1
|
Razavi SA, Kalari M, Haghzad T, Haddadi F, Nasiri S, Hedayati M. Exploring the potential of myo-inositol in thyroid disease management: focus on thyroid cancer diagnosis and therapy. Front Endocrinol (Lausanne) 2024; 15:1418956. [PMID: 39329107 PMCID: PMC11424451 DOI: 10.3389/fendo.2024.1418956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/28/2024] Open
Abstract
Thyroid cancer (TC) is a malignancy that is increasing in prevalence on a global scale, necessitating the development of innovative approaches for both diagnosis and treatment. Myo-inositol (MI) plays a crucial role in a wide range of physiological and pathological functions within human cells. To date, studies have investigated the function of MI in thyroid physiology as well as its potential therapeutic benefits for hypothyroidism and autoimmune thyroiditis. However, research in the field of TC is very restricted. Metabolomics studies have highlighted the promising diagnostic capabilities of MI, recognizing it as a metabolic biomarker for identifying thyroid tumors. Furthermore, MI can influence therapeutic characteristics by modulating key cellular pathways involved in TC. This review evaluates the potential application of MI as a naturally occurring compound in the management of thyroid diseases, including hypothyroidism, autoimmune thyroiditis, and especially TC. The limited number of studies conducted in the field of TC emphasizes the critical need for future research to comprehend the multifaceted role of MI in TC. A significant amount of research and clinical trials is necessary to understand the role of MI in the pathology of TC, its diagnostic and therapeutic potential, and to pave the way for personalized medicine strategies in managing this intricate disease.
Collapse
Affiliation(s)
- S. Adeleh Razavi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Kalari
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Tahereh Haghzad
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Fatemeh Haddadi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Shirzad Nasiri
- Department of Surgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wang X, Li K, Zhao W, Zhang L, Wei X, Shen R, Chen M, Han D, Gong J. Enhancing physicochemical and functional properties of myo-inositol in crystallization with edible sugar additives. Food Chem 2024; 439:138077. [PMID: 38039607 DOI: 10.1016/j.foodchem.2023.138077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Myo-inositol, referred to as vitamin B8, is an essential nutrient for maintaining human physiological functions. However, the morphology of myo-inositol products is predominantly powder or needle shaped, leading to poor food properties. In this work, three edible sugar additives, i.e. d-glucose, l-arabinose and d-fructose, are adopted in the crystallization of myo-inositol to improve its food properties. The results show that these additives change the morphology of myo-inositol crystals. d-glucose and l-arabinose reduced the aspect ratio of myo-inositol crystals, and d-glucose transformed elongated lamellar myo-inositol crystals into diamond-shaped lamellar crystals. The diamond-shaped lamellar myo-inositol products exhibited outstanding functional food properties. It offered a smoother texture and more pleasant mouthfeel when the products were added to infant formulas and nutraceuticals. When they were applied to functional beverages, the dissolution rate was increased by 35 %. This work provides a theoretical guidance for improving food properties through crystallization and possesses considerable potential for industrialization.
Collapse
Affiliation(s)
- Xiaowei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Kangli Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Wei Zhao
- Shandong Fuyang Biotechnology Co., Ltd, Dezhou 253000, China
| | - Leida Zhang
- Shandong Fuyang Biotechnology Co., Ltd, Dezhou 253000, China
| | - Xuemei Wei
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Runpu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Mingyang Chen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China.
| | - Dandan Han
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China.
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Boukid F, Ganeshan S, Wang Y, Tülbek MÇ, Nickerson MT. Bioengineered Enzymes and Precision Fermentation in the Food Industry. Int J Mol Sci 2023; 24:10156. [PMID: 37373305 DOI: 10.3390/ijms241210156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Enzymes have been used in the food processing industry for many years. However, the use of native enzymes is not conducive to high activity, efficiency, range of substrates, and adaptability to harsh food processing conditions. The advent of enzyme engineering approaches such as rational design, directed evolution, and semi-rational design provided much-needed impetus for tailor-made enzymes with improved or novel catalytic properties. Production of designer enzymes became further refined with the emergence of synthetic biology and gene editing techniques and a plethora of other tools such as artificial intelligence, and computational and bioinformatics analyses which have paved the way for what is referred to as precision fermentation for the production of these designer enzymes more efficiently. With all the technologies available, the bottleneck is now in the scale-up production of these enzymes. There is generally a lack of accessibility thereof of large-scale capabilities and know-how. This review is aimed at highlighting these various enzyme-engineering strategies and the associated scale-up challenges, including safety concerns surrounding genetically modified microorganisms and the use of cell-free systems to circumvent this issue. The use of solid-state fermentation (SSF) is also addressed as a potentially low-cost production system, amenable to customization and employing inexpensive feedstocks as substrate.
Collapse
Affiliation(s)
- Fatma Boukid
- ClonBio Group Ltd., 6 Fitzwilliam Pl, D02 XE61 Dublin, Ireland
| | | | - Yingxin Wang
- Saskatchewan Food Industry Development Centre, Saskatoon, SK S7M 5V1, Canada
| | | | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
4
|
Zhang T, Liu P, Wei H, Sun X, Zeng Y, Zhang X, Cai Y, Cui M, Ma H, Liu W, Sun Y, Yang J. Protein Engineering of Glucosylglycerol Phosphorylase Facilitating Efficient and Highly Regio- and Stereoselective Glycosylation of Polyols in a Synthetic System. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tong Zhang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pi Liu
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongli Wei
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xinming Sun
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yan Zeng
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xuewen Zhang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yi Cai
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Mengfei Cui
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongwu Ma
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Weidong Liu
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuanxia Sun
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangang Yang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
5
|
Li G, Wei X, Wu R, Zhou W, Li Y, Zhu Z, You C. Stoichiometric Conversion of Maltose for Biomanufacturing by In Vitro Synthetic Enzymatic Biosystems. BIODESIGN RESEARCH 2022; 2022:9806749. [PMID: 37850132 PMCID: PMC10521662 DOI: 10.34133/2022/9806749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 10/19/2023] Open
Abstract
Maltose is a natural α-(1,4)-linked disaccharide with wide applications in food industries and microbial fermentation. However, maltose has scarcely been used for in vitro biosynthesis, possibly because its phosphorylation by maltose phosphorylase (MP) yields β-glucose 1-phosphate (β-G1P) that cannot be utilized by α-phosphoglucomutase (α-PGM) commonly found in in vitro synthetic enzymatic biosystems previously constructed by our group. Herein, we designed an in vitro synthetic enzymatic reaction module comprised of MP, β-phosphoglucomutase (β-PGM), and polyphosphate glucokinase (PPGK) for the stoichiometric conversion of each maltose molecule to two glucose 6-phosphate (G6P) molecules. Based on this synthetic module, we further constructed two in vitro synthetic biosystems to produce bioelectricity and fructose 1,6-diphosphate (FDP), respectively. The 14-enzyme biobattery achieved a Faraday efficiency of 96.4% and a maximal power density of 0.6 mW/cm2, whereas the 5-enzyme in vitro FDP-producing biosystem yielded 187.0 mM FDP from 50 g/L (139 mM) maltose by adopting a fed-batch substrate feeding strategy. Our study not only suggests new application scenarios for maltose but also provides novel strategies for the high-efficient production of bioelectricity and value-added biochemicals.
Collapse
Affiliation(s)
- Guowei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, 1038 Dagu Nanlu, Hexi District, Tianjin 300457, China
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wei Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yunjie Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| |
Collapse
|
6
|
Wang J, Cheng H, Zhao Z, Zhang Y. Efficient production of inositol from glucose via a tri-enzymatic cascade pathway. BIORESOURCE TECHNOLOGY 2022; 353:127125. [PMID: 35398211 DOI: 10.1016/j.biortech.2022.127125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Inositol is an essential intermediate in cosmetics, food, medicine and other industries. However, developing an efficient biotransformation system for large-scale production of inositol remains challenging. Herein, a tri-enzymatic cascade route with three novel enzymes including polyphosphate glucokinase (PPGK) from Thermobifida fusca, inositol 3-phosphate synthase (IPS) from Archaeoglobus profundus DSM 5631 and inositol monophosphatase (IMP) from Thermotoga petrophila RKU-1 was designed and reconstructed for the production of inositol from glucose. The problem of poor cooperativity of the cascade reactions was addressed by ribosome binding site (RBS) optimization of PPGK and replication of IPS. Under the optimum biotransformation conditions, the engineered whole-cell immobilized with colloidal chitin transformed 120 g/L glucose to 110.8 g/L inositol with 92.3% conversion in four cycles of reuse, representing the highest titer of inositol to date. Furthermore, this is the first study for inositol production using a three-enzyme coordinated immobilized single-cell.
Collapse
Affiliation(s)
- Jiaping Wang
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Hui Cheng
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Zhihong Zhao
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Yimin Zhang
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
7
|
Ni D, Chen Z, Tian Y, Xu W, Zhang W, Kim BG, Mu W. Comprehensive utilization of sucrose resources via chemical and biotechnological processes: A review. Biotechnol Adv 2022; 60:107990. [PMID: 35640819 DOI: 10.1016/j.biotechadv.2022.107990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Sucrose, one of the most widespread disaccharides in nature, has been available in daily human life for many centuries. As an abundant and cheap sweetener, sucrose plays an essential role in our diet and the food industry. However, it has been determined that many diseases, such as obesity, diabetes, hyperlipidemia, etc., directly relate to the overconsumption of sucrose. It arouses many explorations for the conversion of sucrose to high-value chemicals. Production of valuable substances from sucrose by chemical methods has been studied since a half-century ago. Compared to chemical processes, biotechnological conversion approaches of sucrose are more environmentally friendly. Many enzymes can use sucrose as the substrate to generate functional sugars, especially those from GH68, GH70, GH13, and GH32 families. In this review, enzymatic catalysis and whole-cell fermentation of sucrose for the production of valuable chemicals were reviewed. The multienzyme cascade catalysis and metabolic engineering strategies were addressed.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Industrially Relevant Enzyme Cascades for Drug Synthesis and Their Ecological Assessment. Int J Mol Sci 2022; 23:ijms23073605. [PMID: 35408960 PMCID: PMC8998672 DOI: 10.3390/ijms23073605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Environmentally friendly and sustainable processes for the production of active pharmaceutical ingredients (APIs) gain increasing attention. Biocatalytic synthesis routes with enzyme cascades support many stated green production principles, for example, the reduced need for solvents or the biodegradability of enzymes. Multi-enzyme reactions have even more advantages such as the shift of the equilibrium towards the product side, no intermediate isolation, and the synthesis of complex molecules in one reaction pot. Despite the intriguing benefits, only a few enzyme cascades have been applied in the pharmaceutical industry so far. However, several new enzyme cascades are currently being developed in research that could be of great importance to the pharmaceutical industry. Here, we present multi-enzymatic reactions for API synthesis that are close to an industrial application. Their performances are comparable or exceed their chemical counterparts. A few enzyme cascades that are still in development are also introduced in this review. Economic and ecological considerations are made for some example cascades to assess their environmental friendliness and applicability.
Collapse
|
9
|
Tang S, Liao D, Li X, Lin Y, Han S, Zheng S. Cell-Free Biosynthesis System: Methodology and Perspective of in Vitro Efficient Platform for Pyruvate Biosynthesis and Transformation. ACS Synth Biol 2021; 10:2417-2433. [PMID: 34529398 DOI: 10.1021/acssynbio.1c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The modification of intracellular metabolic pathways by metabolic engineering has generated many engineered strains with relatively high yields of various target products in the past few decades. However, the unpredictable accumulation of toxic products, the cell membrane barrier, and competition between the carbon flux of cell growth and product synthesis have severely retarded progress toward the industrial-scale production of many essential chemicals. On the basis of an in-depth understanding of intracellular metabolic pathways, scientists intend to explore more sustainable methods and construct a cell-free biosynthesis system in vitro. In this review, the synthesis and application of pyruvate as a platform compound is used as an example to introduce cell-free biosynthesis systems. We systematically summarize a proposed methodology workflow of cell-free biosynthesis systems, including pathway design, enzyme mining, enzyme modification, multienzyme assembly, and pathway optimization. Some new methods, such as machine learning, are also mentioned in this review.
Collapse
Affiliation(s)
- Shiming Tang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Daocheng Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Xuewen Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
10
|
Suliman M, Schmidtke MW, Greenberg ML. A myo-inositol bioassay utilizing an auxotrophic strain of S. cerevisiae. J Microbiol Methods 2021; 189:106300. [PMID: 34389363 DOI: 10.1016/j.mimet.2021.106300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/16/2022]
Abstract
Myo-inositol is a six‑carbon sugar that is essential for the growth of mammalian cells and must be obtained through either extracellular uptake or de novo biosynthesis. The physiological importance of myo-inositol stems from its incorporation into phosphoinositides and inositol phosphates, which serve a variety of signaling, regulatory, and structural roles in cells. To study myo-inositol metabolism and function, it is essential to have a reliable method for assaying myo-inositol levels. However, current approaches to assay myo-inositol levels are time-consuming, expensive, and often unreliable. This article describes a simple new myo-inositol bioassay that utilizes an auxotrophic strain of S. cerevisiae to measure myo-inositol concentration in solutions. The accuracy of this method was confirmed by comparing assay values to those obtained by tandem mass spectrometry (LC-MS/MS). It is easy to perform, inexpensive, does not require sophisticated equipment, and is specific for myo-inositol.
Collapse
Affiliation(s)
- Mahmoud Suliman
- Wayne State University, Department of Biological Sciences, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Michael W Schmidtke
- Wayne State University, Department of Biological Sciences, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Miriam L Greenberg
- Wayne State University, Department of Biological Sciences, 5047 Gullen Mall, Detroit, MI 48202, USA.
| |
Collapse
|
11
|
Li Y, Han P, Wang J, Shi T, You C. Production of myo-inositol: Recent advance and prospective. Biotechnol Appl Biochem 2021; 69:1101-1111. [PMID: 33977572 DOI: 10.1002/bab.2181] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
Myo-inositol and its derivatives have been extensively used in the pharmaceutics, cosmetics, and food and feed industries. In recent years, compared with traditional chemical acid hydrolysis, biological methods have been taken as viable and cost-effective ways to myo-inositol production from cheap raw materials. In this review, we provide a thorough overview of the development, progress, current status, and future direction of myo-inositol production (e.g., chemical acid hydrolysis, microbial fermentation, and in vitro enzymatic biocatalysis). The chemical acid hydrolysis of phytate suffers from serious phosphorous pollution and intricate product separation, resulting in myo-inositol production at a high cost. For microbial fermentation, creative strategies have been provided for the efficient myo-inositol biosynthesis by synergetic utilization of glucose and glycerol in Escherichia coli. In vitro cascade enzymatic biocatalysis is a multienzymatic transformation of various substrates to myo-inositol. Here, the different in vitro pathways design, the source of selected enzymes, and the catalytic condition optimization have been summarized and analyzed. Also, we discuss some important existing challenges and suggest several viewpoints. The development of in vitro enzymatic biosystems featuring low cost, high volumetric productivity, flexible compatibility, and great robustness could be one of the promising strategies for future myo-inositol industrial biomanufacturing.
Collapse
Affiliation(s)
- Yunjie Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pingping Han
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Juan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ting Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
12
|
Bi J, Jing X, Wu L, Zhou X, Gu J, Nie Y, Xu Y. Computational design of noncanonical amino acid-based thioether staples at N/C-terminal domains of multi-modular pullulanase for thermostabilization in enzyme catalysis. Comput Struct Biotechnol J 2021; 19:577-585. [PMID: 33510863 PMCID: PMC7811066 DOI: 10.1016/j.csbj.2020.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Enzyme thermostabilization is considered a critical and often obligatory step in biosynthesis, because thermostability is a significant property of enzymes that can be used to evaluate their feasibility for industrial applications. However, conventional strategies for thermostabilizing enzymes generally introduce non-covalent interactions and/or natural covalent bonds caused by natural amino acid substitutions, and the trade-off between the activity and stability of enzymes remains a challenge. Here, we developed a computationally guided strategy for constructing thioether staples by incorporating noncanonical amino acid (ncAA) into the more flexible N/C-terminal domains of the multi-modular pullulanase from Bacillus thermoleovorans (BtPul) to enhance its thermostability. First, potential thioether staples located in the N/C-terminal domains of BtPul were predicted using RosettaMatch. Next, eight variants involving stable thioether staples were precisely predicted using FoldX and Rosetta ddg_monomer. Six positive variants were obtained, of which T73(O2beY)-171C had a 157% longer half-life at 70 °C and an increase of 7.0 °C in T m, when compared with the wild-type (WT). T73(O2beY)-171C/T126F/A72R exhibited an even more improved thermostability, with a 211% increase in half-life at 70 °C and a 44% enhancement in enzyme activity compared with the WT, which was attributed to further optimization of the local interaction network. This work introduces and validates an efficient strategy for enhancing the thermostability and activity of multi-modular enzymes.
Collapse
Affiliation(s)
- Jiahua Bi
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoran Jing
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xia Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jie Gu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Zhang T, Yang J, Tian C, Ren C, Chen P, Men Y, Sun Y. High-Yield Biosynthesis of Glucosylglycerol through Coupling Phosphorolysis and Transglycosylation Reactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15249-15256. [PMID: 33306378 DOI: 10.1021/acs.jafc.0c04851] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glucosylglycerol is a powerful osmolyte that has attracted attention as a useful moisturizing ingredient in the cosmetic industry. This study demonstrates two artificially designed synthetic routes for manufacturing glucosylglycerol by combining phosphorolysis and transglycosylation reactions. The overall Gibbs energy change of the synthetic routes was negative, indicating that they are thermodynamically favorable. In vitro biosystems were constructed through combining the phosphorolysis ability of sucrose/maltose phosphorylase and the transglycosylation capacity of glucosylglycerol phosphorylases from different organisms. A near-stoichiometric conversion of sucrose and glycerol with a high product yield of 98% was achieved under optimal reaction conditions. The large-scale glucosylglycerol production of this biosystem was investigated under a high concentration of substrates (2 mol/L sucrose and 2.4 mol/L glycerol), and the titer reached 1.78 mol/L (452 g/L) with a productivity of 24.3 g/L/h. To the best of our knowledge, this value presented the highest glucosylglycerol production level until now, which indicated a great industrial application potential for glucosylglycerol manufacturing.
Collapse
Affiliation(s)
- Tong Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Chaoyu Tian
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Chenxi Ren
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Peng Chen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yuanxia Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
14
|
Chen H, Zhang YHPJ. Enzymatic regeneration and conservation of ATP: challenges and opportunities. Crit Rev Biotechnol 2020; 41:16-33. [PMID: 33012193 DOI: 10.1080/07388551.2020.1826403] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adenosine triphosphate (ATP), the universal energy currency of life, has a central role in numerous biochemical reactions with potential for the synthesis of numerous high-value products. ATP can be regenerated by three types of mechanisms: substrate level phosphorylation, oxidative phosphorylation, and photophosphorylation. Current ATP regeneration methods are mainly based on substrate level phosphorylation catalyzed by one enzyme, several cascade enzymes, or in vitro synthetic enzymatic pathways. Among them, polyphosphate kinases and acetate kinase, along with their respective phosphate donors, are the most popular approaches for in vitro ATP regeneration. For in vitro artificial pathways, either ATP-free or ATP-balancing strategies can be implemented via smart pathway design by choosing ATP-independent enzymes. Also, we discuss some remaining challenges and suggest perspectives, especially for industrial biomanufacturing. Development of ATP regeneration systems featuring low cost, high volumetric productivity, long lifetime, flexible compatibility, and great robustness could be one of the bottom-up strategies for cascade biocatalysis and in vitro synthetic biology.
Collapse
Affiliation(s)
- Hongge Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, Tianjin, China
| |
Collapse
|
15
|
Ramos-Figueroa JS, Aamudalapalli HB, Jagdhane RC, Smith J, Palmer DRJ. Preparation and Application of 13C-Labeled myo-Inositol to Identify New Catabolic Products in Inositol Metabolism in Lactobacillus casei. Biochemistry 2020; 59:2974-2985. [PMID: 32786400 DOI: 10.1021/acs.biochem.0c00539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
myo-Inositol (mI) is widely distributed in all domains of life and is important for several cellular functions, including bacterial survival. The enzymes responsible for the bacterial catabolism of mI, encoded in the iol operon, can vary from one organism to another, and these pathways have yet to be fully characterized. We previously identified a new scyllo-inositol dehydrogenase (sIDH) in the iol operon of Lactobacillus casei that can oxidize mI in addition to the natural substrate, scyllo-inositol, but the product of mI oxidation was not determined. Here we report the identification of these metabolites by monitoring the reaction with 13C nuclear magnetic resonance. We prepared all six singly 13C-labeled mI isotopomers through a biocatalytic approach and used these labeled inositols as substrates for sIDH. The use of all six singly labeled mI isotopomers allowed for metabolite characterization without isolation steps. sIDH oxidation of mI produces 1l-5-myo-inosose preferentially, but also two minor products, 1d-chiro-inosose and 1l-chiro-inosose. Together with previous crystal structure data for sIDH, we were able to rationalize the observed oxidation preference. Our relatively simple procedure for the preparation of isotopically labeled mI standards can have broad applications for the study of mI biotransformations.
Collapse
Affiliation(s)
| | - Hari Babu Aamudalapalli
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Rajendra C Jagdhane
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Joseph Smith
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
16
|
Jarosz S, Sokołowska P, Szyszka Ł. Synthesis of fine chemicals with high added value from sucrose: Towards sucrose-based macrocycles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Petroll K, Care A, Bergquist PL, Sunna A. A novel framework for the cell-free enzymatic production of glucaric acid. Metab Eng 2020; 57:162-173. [DOI: 10.1016/j.ymben.2019.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 10/23/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022]
|
18
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
19
|
Su HH, Guo ZW, Wu XL, Xu P, Li N, Zong MH, Lou WY. Efficient Bioconversion of Sucrose to High-Value-Added Glucaric Acid by In Vitro Metabolic Engineering. CHEMSUSCHEM 2019; 12:2278-2285. [PMID: 30791217 DOI: 10.1002/cssc.201900185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/20/2019] [Indexed: 05/05/2023]
Abstract
Glucaric acid (GA) is a major value-added chemicals feedstock and additive, especially in the food, cosmetics, and pharmaceutical industries. The increasing demand for GA is driving the search for a more efficient and less costly production pathway. In this study, a new in vitro multi-enzyme cascade system was developed, which converts sucrose efficiently to GA in a single vessel. The in vitro system, which does not require adenosine triphosphate (ATP) or nicotinamide adenine dinucleotide (NAD+ ) supplementation, contains seven enzymes. All enzymes were chosen from the BRENDA and NCBI databases and were expressed efficiently in Escherichia coli BL21(DE3). All seven enzymes were combined in an in vitro cascade system, and the reaction conditions were optimized. Under the optimized conditions, the in vitro seven-enzyme cascade system converted 50 mm sucrose to 34.8 mm GA with high efficiency (75 % of the theoretical yield). This system represents an alternative pathway for more efficient and less costly production of GA, which could be adapted for the synthesis of other value-added chemicals.
Collapse
Affiliation(s)
- Hui-Hui Su
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Ze-Wang Guo
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Xiao-Ling Wu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Pei Xu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Ning Li
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| |
Collapse
|
20
|
Biosynthesis of Raffinose and Stachyose from Sucrose via an In Vitro Multienzyme System. Appl Environ Microbiol 2019; 85:AEM.02306-18. [PMID: 30389762 DOI: 10.1128/aem.02306-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/28/2018] [Indexed: 01/09/2023] Open
Abstract
Herein, we present a biocatalytic method to produce raffinose and stachyose using sucrose as the substrate. An in vitro multienzyme system was developed using five enzymes, namely, sucrose synthase (SUS), UDP-glucose 4-epimerase (GalE), galactinol synthase (GS), raffinose synthase (RS), and stachyose synthase (STS), and two intermedia, namely, UDP and inositol, which can be recycled. This reaction system produced 11.1 mM raffinose using purified enzymes under optimal reaction conditions and substrate concentrations. Thereafter, a stepwise cascade reaction strategy was employed to circumvent the instability of RS and STS in this system, and a 4.2-fold increase in raffinose production was observed. The enzymatic cascade reactions were then conducted using cell extracts to avoid the need for enzyme purification and supplementation with UDP. Such modification further increased raffinose production to 86.6 mM and enabled the synthesis of 61.1 mM stachyose. The UDP turnover number reached 337. Finally, inositol in the reaction system was recycled five times, and 255.8 mM raffinose (128.9 g/liter) was obtained.IMPORTANCE Soybean oligosaccharides (SBOS) have elicited considerable attention because of their potential applications in the pharmaceutical, cosmetics, and food industries. This study demonstrates an alternative method to produce raffinose and stachyose, which are the major bioactive components of SBOS, from sucrose via an in vitro enzyme system. High concentrations of galactinol, raffinose, and stachyose were synthesized with the aid of a stepwise cascade reaction process, which can successfully address the issue of mismatched enzyme characteristics of an in vitro metabolic engineering platform. The biocatalytic approach presented in this work may enable the synthesis of other valuable galactosyl oligosaccharides, such as verbascose and higher homologs, which are difficult to obtain through plant extraction.
Collapse
|
21
|
Gandomkar S, Żądło‐Dobrowolska A, Kroutil W. Extending Designed Linear Biocatalytic Cascades for Organic Synthesis. ChemCatChem 2019; 11:225-243. [PMID: 33520008 PMCID: PMC7814890 DOI: 10.1002/cctc.201801063] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 02/05/2023]
Abstract
Artificial cascade reactions involving biocatalysts have demonstrated a tremendous potential during the recent years. This review just focuses on selected examples of the last year and putting them into context to a previously published suggestion for classification. Subdividing the cascades according to the number of catalysts in the linear sequence, and classifying whether the steps are performed simultaneous or in a sequential fashion as well as whether the reaction sequence is performed in vitro or in vivo allows to organise the concepts. The last year showed, that combinations of in vivo as well as in vitro are possible. Incompatible reaction steps may be run in a sequential fashion or by compartmentalisation of the incompatible steps either by using special reactors (membrane), polymersomes or flow techniques.
Collapse
Affiliation(s)
- Somayyeh Gandomkar
- Institute of ChemistryUniversity of GrazHeinrichstrasse 28Graz8010Austria
| | | | - Wolfgang Kroutil
- Institute of ChemistryUniversity of GrazHeinrichstrasse 28Graz8010Austria
| |
Collapse
|
22
|
Sun S, Wei X, You C. The Construction of an In Vitro Synthetic Enzymatic Biosystem that Facilitates Laminaribiose Biosynthesis from Maltodextrin and Glucose. Biotechnol J 2019; 14:e1800493. [PMID: 30548823 DOI: 10.1002/biot.201800493] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/18/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Shangshang Sun
- University of Chinese Academy of Sciences19A Yuquan Road, Shijingshan DistrictBeijing100049P.R. China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th Avenue, Tianjin Airport Economic AreaTianjin300308P.R. China
| | - Xinlei Wei
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th Avenue, Tianjin Airport Economic AreaTianjin300308P.R. China
| | - Chun You
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th Avenue, Tianjin Airport Economic AreaTianjin300308P.R. China
| |
Collapse
|
23
|
Petroll K, Kopp D, Care A, Bergquist PL, Sunna A. Tools and strategies for constructing cell-free enzyme pathways. Biotechnol Adv 2018; 37:91-108. [PMID: 30521853 DOI: 10.1016/j.biotechadv.2018.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/22/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
Single enzyme systems or engineered microbial hosts have been used for decades but the notion of assembling multiple enzymes into cell-free synthetic pathways is a relatively new development. The extensive possibilities that stem from this synthetic concept makes it a fast growing and potentially high impact field for biomanufacturing fine and platform chemicals, pharmaceuticals and biofuels. However, the translation of individual single enzymatic reactions into cell-free multi-enzyme pathways is not trivial. In reality, the kinetics of an enzyme pathway can be very inadequate and the production of multiple enzymes can impose a great burden on the economics of the process. We examine here strategies for designing synthetic pathways and draw attention to the requirements of substrates, enzymes and cofactor regeneration systems for improving the effectiveness and sustainability of cell-free biocatalysis. In addition, we comment on methods for the immobilisation of members of a multi-enzyme pathway to enhance the viability of the system. Finally, we focus on the recent development of integrative tools such as in silico pathway modelling and high throughput flux analysis with the aim of reinforcing their indispensable role in the future of cell-free biocatalytic pathways for biomanufacturing.
Collapse
Affiliation(s)
- Kerstin Petroll
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia
| | - Peter L Bergquist
- Department of Molecular Sciences, Macquarie University, Sydney, Australia; Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, Australia.
| |
Collapse
|
24
|
Cheng K, Zheng W, Chen H, Zhang YHPJ. Upgrade of wood sugar d-xylose to a value-added nutraceutical by in vitro metabolic engineering. Metab Eng 2018; 52:1-8. [PMID: 30389613 DOI: 10.1016/j.ymben.2018.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/09/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022]
Abstract
The upgrade of D-xylose, the most abundant pentose, to value-added biochemicals is economically important to next-generation biorefineries. myo-Inositol, as vitamin B8, has a six-carbon carbon-carbon ring. Here we designed an in vitro artificial NAD(P)-free 12-enzyme pathway that can effectively convert the five-carbon xylose to inositol involving xylose phosphorylation, carbon-carbon (C-C) rearrangement, C-C bond circulation, and dephosphorylation. The reaction conditions catalyzed by all thermostable enzymes from hyperthermophilic microorganisms Thermus thermophiles, Thermotoga maritima, and Archaeoglobus fulgidus were optimized in reaction temperature, buffer type and concentration, enzyme composition, Mg2+ concentration, and fed-batch addition of ATP. The 11-enzyme cocktail, whereas a fructose 1,6-bisphosphatase from T. maritima has another function of inositol monophosphatase, converted 20 mM xylose to 16.1 mM inositol with a conversion efficiency of 96.6% at 70 °C. Polyphosphate was found to replace ATP for xylulose phosphorylation due to broad substrate promiscuity of the T. maritima xylulokinase. The Tris-HCl buffer effectively mitigated the Maillard reaction at 70 °C or higher temperature. The co-production of value-added biochemicals, such as inositol, from wood sugar could greatly improve economics of new biorefineries, similar to oil refineries that make value-added plastic precursors to subsidize gasoline/diesel production.
Collapse
Affiliation(s)
- Kun Cheng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wenming Zheng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China; College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Hongge Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China; College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China.
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.
| |
Collapse
|
25
|
Meng D, Wei X, Zhang YHPJ, Zhu Z, You C, Ma Y. Stoichiometric Conversion of Cellulosic Biomass by in Vitro Synthetic Enzymatic Biosystems for Biomanufacturing. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02473] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongdong Meng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Yi-Heng P. Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| |
Collapse
|
26
|
Shi T, Han P, You C, Zhang YHPJ. An in vitro synthetic biology platform for emerging industrial biomanufacturing: Bottom-up pathway design. Synth Syst Biotechnol 2018; 3:186-195. [PMID: 30345404 PMCID: PMC6190512 DOI: 10.1016/j.synbio.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
Although most in vitro (cell-free) synthetic biology projects are usually used for the purposes of fundamental research or the formation of high-value products, in vitro synthetic biology platform, which can implement complicated biochemical reactions by the in vitro assembly of numerous enzymes and coenzymes, has been proposed for low-cost biomanufacturing of bioenergy, food, biochemicals, and nutraceuticals. In addition to the most important advantage-high product yield, in vitro synthetic biology platform features several other biomanufacturing advantages, such as fast reaction rate, easy product separation, open process control, broad reaction condition, tolerance to toxic substrates or products, and so on. In this article, we present the basic bottom-up design principles of in vitro synthetic pathway from basic building blocks-BioBricks (thermoenzymes and/or immobilized enzymes) to building modules (e.g., enzyme complexes or multiple enzymes as a module) with specific functions. With development in thermostable building blocks-BioBricks and modules, the in vitro synthetic biology platform would open a new biomanufacturing age for the cost-competitive production of biocommodities.
Collapse
Affiliation(s)
| | | | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yi-Heng P. Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| |
Collapse
|
27
|
Coevolution of both Thermostability and Activity of Polyphosphate Glucokinase from Thermobifida fusca YX. Appl Environ Microbiol 2018; 84:AEM.01224-18. [PMID: 29884753 DOI: 10.1128/aem.01224-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/31/2018] [Indexed: 01/23/2023] Open
Abstract
Thermostability and specific activity of enzymes are two of the most important properties for industrial biocatalysts. Here, we developed a petri dish-based double-layer high-throughput screening (HTS) strategy for rapid identification of desired mutants of polyphosphate glucokinase (PPGK) from a thermophilic actinobacterium, Thermobifida fusca YX, with both enhanced thermostability and activity. Escherichia coli colonies representing a PPGK mutant library were grown on the first-layer Phytagel-based plates, which can remain solid for 1 h, even at heat treatment temperatures of more than 100°C. The second layer that was poured on the first layer contained agarose, substrates, glucose 6-phosphate dehydrogenase (G6PDH), the redox dye tetranitroblue tetrazolium (TNBT), and phenazine methosulfate. G6PDH was able to oxidize the product from the PPGK-catalyzed reaction and generate NADH, which can be easily examined by a TNBT-based colorimetric assay. The best mutant obtained after four rounds of directed evolution had a 7,200-fold longer half-life at 55°C, 19.8°C higher midpoint of unfolding temperature (Tm ), and a nearly 3-fold enhancement in specific activities compared to those of the wild-type PPGK. The best mutant was used to produce 9.98 g/liter myo-inositol from 10 g/liter glucose, with a theoretical yield of 99.8%, along with two other hyperthermophilic enzymes at 70°C. This PPGK mutant featuring both great thermostability and high activity would be useful for ATP-free production of glucose 6-phosphate or its derived products.IMPORTANCE Polyphosphate glucokinase (PPGK) is an enzyme that transfers a terminal phosphate group from polyphosphate to glucose, producing glucose 6-phosphate. A petri dish-based double-layer high-throughput screening strategy was developed by using ultrathermostable Phytagel as the first layer instead of agar or agarose, followed by a redox dye-based assay for rapid identification of ultrathermostable PPGK mutants. The best mutant featuring both great thermostability and high activity could produce glucose 6-phosphate from glucose and polyphosphate without in vitro ATP regeneration.
Collapse
|
28
|
de Souza JM, Brocksom TJ, McQuade DT, de Oliveira KT. Continuous Endoperoxidation of Conjugated Dienes and Subsequent Rearrangements Leading to C-H Oxidized Synthons. J Org Chem 2018; 83:7574-7585. [PMID: 29860826 DOI: 10.1021/acs.joc.8b01307] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the continuous flow photooxidation of several conjugated dienes and subsequent rearrangement using a practical and safe continuous-flow homemade engineered setup. End-to-end approaches involving endoperoxidation, Kornblum-DeLaMare rearrangement, and additional rearrangements are comprehensively detailed with optimization, scope, and scale-up to obtain useful hydroxyenones, furans, and 1,4-dicarbonyl building blocks.
Collapse
Affiliation(s)
- Juliana M de Souza
- Departamento de Química , Universidade Federal de São Carlos , São Carlos , SP 13565-905 , Brazil
| | - Timothy J Brocksom
- Departamento de Química , Universidade Federal de São Carlos , São Carlos , SP 13565-905 , Brazil.,Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , Santo André , SP 09210-580 , Brazil
| | - D Tyler McQuade
- Department of Chemical and Life Science Engineering , Virginia Commonwealth University , Richmond , Virginia 23284-3068 , United States
| | - Kleber T de Oliveira
- Departamento de Química , Universidade Federal de São Carlos , São Carlos , SP 13565-905 , Brazil
| |
Collapse
|