transition metal-free electro-editing was enabled by the oxygen reduction reaction (ORR) and proved robust on scale, while tolerating a variety of valuable functional groups.
Collapse
Affiliation(s)
- Bo-Sheng Zhang
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Simon L Homölle
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Tristan Bauch
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - João C A Oliveira
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Svenja Warratz
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Binbin Yuan
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Xue-Ya Gou
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
10
|
Zheng SZ, Fayad E, Alshaye NA, Qin HL. Stereo- and Regioselective Installation of Vinyl Sulfonyl Fluoride onto Indoles without Transition-Metal Catalyst. J Org Chem 2024; 89:14564-14570. [PMID: 39315771 DOI: 10.1021/acs.joc.4c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Herein, we developed a practical method for synthesizing a class of novel and highly valuable indolyl vinyl sulfonyl fluorides. This protocol has carved out a path for constructing a broad range of vinyl sulfonyl fluorinated indoles with exclusive stereo- and regioselectivity through the Friedel-Crafts/elimination reaction without any transition-metal catalyst. This transformation features mild conditions, high efficiency, excellent selectivity, and rich substrate compatibility, highlighting its significant value in medicinal chemistry and many related disciplines.
Collapse
Affiliation(s)
- Shu-Zhen Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Najla A Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
11
|
Das S, Saha R, Bhadra S, Samanta R. Ru(II)-Catalyzed Skeletal Editing of Oxindole with Internal Alkyne To Synthesize C7-Alkylated Indole Derivatives. Org Lett 2024; 26:8051-8056. [PMID: 39284099 DOI: 10.1021/acs.orglett.4c02870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A Ru(II)-catalyzed skeletal editing of oxindole scaffolds was established to afford C7-alkyl acetate indole derivatives using internal alkyne and alkyl alcohol. The developed method is simple, efficient, and straightforward. The reaction was extended to substrates having wide chemoselective profiles. When unsymmetrical alkynes were used, promising regioselectivity was realized. A preliminary mechanistic study revealed that the reaction pathway proceeded by Ru(II)/Ag(I)-catalyzed amide cleavage and subsequent oxidative annulation.
Collapse
Affiliation(s)
- Sarbojit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Raktim Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souvik Bhadra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
12
|
Nicholson K, McOnie SL, Langer T, Nichol GS, Thomas SP. Borane-catalysed C2-selective indole reductive functionalisation. Chem Commun (Camb) 2024; 60:10748-10751. [PMID: 39247983 DOI: 10.1039/d4cc03880k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Indolines are common motifs within pharamceuticals and natural products. Boron catalysis enables the chemoselective allylation of indoles to give allylic indolines in excellent diastereoselectivity. Mechanistic studies revealed in situ formation of the allylic borane, allylation of the imine tautomer of the indole and B-N/B-H transborylation for catalytic turnover.
Collapse
Affiliation(s)
- Kieran Nicholson
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Sarah L McOnie
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Thomas Langer
- Pharmaceutical Technology & Development, Chemicals Development U.K., AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Gary S Nichol
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
13
|
Zheng T, Ma J, Chen H, Jiang H, Lu S, Shi Z, Liu F, Houk KN, Liang Y. Computational Design of Ligands for the Ir-Catalyzed C5-Borylation of Indoles through Tuning Dispersion Interactions. J Am Chem Soc 2024; 146:25058-25066. [PMID: 39207888 DOI: 10.1021/jacs.4c08027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The indole moiety is ubiquitous in natural products and pharmaceuticals. C-H borylation of the benzenoid moiety of indoles is a challenging task, especially at the C5 position. We have combined computational and experimental studies to introduce multiple noncovalent interactions, especially dispersion, between the substrate and catalytic ligand to realize C5-borylation of indoles with high reactivity and selectivity. The successful computational predictions of new ligands should be suitable for ligand design in other transition-metal catalyzed reactions.
Collapse
Affiliation(s)
- Tianyu Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiawei Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haochi Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Jiang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuo Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fang Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Zhao Y, Li X, Zhou P, Han X, Zhang C, Liang T, Zhao S, Zhang Z. Rh-Catalyzed C-H Alkynylation of Indole Derivatives with Silver(I)-Controlled Regiodivergence. Org Lett 2024; 26:7285-7290. [PMID: 39178150 DOI: 10.1021/acs.orglett.4c02151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
We have disclosed silver(I)-induced switching of regioselectivity in rhodium-catalyzed C-H alkynylation of indole derivatives with the help of a pivaloyl directing group by tuning C-H metalation modes. The judicious choice of AgOAc, Ag2O, and Ag2CO3 affords an array of C2-alkynylated indoles, C4-alkynylated indoles, and C2,C4-dialkynylated indoles, respectively. The synthetic utility of the alkyne fragment is demonstrated by derivatization into valuable indole-based compounds.
Collapse
Affiliation(s)
- Yaokun Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Xingchi Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Pengfei Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Xing Han
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Chenjie Zhang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Taoyuan Liang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuan Zhang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
15
|
Mahala S, Gupta N, Singh S, Sharma AK, Bhuvanesh N, Joshi H. Designing Cobalt(II) Complex for Chemoselective Synthesis of 2-Aryl-3-Formyl Indoles from Amino Alcohols and Alcohols †. Chemistry 2024; 30:e202401698. [PMID: 38899378 DOI: 10.1002/chem.202401698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
An air-stable, inexpensive, and isolable cobalt(II) complex (C1) of N-((1-methyl-1H-imidazol-2-yl)methyl)-2-(phenylselanyl)ethan amine (L1) was synthesized and characterized. The complex was used to catalyze a one-pot cascade reaction between 2-(2-aminophenyl)ethanols and benzyl alcohol derivatives. Interestingly, 2-aryl-3-formylindole derivatives were formed instead of N-alkylated or C-3 alkylated indoles. A broad substrate scope can be activated using this protocol with only 5.0 mol % catalyst loading to achieve up to 87 % yield of 2-aryl-3-formylindole derivatives. The mechanistic studies suggested that the reaction proceeds through tandem imine formation followed by cyclization.
Collapse
Affiliation(s)
- Suman Mahala
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Navya Gupta
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Sohan Singh
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Alpesh K Sharma
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas, 77842-3012, USA
| | - Hemant Joshi
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| |
Collapse
|
16
|
Chen JZ, Wang ZX. Ruthenium-catalyzed C-H functionalization of indoles and indolines with 7-azabenzonorbornadienes: access to aminodihydronaphthyl indoles and indolines. Org Biomol Chem 2024; 22:5159-5169. [PMID: 38860854 DOI: 10.1039/d4ob00678j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Indoles, indolines and hydronaphthylamines are ubiquitous structural motifs in natural products, pharmaceuticals, and biologically active molecules. In this paper, we report the synthesis of aminodihydronaphthyl-substituted indoles and indolines via a Ru-catalyzed carbamoyl-directed C-H functionalization of indoles and indolines with 7-azabenzonorbornadienes. In the presence of Cu(OAc)2 and AgSbF6, [Ru(p-cymene)Cl2]2 catalyzes the reaction of 1-carbamoylindoles with 7-azabenzonorbornadienes to produce 2-(1-amino-1,2-dihydronaphthalen-2-yl)indoles. Under the same conditions, the reaction of 1-carbamoylindolines with 7-azabenzonorbornadienes affords 7-(1-amino-1,2-dihydronaphthalen-2-yl)indolines. In both cases, the reactions yield cis-configured products.
Collapse
Affiliation(s)
- Jia-Zhen Chen
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
17
|
Song Q, Zhang L, Wang B, Chen Z, Jin W, Xia Y, Wu S, Liu C, Zhang Y. Pd-Catalyzed Direct C7 Trifluoromethylation of Indolines with Umemoto's Reagent. Org Lett 2024; 26:3685-3690. [PMID: 38286988 DOI: 10.1021/acs.orglett.3c04123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
An efficient palladium-catalyzed region-selective C7-trifluoromethylation of indolines using commercially available Umemoto's reagent was reported. The reaction utilizing Umemoto's reagent as CF3 radical precursor, pyrimidine as a removable directing group, Pd(II) as a catalyst, and Cu(II) as an oxidant furnished the required products with excellent regioselectivities and good yields. The present strategy has good region-selectivity, broad substrate scope, and scale-up application. Additionally, the present method was underlined by the direct C-1 trifluoromethylation of carbazoles. Furthermore, C7 trifluoromethylated indole can also be easily obtained via Pd-catalyzed direct C-7 trifluoromethylation/oxidation/deprotection sequential reactions.
Collapse
Affiliation(s)
- Qinglang Song
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Lin Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Shaofeng Wu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- College of Future Technology, Xinjiang University, Urumqi 830017, P. R. China
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
18
|
Rashid A, Lone WI, Dogra P, Rashid S, Bhat BA. HFIP-mediated C-3-alkylation of indoles and synthesis of indolo[2,3- b]quinolines & related natural products. Org Biomol Chem 2024; 22:3502-3509. [PMID: 38618907 DOI: 10.1039/d4ob00414k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
An expeditious metal free C-3 alkylation of indoles and its NIS-mediated deviation to indolo[2,3-b]quinolines is reported. This protocol, executed in aqueous HFIP has broad substrate scope and is well inclined towards the ideas of sustainable chemistry. Applications of these strategies in accessing bioactive natural products like vibrindole, norcryptotakeine, neocryptolepine and indenoindolone scaffolds has also been demonstrated.
Collapse
Affiliation(s)
- Auqib Rashid
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar 190005, India.
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, Jammu and Kashmir 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Waseem I Lone
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, Jammu and Kashmir 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Preeti Dogra
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, Jammu and Kashmir 180001, India.
| | - Showkat Rashid
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, Jammu and Kashmir 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bilal A Bhat
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Liu Y, Gu X, Zhang X, Xu M, Zhang Z, Liang T. Iodine-mediated oxidative triple functionalization of indolines with azoles and diazonium salts. Chem Commun (Camb) 2024; 60:4613-4616. [PMID: 38587256 DOI: 10.1039/d4cc00856a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We report an innovative synthetic strategy for the generation of polysubstituted indoles from indolines, aryldiazonium salts, and azoles. The methodology encompasses an electrophilic substitution reaction affording C5-indoline intermediates which undergo an iodine-mediated oxidative transformation coupled with C-H functionalization to yield the indole derivatives.
Collapse
Affiliation(s)
- Yifeng Liu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Xiaoting Gu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Xiaoxiang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Meilan Xu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| |
Collapse
|
20
|
Guan X, Li WJ, Shuai MS, Zhang M, Zhou CC, Fu XZ, Yang YY, Zhou M, He B, Zhao YL. Rh(III)-Catalyzed C7-Alkylation of Isatogens with Malonic Acid Diazoesters. J Org Chem 2024; 89:2984-2995. [PMID: 38334453 DOI: 10.1021/acs.joc.3c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Rh(III)-catalyzed C7-alkylation of isatogens (indolin-3-one N-oxides) with malonic acid diazoesters has been developed. This strategy utilizes oxygen anion on the N-oxide group of isatogens as a directing group and successfully achieves the synthesis of a series of C7-alkylated isatogens with moderate to good yields (48-86% yields). Moreover, the N-oxides of isatogens can not only serve as the simple directing group for C7-H bond cleavage but also be deoxidized for easy removal.
Collapse
Affiliation(s)
- Xiang Guan
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Wen-Jie Li
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Ming-Shan Shuai
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Mao Zhang
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Chao-Chao Zhou
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Xiao-Zhong Fu
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yuan-Yong Yang
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Meng Zhou
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Bin He
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yong-Long Zhao
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
21
|
Zhang R, Ma R, Chen R, Wang L, Ma Y. Regioselective C 3Alkylation of Indoles for the Synthesis of Bis(indolyl)methanes and 3-Styryl Indoles. J Org Chem 2024; 89:1846-1857. [PMID: 38214898 DOI: 10.1021/acs.joc.3c02551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Herein, we describe an efficient transition-metal-free regioselective C3alkylation of indoles for the synthesis of bis(indolyl)methanes and 3-styryl indoles. Nitrobenzene is employed as the oxidant to oxidize the alcohols in the presence of a strong base and the reaction avoids the use of transition metals such as Ru and Mn. The protocol provides a favorable route to access biologically active compounds such as arundine, vibrindole A, and turbomycin B.
Collapse
Affiliation(s)
- Ruiqin Zhang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Renchao Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, P. R. China
| |
Collapse
|
22
|
Zhang XL, Wang MY, Liu HJ, Wang YQ. Palladium-Catalyzed Regioselective C4-H Acyloxylation of Indoles with Carboxylic Acids via a Transient Directing Groups Strategy. Org Lett 2024; 26:41-45. [PMID: 38149590 DOI: 10.1021/acs.orglett.3c03568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The development of an efficient method for the synthesis of C4 oxy-substituted indoles is an appealing yet challenging task. Herein, we report a general palladium-catalyzed TDG approach for the direct C4-H acyloxylation of indoles. The protocol features atom and step economy, excellent regioselectivity, and good tolerance of functional groups. Moreover, the reaction can accommodate a range of carboxylic acids including benzoic acids, phenylacetic acids, and aliphatic acids.
Collapse
Affiliation(s)
- Xing-Long Zhang
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, P.R. China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| | - Hui-Jin Liu
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, P.R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| |
Collapse
|
23
|
Shah TA, Sarkar T, Kar S, Maharana PK, Talukdar K, Punniyamurthy T. Transition-Metal-Catalyzed Directed C-H Functionalization in/on Water. Chem Asian J 2024; 19:e202300815. [PMID: 37932013 DOI: 10.1002/asia.202300815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Directing group assisted C-H bond functionalization using transition-metal-catalysis has emerged as a reliable synthetic tool for the construction of regioselective carbon-carbon/heteroatom bonds. Off late, "in/on water directed transition-metal-catalysis", though still underdeveloped, has appeared as one of the prominent themes in sustainable organic chemistry. This article covers the advancements, mechanistic insights and application of the sustainable directed C-H bond functionalization of (hetero)arenes in/on water in the presence of transition-metal-catalysis.
Collapse
Affiliation(s)
- Tariq A Shah
- Department of Chemistry and Advanced Material Chemistry Center (AMCC), Khalifa University, PO Box, 127788, Abu Dhabi, U.A.E
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | | |
Collapse
|
24
|
Liu G, Zheng M, Tian R, Zhou Y. Site-Selective Synthesis of Antitumor C5-Aminated Indoles via Neighboring Aldehyde Group Assisted Catellani Reaction. Org Lett 2023; 25:9231-9236. [PMID: 38105532 DOI: 10.1021/acs.orglett.3c03932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
A palladium/norbornene (NBE) cooperative catalytic system was developed to access C5-aminated indoles, starting from readily available C4-idonated indoles. Good yields and exclusive site selectivity were achieved for a broad substrate scope, including drug molecule core architectures. Control experiments found that both aldehyde on the C3 position and sulfonyl protecting group on the N1 position were vital for the transformation. Preliminary bioactivity evaluation identified a promising leading compound 3af with potent antitumor proliferative activity against several cancer cells.
Collapse
Affiliation(s)
- Guangyuan Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengzhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
25
|
Yadav SK, Jeganmohan M. Nickel-Catalyzed Tandem Cyclization of 1,6-Diynes with Indolines/Indoles through Dual C-H Bond Activation. J Org Chem 2023; 88:14454-14469. [PMID: 37791905 DOI: 10.1021/acs.joc.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A nickel-catalyzed site-selective tandem cyclization of 1,6-diynes with substituted indolines or indoles through consecutive dual C-H bond activation is described. In the reaction, substituted fused indole and carbazole derivatives were observed in good to excellent yields, in which three consecutive C-C bonds formed in one pot. Later, in the presence of DDQ, the aromatization of the indoline derivative was converted to the indole derivative. A possible reaction mechanism involving dual C-H bond activation as a key step was proposed to account for the present reaction.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu India
| |
Collapse
|
26
|
Paul A, Sengupta A, Sarkar B, Yadav S. Acetoxy Group-Directed Regioselective C2 Alkenylation of Indoles via Pd-Ag Bimetallic Catalysis. J Org Chem 2023; 88:14423-14434. [PMID: 37794781 DOI: 10.1021/acs.joc.3c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Regioselective C-H functionalizations of indoles reported to date with directing groups at C3 mainly rely on functional groups that are linked to the indole via C-C bonds. However, groups that are linked to the indole core by C-X linkages are also attractive due to the possibility of further modifications of the C-X bond. Herein, we report a 3-acetoxy directing group for the regioselective C2 alkenylation of indoles via a C-H activation-based, cross-dehydrogenative, oxidative Heck-type reaction. The reaction is catalyzed by Pd(II) and Ag(I) with stoichiometric Cu(II) as the oxidant and provides the 2-alkenylated indoles in yields of 52-84%. The reaction conditions are compatible with several functional groups at different positions as well as different N-protecting groups or free NH groups on the indole core. With respect to the alkene coupling partners, the reactions are successful with acrylates, vinyl sulfates, and phosphates. Specifically designed experiments, as well as density functional theory (DFT) computational studies, reveal that a heterodinuclear [Pd(μ-OAc)3Ag] bimetallic species is the actual catalyst responsible for the C-H alkenylation. A mechanistic path involving this catalytic species was also found to be favorable over other possible pathways for explaining the observed regioselectivity through DFT studies.
Collapse
Affiliation(s)
- Aditya Paul
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Bijan Sarkar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Somnath Yadav
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| |
Collapse
|
27
|
Nad P, Mukherjee A. Metal-free C-H Borylation and Hydroboration of Indoles. ACS OMEGA 2023; 8:37623-37640. [PMID: 37867714 PMCID: PMC10586279 DOI: 10.1021/acsomega.3c05071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023]
Abstract
The C-H borylation and hydroboration reactions have emerged as promising synthetic tools to construct organoboron compounds. Organoboron compounds of N-heterocycles, particularly indole derivatives, have found widespread application in a variety of fields. As a result, considerable advancement in the area of C-H borylation and hydroboration reactions of indoles was observed in the last few decades. Among the various synthetic methods applied, the metal-free approach has received special attention. This mini-review discusses the recent progress in the area of C-H borylation and hydroboration reactions of indoles under metal-free conditions, their scope, and brief mechanistic studies.
Collapse
Affiliation(s)
- Pinaki Nad
- Department
of Chemistry, Indian Institute of Technology
Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India
| | - Arup Mukherjee
- Department
of Chemistry, Indian Institute of Technology
Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India
| |
Collapse
|
28
|
Hirako N, Yasui T, Yamamoto Y. Rh(iii)-catalyzed highly site- and regio-selective alkenyl C-H activation/annulation of 4-amino-2-quinolones with alkynes via reversible alkyne insertion. Chem Sci 2023; 14:10971-10978. [PMID: 37829027 PMCID: PMC10566469 DOI: 10.1039/d3sc03987k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
3,4-Fused 2-quinolone frameworks are important structural motifs found in natural products and biologically active compounds. Intermolecular alkenyl C-H activation/annulation of 4-amino-2-quinolone substrates with alkynes is one of the most efficient methods for accessing such structural motifs. However, this is a formidable challenge because 4-amino-2-quinolones have two cleavable C-H bonds: an alkenyl C-H bond at the C3-position and an aromatic C-H bond at the C5-position. Herein, we report the Rh(iii)-catalyzed highly site-selective alkenyl C-H functionalization of 4-amino-2-quinolones to afford 3,4-fused 2-quinolones. This method has a wide substrate scope, including unsymmetrical internal alkynes, with complete regioselectivity. Several control experiments using an isolated key intermediate analog suggested that the annulation reaction proceeds via reversible alkyne insertion involving a binuclear Rh complex although alkyne insertion is generally recognized as an irreversible process due to the high activation barrier of the reverse process.
Collapse
Affiliation(s)
- Naohiro Hirako
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Takeshi Yasui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho Chikusa Nagoya 464-8603 Japan
| |
Collapse
|
29
|
Basak S, Paul T, Punniyamurthy T. A redox-neutral weak carbonyl chelation assisted C4-H allylation of indoles with vinylcyclopropanes. Chem Commun (Camb) 2023; 59:11568-11571. [PMID: 37682283 DOI: 10.1039/d3cc03614f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A weak acyl chelation-assisted distal C4-H allylation of indoles has been accomplished using vinylcyclopropanes as an allylating agent under redox-neutral ruthenium(II) catalysis. The regioselectivity, removable directing group, substrate scope and diastereoselectivity are the important practical features.
Collapse
Affiliation(s)
- Shubhajit Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Tripti Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
30
|
Sarkar S, Biswas A, Das S, Sanyal B, Sahoo R, Samanta R. Weakly coordinating tert-amide assisted Rh(III)-catalyzed C4-cyanation of indoles: application in photophysical studies. Chem Commun (Camb) 2023; 59:11200-11203. [PMID: 37650543 DOI: 10.1039/d3cc03075j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A rhodium(III)-catalyzed indole C4-selective cyanation is described using the bench-stable, user-friendly electrophilic cyanation agent N-cyano-N-phenyl-p-toluenesulfonamide (NCTS) as a coupling partner. A suitably positioned weakly coordinating tert-amide group was utilized for this site selectivity. The developed protocol proceeded with a broad scope. [Cp*Rh(MeCN)3][SbF6]2 was found to be an effective Rh(III) catalyst for this transformation. An initial study was carried out to know the photophysical properties of the C4-cyanated indole frameworks.
Collapse
Affiliation(s)
- Souradip Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Aniruddha Biswas
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Sarbojit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Bortika Sanyal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Rajkumar Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
31
|
Ouyang JY, Shen FF, Zhao HQ, Chen JJ, Wen ZD, Jiang HM, Qin JH, Sun Q, Li JH, Ouyang XH. Aryldiazonium Salt-Triggered [2 + 2 + 1] Heteroannulation of Indoles by an Arylhydrazone Radical-Relayed 1,5-Hydrogen Atom Transfer. Org Lett 2023; 25:6549-6554. [PMID: 37615297 DOI: 10.1021/acs.orglett.3c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An unprecedented three-component [2 + 2 + 1] annulation cascade of indoles with aryldiazonium salts and polyhalomethanes or acetone is presented by dual hydrogen atom transfer (HAT) and C-H functionalization. By employing readily accessible aryldiazonium salts as the radical initiators and electrophiles and polyhalomethanes and acetone as the C1 units, this method unprecedentedly constructs a pyrazole ring on an indole ring skeleton through the formation of two C-N bonds and a C-C bond in a single reaction.
Collapse
Affiliation(s)
- Jun-Yao Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Fang-Fang Shen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Han-Qing Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jia-Jie Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhu-Dong Wen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hui-Min Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
32
|
Cui J, Wang T. B(C 6F 5) 3-mediated direct intramolecular C7-alkenylation of N-propargylindoles. Chem Commun (Camb) 2023; 59:10279-10282. [PMID: 37539546 DOI: 10.1039/d3cc02599c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
B(C6F5)3-mediated direct C7-alkenylation of N-propargylindoles without directing groups was developed. This reaction proceeds via the π-activation of the alkynyl group with B(C6F5)3/Friedel-Crafts alkenylation/proton transfer reaction sequence. Interestingly, C7-alkenylation products could further convert into the fused indoles by deprotonation and finally polyaromatic N-heterocycles by the hydride abstraction.
Collapse
Affiliation(s)
- Jie Cui
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Tongdao Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
33
|
Zhang X, Liu Y. Direct Electrophilic Attack of Compound I on the Indole Ring in the Peroxygenase Mechanism of Dehaloperoxidase DHP B in Degrading Haloindole: Electron Transfer Promotes the Reaction. Inorg Chem 2023; 62:13230-13240. [PMID: 37561650 DOI: 10.1021/acs.inorgchem.3c01425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The H2O2-dependent degradation of haloindole catalyzed by the dehaloperoxidase (DHP) from Amphitrite ornate has been reported to employ the peroxygenase mechanism, and the two oxidized products 5-halo-2-oxindole and 5-halo-3-oxindole have a similar amount. According to a previous experimental study, compound I (Cpd I) was suggested to be responsible for triggering the reaction, and the reaction may undergo three possible intermediates; however, the reaction details are still unclear. To clarify the reaction mechanism of DHP, the computational model was constructed on the basis of the high-resolution crystal structure, and a series of the quantum mechanical/molecular mechanical calculations were performed. Based on our calculation results, it is confirmed that the reaction starts from the direct electrophilic attack of Cpd I on the indole ring of the substrate, and the resulted intermediate contains both a carbocation and an oxygen anion, whereas the common hydrogen abstraction by Cpd I was calculated to correspond to a relatively higher barrier. In addition, a net electron transfer from the substrate to the iron center is observed during the attack of Cpd I on the indole ring; therefore, the carbocation/oxygen anion intermediate can easily undergo an intramolecular hydride transfer to form the product 5-halo-2-oxindole or isomerize to the epoxide intermediate which finally generates another product 5-halo-3-oxindole. It is the zwitterionic characteristic of the intermediate that makes the intermolecular hydride transfer quite easy, and it is the high electron affinity of the iron center that promotes the single-electron oxidation of the reaction intermediate. Our calculations well explain the formation of two oxidized products 5-halo-2-oxindole and 5-halo-3-oxindole.
Collapse
Affiliation(s)
- Xianghui Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
34
|
Aoun AR, Mupparapu N, Nguyen DN, Kim TH, Nguyen CM, Pan Z, Elshahawi SI. Structure-guided Mutagenesis Reveals the Catalytic Residue that Controls the Regiospecificity of C6-Indole Prenyltransferases. ChemCatChem 2023; 15:e202300423. [PMID: 37366495 PMCID: PMC10292028 DOI: 10.1002/cctc.202300423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 06/28/2023]
Abstract
Indole is a significant structural moiety and functionalization of the C-H bond in indole-containing molecules expands their chemical space, and modifies their properties and/or activities. Indole prenyltransferases (IPTs) catalyze the direct regiospecific installation of prenyl, C5 carbon units, on indole-derived compounds. IPTs have shown relaxed substrate flexibility enabling them to be used as tools for indole functionalization. However, the mechanism by which certain IPTs target a specific carbon position is not fully understood. Herein, we use structure-guided site-directed mutagenesis, in vitro enzymatic reactions, kinetics and structural-elucidation of analogs to verify the key catalytic residues that control the regiospecificity of all characterized regiospecific C6 IPTs. Our results also demonstrate that substitution of PriB_His312 to Tyr leads to the synthesis of analogs prenylated at different positions than C6. This work contributes to understanding of how certain IPTs can access a challenging position in indole-derived compounds.
Collapse
Affiliation(s)
- Ahmed R Aoun
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Diem N Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Tae Ho Kim
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Christopher M Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Zhengfeiyue Pan
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| |
Collapse
|
35
|
Gu CH, Zhang Z, Shen SJ, Xu HJ, Hu Y. A Cheap and Efficient Oxidant ( n-Bu) 4NNO 3-Enabled C(sp 2)- and C(sp 3)-H Olefination at Room Temperature. Org Lett 2023; 25:2622-2626. [PMID: 37052353 DOI: 10.1021/acs.orglett.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
To further promote the widely practical application of C-H activation, developing green and mild reaction conditions has invariably been the objective of researchers, especially when it comes to remote C-H activation reactions. Herein, we report a new cheap and powerful (n-Bu)4NNO3 oxidant. This oxidant is efficient and universal for Pd(II)-catalyzed sp2 and sp3 C-H olefination and allows the reaction to be carried out at room temperature. Because of this, we attempted to make C-H functionalization more economical and environmentally benign.
Collapse
Affiliation(s)
- Cheng-Hao Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Zhen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Shuo-Jie Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Hua-Jin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
36
|
Chen XY, Tang Y, Xiang X, Tang Y, Huang M, Zheng S, Yang C. Green One-Pot Syntheses of 2-Sulfoximidoyl-3,6-dibromo Indoles Using N-Br Sulfoximines as Both Brominating and Sulfoximinating Reagents. Molecules 2023; 28:molecules28083380. [PMID: 37110617 PMCID: PMC10146707 DOI: 10.3390/molecules28083380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
A green one-pot 2,3,6-trifunctionalization of N-alkyl/aryl indoles was achieved by adding three equivalents of N-Br sulfoximine to the indole solution. A variety of 2-sulfoximidoyl-3,6-dibromo indoles were prepared with 38-94% yields using N-Br sulfoximines as both brominating and sulfoximinating reagents. Based on the results of controlled experiments, we propose that a radical substitution involving 3,6-dibromination and 2-sulfoximination occurs in the reaction process. This is first time that 2,3,6-trifunctionalization of indole in one pot has been achieved.
Collapse
Affiliation(s)
- Xiao Yun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yaonan Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Xinran Xiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yisong Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Mingyang Huang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Cuifeng Yang
- Modern Chemistry Research Institute of Xi'an, Xi'an 710065, China
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an 710065, China
| |
Collapse
|
37
|
Kathiravan S, Zhang T, Nicholls IA. Iridium catalysed C2 site-selective methylation of indoles using a pivaloyl directing group through weak chelation-assistance. RSC Adv 2023; 13:11291-11295. [PMID: 37057266 PMCID: PMC10088075 DOI: 10.1039/d3ra02031b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Here we present an iridium catalysed C2-selective methylation of indoles using methyltrifluoroborate as a source of methyl group. The iridium catalyst selectively discriminates the indole C2 and C4 C-H bonds by coordination with a pivaloyl directing group.
Collapse
Affiliation(s)
| | - Tianshu Zhang
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University Kalmar SE-39182 Sweden
| | - Ian A Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University Kalmar SE-39182 Sweden
| |
Collapse
|
38
|
Vijaykumar M, Pradhan C, Gonnade RG, Punji B. Palladium-Catalyzed Chemoselective Oxygenation of C(sp 2)-H and C(sp 3)-H Bonds in Isatins. Org Lett 2023; 25:1862-1867. [PMID: 36920045 DOI: 10.1021/acs.orglett.3c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The palladium-catalyzed chemoselective C(sp2)-H and C(sp3)-H bond oxygenation of substituted isatin derivatives is reported. This mild protocol exhibits the C5 C(sp2)-H oxygenation of isatins through electrophilic intermolecular C-H palladation in concentrated solutions using PhI(OAc)2 or Selectfluor as an oxidant, whereas it exhibits-N-CH3 C(sp3)-H oxygenation in dilute solutions via carbonyl-assisted intramolecular palladation in the presence of K2S2O8. This oxygenation reaction provides a direct and unified approach for synthesizing diverse oxygenated isatins with sensitive functionalities, including biorelevant compounds.
Collapse
Affiliation(s)
- Muniyappa Vijaykumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Chandini Pradhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Benudhar Punji
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
39
|
Pang Q, Zuo WF, Zhang Y, Li X, Han B. Recent Advances on Direct Functionalization of Indoles in Aqueous Media. CHEM REC 2023; 23:e202200289. [PMID: 36722727 DOI: 10.1002/tcr.202200289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Indexed: 02/02/2023]
Abstract
Indoles and their derivatives have dominated a significant proportion of nitrogen-containing heterocyclic compounds and play an essential role in synthetic and medicinal chemistry, pesticides, and advanced materials. Compared with conventional synthetic strategies, direct functionalization of indoles provides straightforward access to construct diverse indole scaffolds. As we enter an era emphasizing green and sustainable chemistry, utilizing environment-friendly solvents represented by water demonstrates great potential in synthesizing valuable indole derivatives. This review aims to depict the critical aspects of aqueous-mediated indoles functionalization over the past decade and discusses the future challenges and prospects in this fast-growing field. For the convenience of readers, this review is classified into three parts according to the bonding modes (C-C, C-N, and C-S bonds), which focus on the diversity of indole derivatives, the prominent role of water in the chemical process, and the types of catalyst systems and mechanisms. We hope this review can promote the sustainable development of the direct functionalization of indoles and their derivatives and the discovery of novel and practical organic methods in aqueous phase.
Collapse
Affiliation(s)
- Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
40
|
Leonel G, Klann I, Back DF, Iglesias BA, Nogueira CW, Zeni G. Electrophile-Promoted Nucleophilic Cyclization of 2-Alkynylindoles to Give 4-Substituted Oxazinoindolones. Chemistry 2023; 29:e202202847. [PMID: 36322046 DOI: 10.1002/chem.202202847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022]
Abstract
A method for the synthesis of 4-organoselanyl oxazinoindolone derivatives by the cascade cyclization of N-(alkoxycarbonyl)-2-alkynylindoles using iron(III) chloride and diorganyl diselenides as promoters was developed. This protocol was applied to a series of N-(alkoxycarbonyl)-2-alkynylindoles containing different substituents. The reaction conditions also tolerated a variety of diorganyl diselenides having both electron donating and electron withdrawing groups. However, the reaction did not work for diorganyl disulfides and ditellurides. The reaction mechanism seems to proceed via an ionic pathway and the cooperative action between iron(III) chloride and diorganyl diselenides is crucial for successful cyclization. We also found that using the same starting materials, by simply changing the electrophilic source to iodine, led to the formation of 4-iodo-oxazinoindolones. The high reactivity of Csp2 -Se and Csp2 -I bonds were tested under cross-coupling conditions leading to the preparation of a new class of functionalized indole derivatives. In addition, the absorption, emission and electrochemical properties of 4-organoselanyl oxazinoindolones showed an important relationship with the substituents of the aromatic rings. The advantages of the methodology include the use of electrophilic to promote the cyclization reaction and functionalization of the indole ring, and the electronic properties presented by the prepared compounds can be exploited as probes, analyte detectors and optical materials.
Collapse
Affiliation(s)
- Guilherme Leonel
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica, Toxicológica de Organocalcogênios, CCNE, UFSM, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Isabella Klann
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica, Toxicológica de Organocalcogênios, CCNE, UFSM, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Davi F Back
- Laboratório de Materiais Inorgânicos Departamento de Química, CCNE, UFSM, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos Departamento de Química, CCNE, UFSM, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica, Toxicológica de Organocalcogênios, CCNE, UFSM, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica, Toxicológica de Organocalcogênios, CCNE, UFSM, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| |
Collapse
|
41
|
Yang Z, Tang J, Li C, Chen Z, Wu XF. Rhodium(III)-catalyzed regioselective C2-alkenylation of indoles with CF 3-imidoyl sulfoxonium ylides to give multi-functionalized enamines using a migratable directing group. Chem Commun (Camb) 2023; 59:318-321. [PMID: 36511166 DOI: 10.1039/d2cc06127a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A rhodium(III)-catalyzed regioselective C2-alkenylation of indoles for the construction of α-CF3 substituted enamines has been developed, which utilizes CF3-imidoyl sulfoxonium ylides (TFISYs) as alkenylating agents for the first time. A wide array of indolyl- and trifluoromethyl-decorated enamine derivatives have been assembled in moderate to good yields.
Collapse
Affiliation(s)
- Zuguang Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Jianhua Tang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Chen Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China. .,Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059, Rostock, Germany.
| |
Collapse
|
42
|
Nishii Y, Miura M. Utilization of sulfur function in directed catalytic C-H transformation: Site-selective substitution on indole and naphthalene skeletons. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2152815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Japan
| |
Collapse
|
43
|
Yadav V, Jagtap SG, Balaraman E, Mhaske SB. Nickel-Catalyzed Direct Synthesis of N-Substituted Indoles from Amino Alcohols and Alcohols. Org Lett 2022; 24:9054-9059. [DOI: 10.1021/acs.orglett.2c03617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vinita Yadav
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sayali G. Jagtap
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Santosh B. Mhaske
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
44
|
DFT Insights into the mechanism of Ru(II) Catalyzed C7-selective amidation of N-pivaloylindole. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Sandeep K, Kumar AS, Kumara Swamy KC. Rhodium‐Catalyzed Vinyl Sulfonylation of 3‐Carbonyl‐Substituted Indoles with Ethenesulfonyl Fluoride by Cross‐Dehydrogenative Coupling: An Application in (3+2) Cycloaddition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- K. Sandeep
- School of Chemistry University of Hyderabad Gachibowli Hyderabad 5000046 Telangana State India
| | - A. Sanjeeva Kumar
- School of Chemistry University of Hyderabad Gachibowli Hyderabad 5000046 Telangana State India
| | - K. C. Kumara Swamy
- School of Chemistry University of Hyderabad Gachibowli Hyderabad 5000046 Telangana State India
| |
Collapse
|
46
|
Byun Y, Moon K, Park J, Ghosh P, Mishra NK, Kim IS. Methylene Thiazolidinediones as Alkylation Reagents in Catalytic C–H Functionalization: Rapid Access to Glitazones. Org Lett 2022; 24:8578-8583. [DOI: 10.1021/acs.orglett.2c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihye Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
47
|
Azizi N, Farhadi E, Farzaneh F. Increased catalytic activity through ZnMo 7O 24/g-C 3N 4 heterostructured assemblies for greener indole condensation reaction at room temperature. Sci Rep 2022; 12:18634. [PMID: 36329097 PMCID: PMC9633728 DOI: 10.1038/s41598-022-23447-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
As an economical conjugated polymer, graphitic carbon nitride (g-C3N4) has recently attracted much attention due to its exciting chemical and thermal stability and easy availability. Herein, we constructed a metal-coordinated graphitic carbon nitride (M-g-C3N4) catalyst through simple impregnation and calcination methods and used it as a new heterogeneous catalyst for the efficient synthesis of bis (indolyl) methanes and trisindolines under mild conditions. This reaction is performed efficiently in water as an environmentally friendly solvent at ambient conditions. The ZnMo7O24/g-C3N4 nanocomposite was synthesized by a simple method by immobilizing Mo7O24(NH4)6·4H2O and ZnCl2 on the surface of g-C3N4 under hydrothermal conditions. It was characterized by FT-IR, EDS, and electronic scanning microscopy (SEM). The metal doping of Mo and Zn on the surface of graphitic carbon nitride leads to the formation of a green catalyst that gives good to excellent yields of products in short reaction times with an easy working procedure. In addition, the ZnMo7O24/g-C3N4 catalyst could be reused at least five runs without apparent loss of efficiency.
Collapse
Affiliation(s)
- Najmedin Azizi
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Elham Farhadi
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Fezeh Farzaneh
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| |
Collapse
|
48
|
Banerjee S, Mishra M, Punniyamurthy T. Copper-Catalyzed C7-Selective C–H/N–H Cross-Dehydrogenative Coupling of Indolines with Sulfoximines. Org Lett 2022; 24:7997-8001. [DOI: 10.1021/acs.orglett.2c03190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sonbidya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
49
|
Li JF, Yin B, Wang JJ. Mechanistic Insights into Cobalt-Catalyzed Regioselective C4-Alkenylation of 3-Acetylindole: A Detailed Theoretical Study. J Org Chem 2022; 87:14125-14136. [PMID: 36256734 DOI: 10.1021/acs.joc.2c01696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A detailed mechanistic study of Co(III)-catalyzed C4-alkenylation of 3-acetylindole (1a) was done based on calculations at density functional theory (DFT) and correlated wave function levels. The whole catalytic cycle consists of four steps: C-H activation, olefin insertion, β-hydride elimination, and regeneration of the catalyst. The theoretical results support olefin insertion as the rate-determining step leading to the experimentally observed regioselectivity of the C4 site over the C2 site. By the analysis of three-dimensional (3D) geometries and the NCl plot, the preference for the C4 site over the C2 site could be attributed to the weaker repulsive interaction between the indole moiety and olefin in the transition states of the olefin insertion step for the former. The reliability of the theoretical mechanistic results is further confirmed through the DFT calculation of other related indole derivatives and olefin substrates.
Collapse
Affiliation(s)
- Jin-Feng Li
- College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, China
| | - Bing Yin
- Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Ji-Jiang Wang
- College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, China
| |
Collapse
|
50
|
Wu J, Tongdee S, Cordier M, Darcel C. Selective Iron Catalyzed Synthesis of N-Alkylated Indolines and Indoles. Chemistry 2022; 28:e202201809. [PMID: 35700072 PMCID: PMC9796591 DOI: 10.1002/chem.202201809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/01/2023]
Abstract
Whereas iron catalysts usually promote catalyzed C3-alkylation of indole derivatives via a borrowing-hydrogen methodology using alcohols as the electrophilic partners, this contribution shows how to switch the selectivity towards N-alkylation. Thus, starting from indoline derivatives, N-alkylation was efficiently performed using a tricarbonyl(cyclopentadienone) iron complex as the catalyst in trifluoroethanol in the presence of alcohols leading to the corresponding N-alkylated indoline derivatives in 31-99 % yields (28 examples). The one-pot, two-step strategy for the selective N-alkylation of indolines is completed by an oxidation to give the corresponding N-alkylated indoles in 31-90 % yields (15 examples). This unprecedented oxidation methodology involves an iron salt catalyst associated with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) and a stoichiometric amount of t-BuOOH at room temperature.
Collapse
Affiliation(s)
- Jiajun Wu
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| | - Satawat Tongdee
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| | - Marie Cordier
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| | - Christophe Darcel
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| |
Collapse
|