1
|
Abhyankar KA, Somerville RJ, Dyson PJ. Carboxyl-Functionalized Alkylimidazolium Salts for Thermomorphic Acid-Catalyzed Polysaccharide Hydrolysis in Water. CHEMSUSCHEM 2025; 18:e202402214. [PMID: 39652630 PMCID: PMC11997908 DOI: 10.1002/cssc.202402214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
We report the use of carboxyl-functionalised alkylimidazolium salts as thermomorphic acid catalysts for the hydrolysis of cellulose and starch in water, free from organic solvents and auxiliary substances. The imidazolium salts are insoluble in water at room temperature and dissolve to form homogeneous solutions upon heating. Following catalysis at elevated temperatures the solution is cooled and the imidazolium salt precipitates from the aqueous layer to afford an aqueous glucose solution. This thermomorphic, temperature-switchable, process allows facile separation of the product and reuse of the catalyst while ensuring catalysis commensurate with homogeneous systems.
Collapse
Affiliation(s)
- Kedar A. Abhyankar
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Rosie J. Somerville
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Paul J. Dyson
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
2
|
Tong Z, Zeng S, Li X, Wang W, Xia Q, Yu H. Glycosidic bond protection of cellulose during solvent dissolution by coordination interaction competition strategy. Carbohydr Polym 2024; 328:121665. [PMID: 38220316 DOI: 10.1016/j.carbpol.2023.121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 12/03/2023] [Indexed: 01/16/2024]
Abstract
Exploiting new solvents on efficiently dissolving cellulose is imperative to promote the utilization of cellulosic resources. The process of cellulose dissolution typically necessitates extreme conditions, such as high-temperature treatment, utilization of potent acidic or basic solvents, or the catalytic action of Lewis acids. As a result, the structure of the cellulose is invariably compromised, subsequently obstructing the creation of high-performance materials. In this study, we address this challenge through a simple process, introducing polyethylene glycol (PEG) as glycosidic bond protecting agent, to preserve the polymerization degree of cellulose during its room-temperature dissolution in ZnCl2-phosporic acid eutectic solvent. The PEG units preferentially coordinate with Zn2+ to weaken the hydrolysis of glycosidic bond of cellulose through ether bond competition. The polymerization degree of regenerated cellulose is thus greatly improved, reaching up to seven times that of unprotected cellulose. Overall, this study offers an easy and cost-effective approach to develop cellulose solvents and provides a significant drive towards the fabrication of practical materials through cellulose dissolution.
Collapse
Affiliation(s)
- Zhihan Tong
- Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Suqing Zeng
- Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Xiaona Li
- Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Wen Wang
- Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Qinqin Xia
- Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| | - Haipeng Yu
- Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
3
|
Yamaguchi D. Cellulose hydrolysis reactor incorporating stirring apparatus for use with carbon-based solid acid catalyst. Heliyon 2023; 9:e22723. [PMID: 38125460 PMCID: PMC10730584 DOI: 10.1016/j.heliyon.2023.e22723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
A highly efficient reactor with a stirring device was specially designed with the intent of performing the hydrolysis of pure crystalline cellulose using a carbon-based solid acid catalyst. This catalyst comprised an amorphous carbon-based material bearing -SO3H, -COOH and -OH groups. The stirring apparatus had seven blades coated with polytetrafluoroethylene and arranged axially at regular intervals with a 60° offset. This design proved highly effective, providing double the glucose yield compared with conventional stirring systems. The basic properties of this novel reactor were investigated and analyzed and are discussed herein.
Collapse
Affiliation(s)
- Daizo Yamaguchi
- National Institute of Technology, Tsuyama College, 624-1, Numa, Tsuyama-City, Okayama 708-8509, Japan
| |
Collapse
|
4
|
Yamaguchi D. Powder properties of carbon-based solid acid catalyst for designing cellulose hydrolysis reactor with stirring apparatus. Heliyon 2023; 9:e21805. [PMID: 38034806 PMCID: PMC10682613 DOI: 10.1016/j.heliyon.2023.e21805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023] Open
Abstract
The powder properties of a carbon-based solid acid catalyst, an amorphous carbon material bearing SO3H, COOH and OH groups, were investigated for the hydrolysis of cellulose. The Carr flowability and floodability indices, the angle of internal friction (adherence), and the particle size distribution and shape for the powder catalyst were determined. The need to develop a special reactor with a stirring apparatus for the hydrolysis of cellulose was determined based on the Carr flowability index. Insight into the interaction or adherence between the catalyst and crystalline cellulose during the hydrolysis process was gained by measuring the internal friction angle. The optimum moisture content in the catalyst to achieve the maximum adherence was investigated.
Collapse
Affiliation(s)
- Daizo Yamaguchi
- National Institute of Technology, Tsuyama College, 624-1, Numa, Tsuyama-City, Okayama 708-8509, Japan
| |
Collapse
|
5
|
Lorente A, Huertas-Alonso AJ, Salgado-Ramos M, González-Serrano DJ, Sánchez-Verdú MP, Cabañas B, Hadidi M, Moreno A. Microwave radiation-assisted synthesis of levulinic acid from microcrystalline cellulose: Application to a melon rind residue. Int J Biol Macromol 2023; 237:124149. [PMID: 36965554 DOI: 10.1016/j.ijbiomac.2023.124149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
The circular economy considers waste to be a new raw material for the development of value-added products. In this context, agroindustrial lignocellulosic waste represents an outstanding source of new materials and platform chemicals, such as levulinic acid (LA). Herein we study the microwave (MW)-assisted acidic conversion of microcrystalline cellulose (MCC) into LA. The influence of acidic catalysts, inorganic salt addition and ball-milling pre-treatment of MCC on LA yield was assessed. Depolymerization and disruption of cellulose was monitored by FTIR, TGA and SEM, whereas the products formed were analyzed by HPLC and NMR spectroscopy. The parameters that afforded the highest LA yield (48 %, 100 % selectivity) were: ball-milling pre-treatment of MCC for 16 min at 600 rpm, followed by MW-assisted thermochemical treatment for 20 min at 190 °C, aqueous p-toluenesulfonic acid (p-TSA) 0.25 M as catalyst and saturation with KBr. These optimal conditions were further applied to a lignocellulosic feedstock, namely melon rind, to afford a 51 % yield of LA. These results corroborate the suitability of this method to obtain LA from agroindustrial wastes, in line with a circular economy-based approach.
Collapse
Affiliation(s)
- Almudena Lorente
- Universidad de Castilla-la Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela n°10, 13005 Ciudad Real, Spain
| | - Alberto J Huertas-Alonso
- Universidad de Castilla-la Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela n°10, 13005 Ciudad Real, Spain; Universidad de Castilla La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, Ciudad Real 13071, Spain.
| | - Manuel Salgado-Ramos
- Universidad de Castilla-la Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela n°10, 13005 Ciudad Real, Spain
| | - Diego J González-Serrano
- Universidad de Castilla-la Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela n°10, 13005 Ciudad Real, Spain
| | - M Prado Sánchez-Verdú
- Universidad de Castilla-la Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela n°10, 13005 Ciudad Real, Spain
| | - Beatriz Cabañas
- Universidad de Castilla La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, Ciudad Real 13071, Spain
| | - Milad Hadidi
- Universidad de Castilla-la Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela n°10, 13005 Ciudad Real, Spain
| | - Andrés Moreno
- Universidad de Castilla-la Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela n°10, 13005 Ciudad Real, Spain.
| |
Collapse
|
6
|
Zhou S, Zhang M, Zhu L, Zhao X, Chen J, Chen W, Chang C. Hydrolysis of lignocellulose to succinic acid: a review of treatment methods and succinic acid applications. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:1. [PMID: 36593503 PMCID: PMC9806916 DOI: 10.1186/s13068-022-02244-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
Succinic acid (SA) is an intermediate product of the tricarboxylic acid cycle (TCA) and is one of the most significant platform chemicals for the production of various derivatives with high added value. Due to the depletion of fossil raw materials and the demand for eco-friendly energy sources, SA biosynthesis from renewable energy sources is gaining attention for its environmental friendliness. This review comprehensively analyzes strategies for the bioconversion of lignocellulose to SA based on the lignocellulose pretreatment processes and cellulose hydrolysis and fermentation principles and highlights the research progress on acid production and SA utilization under different microbial culture conditions. In addition, the fermentation efficiency of different microbial strains for the production of SA and the main challenges were analyzed. The future application directions of SA derivatives were pointed out. It is expected that this research will provide a reference for the optimization of SA production from lignocellulose.
Collapse
Affiliation(s)
- Shuzhen Zhou
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Miaomiao Zhang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Linying Zhu
- College of Management Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoling Zhao
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China.
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China.
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China.
| | - Junying Chen
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China
| | - Wei Chen
- Henan Key Laboratory of Green Manufacturing of Biobased Chemicals, Puyang, China
| | - Chun Chang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China
| |
Collapse
|
7
|
Liu X, Luo H, Yu D, Pei Z, Zhang Z, Li C. The development of novel ionic liquid-based solid catalysts and the conversion of 5-hydroxymethylfurfural from lignocellulosic biomass. Front Chem 2022; 10:1084089. [PMID: 36531313 PMCID: PMC9755484 DOI: 10.3389/fchem.2022.1084089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 05/31/2025] Open
Abstract
Ionic liquids have attracted attention due to their excellent properties and potential for use as co-solvents, solvents, co-catalysts, catalysts, and as other chemical reagents. This mini-review focuses on the properties and structures of ionic liquids, the pretreatment of lignocellulosic biomass, and the development of novel ionic liquid-based solid catalysts for cellulose and hemicellulose derived HMF production.
Collapse
Affiliation(s)
| | | | | | | | | | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insects of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
8
|
Wang W, Yang D, Mou L, Wu M, Wang Y, Cai W, Tan F. Preparation of the porous carbon-based solid acid from starch for efficient degradation of chitosan to D-glucosamine. Int J Biol Macromol 2022; 209:1629-1637. [PMID: 35447270 DOI: 10.1016/j.ijbiomac.2022.04.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
Effective degradation of chitosan to D-glucosamine is considered to make a great contribution for the development of the medical industry. To address this issue, a porous carbon-based solid acid catalyst (PCSA) functionalized with -OH, -COOH and -SO3H groups was successfully prepared. Typically, the physicochemical properties of PCSA were deeply determined by a series of characterization technique including FT-IR, TGA, RM, NH3-TPD, SEM and Element Analysis. Moreover, the catalytic performances of PCSA towards to D-glucosamine production from chitosan were evaluated. In particular, the effects of catalyst acid density, ratio of acidic groups, chitosan concentration, reaction temperature, reaction time and catalyst dosage on the yield of D-glucosamine were investigated in detail. Interestingly, the experimental results indicated that a yield of D-glucosamine as high as 90.5% was achieved, and no obvious deactivation occurred even after six consecutive cycles. In light of the advantages of superior activity/recyclability and low cost, the starch-derived solid acid developed in this work might possess the broad industrial application prospects.
Collapse
Affiliation(s)
- Wenfeng Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Di Yang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Lu Mou
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Wu
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yuanhao Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Weijie Cai
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengzhi Tan
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
9
|
Guo H, Higashiguchi R, Abe Y, Smith RL. Effective conversion of fructose to 5-ethoxymethylfurfural with brønsted acid site (S/Cl)-functional carbon catalysts. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Masteri-Farahani M, Shahsavarifar S. Chemical functionalization of chitosan biopolymer and chitosan-magnetite nanocomposite with sulfonic acid for acid-catalyzed reactions. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Yang Q, Pan X. Introducing hydroxyl groups as cellulose-binding sites into polymeric solid acids to improve their catalytic performance in hydrolyzing cellulose. Carbohydr Polym 2021; 261:117895. [PMID: 33766380 DOI: 10.1016/j.carbpol.2021.117895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 10/22/2022]
Abstract
Effective hydrolysis of cellulose to glucose is a crucial step to produce fuels and chemicals from lignocellulosic biomass. Solid acids are promising alternatives of cellulases and homogenous acids for hydrolyzing cellulose. In this study, porous polymeric solid acids bearing hydroxyl and sulfonic acid groups were fabricated for cellulose hydrolysis in water through the low-cost Friedel-Crafts "knitting" polymerization of hydroxyl-containing aromatic monomers followed by sulfonation. The synthesized bifunctional solid acids could effectively hydrolyze microcrystalline cellulose (Avicel) to glucose by as high as 93 % at 120 °C within 48 h and ball-milled Avicel by 98 % at 120 °C in 24 h. The evidence from this study indicated that the outstanding catalytic performance of the solid acids was attributed to the porous structure (large surface area) and the presence of the hydroxyl (cellulose-binding group) in the solid acids.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, United States; Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI, 49008, United States
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, United States.
| |
Collapse
|
12
|
Zhang Z, Tompsett GA, Granados-Focil S, Lambert CR, Timko MT. Rational design of solid-acid catalysts for cellulose hydrolysis using colloidal theory. Phys Chem Chem Phys 2021; 23:10236-10243. [PMID: 33884399 DOI: 10.1039/d1cp00198a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Solid-acid catalysts functionalized with catalytic groups have attracted intense interest for converting cellulose into soluble products. However, design of solid-7 acid catalysts has been guided by molecular level interactions and the actual mechanism of cellulose-solid-acid catalyst particles adsorption remains unknown. Here, colloidal stability theory, DLVO, is used to rationalize the design of solid acids for targeted cellulose adsorption. In nearly all cases, an energy barrier, arising from electrostatic repulsion and much larger than the energy associated with thermal fluctuations, prevents close contact between the solid acid and cellulose. Polymer-based solid-acid substrates such as polystyrene and Nafion are especially ineffective as their interaction with cellulose is dominated by the repulsive electrostatic force. Carbon and metal oxides have potential to be effective for cellulose-solid-acid interaction as their attractive van der Waals interaction can offset the repulsive electrostatic interaction. The effects of reactor temperature and shear force were evaluated, with the finding that reactor temperature can minimize the catalyst-cellulose interaction barrier, promoting coagulation, but that the shear force in a typical laboratory reactor cannot. We have evaluated strategies for enhancing cellulose-catalyst interaction and conclude that raising reaction temperature or synthesizing acid/base bifunctional catalysts can effectively diminish electrostatic repulsion and promote cellulose-catalyst coagulation. The analysis presented here establishes a rational method for designing solid acid catalysts for cellulose hydrolysis.
Collapse
Affiliation(s)
- Ziyang Zhang
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| | - Geoffrey A Tompsett
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| | | | - Christopher R Lambert
- Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| | - Michael T Timko
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| |
Collapse
|
13
|
Wei N, Xu D, Hao B, Guo S, Guo Y, Wang S. Chemical reactions of organic compounds in supercritical water gasification and oxidation. WATER RESEARCH 2021; 190:116634. [PMID: 33290907 DOI: 10.1016/j.watres.2020.116634] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Supercritical water is a benign reaction medium to convert organic matters through supercritical water gasification and supercritical water oxidation into flammable gaseous and harmless substances, respectively. This work systematically summarizes main chemical reactions of some typical organic compounds in supercritical water with or without oxidant for the first time. These compounds include hydrocarbons, proteins, cellulose, lignins, phenols, alcohols, aldehydes, ketones, organic acids, and some N-, Cl-, Br-, F-, S- and P-containing organic matters. Their main conversion pathways, reaction processes, intermediate products, final products and influence factors are analyzed deeply. This information helps to understand and predict corresponding reaction mechanisms and to better achieve objective products in supercritical water gasification and supercritical water oxidation.
Collapse
Affiliation(s)
- Ning Wei
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Donghai Xu
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China.
| | - Botian Hao
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Shuwei Guo
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Yang Guo
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Shuzhong Wang
- Key Laboratory of Thermo-Fluid Science & Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| |
Collapse
|
14
|
Hu J, Wang Q, Wang W, Xu Z, Fu J, Xu Q, Wang Z, Yuan Z, Shen F, Qi W. Synthesis of a Stable Solid Acid Catalyst from Chloromethyl Polystyrene through a Simple Sulfonation for Pretreatment of Lignocellulose in Aqueous Solution. CHEMSUSCHEM 2021; 14:979-989. [PMID: 33274593 DOI: 10.1002/cssc.202002599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Indexed: 06/12/2023]
Abstract
A stable solid acid catalyst, SCPR140-1, was synthesized from chloromethyl polystyrene resin (CPR) and used for catalytic pretreatment of corncob in aqueous solution. Under the optimized pretreatment condition, 73.07 % of xylose was directly obtained, and the enzymatic digestibility of treated residue reached up to 94.65 %, indicating that the SCPR140-1 had high selectivity for xylose production and effectively deconstructed the structure of corncob. The -CH2 Cl group of CPR was substituted by -SO3 H through the sulfonation, and the -SO3 H was stably bound on the catalyst during the pretreatment process. Compared with other similar reports, the SCPR140-1 was not only synthesized through a simpler process but also had a more stable catalytic activity during multiple recycling runs.
Collapse
Affiliation(s)
- Jinke Hu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
- Institute of Ecological and Environmental Sciences, Environment College, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Qiong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| | - Zihan Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Juan Fu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| | - Qingli Xu
- East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| | - Zhenhong Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Environment College, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Wei Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| |
Collapse
|
15
|
Pham ST, Nguyen MB, Le GH, Nguyen TD, Pham CD, Le TS, Vu TA. Influence of Brønsted and Lewis acidity of the modified Al-MCM-41 solid acid on cellulose conversion and 5-hydroxylmethylfurfuran selectivity. CHEMOSPHERE 2021; 265:129062. [PMID: 33250232 DOI: 10.1016/j.chemosphere.2020.129062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The modified Al-MCM-41 solid acids with turning Si/Al molar ratio were successfully fabricated through a hydrothermal route and utilized as a suitable catalyst in the cellulose conversion into 5-hydroxylmethylfurfural (5-HMF). The crystal structure, composition, morphologies and porosity of as-synthesized acids were characterized by XRD, FT-IR, N2 adsorption-desorption, TEM and EDS. The 27Al MAS NMR and 29Si-MAS NMR results revealed the existence of both Al framework and Al extra framework. Besides, the existence of medium-weak and strong acid sites, according to Brønsted and Lewis acidity, in Al-MCM-41 acids was confirmed by NH3-TPD and FTIR-pyridine adsorption. The 30Al-MCM-41 solid acid (Si/Al molar ratio = 30) exhibited excellent activity with the highest 5-HMF yield of 40.56% compared to other samples. We also discovered that 5-HMF production, as well as cellulose conversion, strongly depended on the total acid, strong/medium-weak acid ratio, as well as Brønsted/Lewis acid ratio. Therefore, these parameters have been considered as essential factors for the design of solid acid for 5-HMF production.
Collapse
Affiliation(s)
- Son Tung Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam; Hanoi University of Science (HUS), Vietnam National University (VNU), 334 Nguyen Trai, Hanoi, Viet Nam
| | - Manh B Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam; Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Road, Ha Noi City, Viet Nam.
| | - Giang H Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam
| | - Trinh Duy Nguyen
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@ GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Chinh D Pham
- Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Road, Ha Noi City, Viet Nam
| | - Thanh Son Le
- Hanoi University of Science (HUS), Vietnam National University (VNU), 334 Nguyen Trai, Hanoi, Viet Nam
| | - Tuan A Vu
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology. 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam.
| |
Collapse
|
16
|
Zhu S, Sun Y, Jia Y, Zhang W, Wang Y, Li L, Zhang J, Wang J. Acid site-regulated solid acids for polysaccharide Se-functionalization: Structural explanations for high reactivity. Carbohydr Polym 2021; 251:117028. [PMID: 33142587 DOI: 10.1016/j.carbpol.2020.117028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022]
Abstract
In this work, the application of acid site-regulated solid acids in Se-functionalization of polysaccharide is evaluated for the first time, which aimed to further improve reaction efficiency and realize environmentally friendly chemistry. A series prepared MxOy/HZSM-5 catalysts possesses standard crystal structure, large specific surface area, pore volume, aperture as well as strong acidity. An efficient substitution of seleno-group on polysaccharide backbone is promoted by regulating the acid site of solid acids (Se content up to 15,170.49 μg/g) compared with the conventional Se-functionalization method (1703 μg/g). Strong Lewis and Brønsted acid sites lead to the driving forces toward low molecular mass polysaccharide fragments, but the deletion of main monosaccharide components is not observed. In summary, it is proved that solid acid can be employed in acid-dependent polysaccharide Se-functionalization which will promote useful in expanding our understanding of how to further develop polysaccharide resources.
Collapse
Affiliation(s)
- Shengyong Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yaxu Sun
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yue Jia
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Wenyu Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yuxin Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Li Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Junlong Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
17
|
Zeng M, Pan X. Insights into solid acid catalysts for efficient cellulose hydrolysis to glucose: progress, challenges, and future opportunities. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1819936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Meijun Zeng
- Department of Biological System Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xuejun Pan
- Department of Biological System Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Qu G, Cui H, Zhu Y, Yang L, Li S. Substantial Improvement of the Dielectric Strength of Cellulose-Liquid Composites: Effects of Traps at the Nanoscale Interface. J Phys Chem Lett 2020; 11:1881-1889. [PMID: 32058721 DOI: 10.1021/acs.jpclett.0c00235] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dielectric strength of cellulose-liquid composites is always about several times higher than that of the cellulose paper and insulating liquids. However, this experimental phenomenon has not yet been demonstrated theoretically. Herein, the spectra characterization, molecular simulation, and wave function analysis method provide a new insight that the role of nanoscale interfacial adsorption of cellulose-liquid is exclusive for composites affecting the charge separation and producing the deep-level traps to seriously hinder electromigration under an electric field, which is responsible for the difference in dielectric strength. Meanwhile, the π conjugation and σ-π hyperconjugation effects enhance the electrical stability of aromatic hydrocarbon insulating liquids. In conclusion, interfacial trap theory can be used to explain the correlation of dielectric strength between cellulose-liquid composites and cellulose paper or dielectric liquids. It can be expected that materials with high dielectric strength can be manufactured according to the fundamental study of interfacial trap theory.
Collapse
Affiliation(s)
- Guanghao Qu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huize Cui
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yuanwei Zhu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Liuqing Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shengtao Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
19
|
Liu Z, Liu Z. Comparison of hydrochar- and pyrochar-based solid acid catalysts from cornstalk: Physiochemical properties, catalytic activity and deactivation behavior. BIORESOURCE TECHNOLOGY 2020; 297:122477. [PMID: 31812594 DOI: 10.1016/j.biortech.2019.122477] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Biochar made from biowaste provides renewable carbon precursors for catalysts preparation. Here, solid acid catalysts were prepared through functionalizing biochars produced via hydrothermal and pyrolytic carbonization of cornstalk with -SO3H groups. Hydrochar-based catalysts (HAC) and pyrochar-based catalysts (PAC) exhibited significantly different physiochemical properties, catalytic activities and deactivation behaviors. The test of catalytic effects on cellulose degradation uncovered that HAC had a higher density of -SO3H but lower surface special area than PAC. Specifically, PAC prepared at 400 °C resulted in the maximum increase of cellulose conversion by 16.00-50.50%. In comparison, the highest yields of glucose (11.14%) and 5-hydroxymethylfurfural (29.54%) were achieved catalyzed via HAC prepared at 240 °C. The results of catalyst deactivation behavior further revealed that used catalysts had an obvious reduction of -SO3H density. Interestingly, used HAC-240 catalysts showed similar patterns of weight loss to fresh ones due to its high stability.
Collapse
Affiliation(s)
- Ziyun Liu
- Laboratory of Environment-Enhancing Energy (E2E), and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering China Agricultural University, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering China Agricultural University, Beijing 100083, China.
| |
Collapse
|
20
|
Ke P, Zeng D, Wu J, Cui J, Li X, Wang G. Preparation and Characterization of Sulfonated Magnetic SiO 2 Microspheres as the Solid Acid Catalysts for Esterification. ACS OMEGA 2019; 4:22119-22125. [PMID: 31891093 PMCID: PMC6933779 DOI: 10.1021/acsomega.9b03262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The sulfonated magnetic SiO2 microsphere solid acid catalysts were prepared by the impregnation and grafting methods with iron oxide magnetic nanoparticles (Fe3O4 MNPs) as the magnetic cores. The catalytic properties of the magnetic SiO2 solid acid catalyst were studied in detail. The characterization results showed that the SiO2 was successfully coated on the Fe3O4 MNPs. Compared with the grafting method, impregnated solid acid exhibits higher catalytic performance, which reached an esterification rate of up to 99.00% when the reaction temperature was 105 °C, the molar ratio of n-butanol/adipic acid was 3:1, and the ratio of the catalyst (the mass of magnetic solid acid) to liquids (the total volume of n-butanol and adipic acid) was 2.95%. The magnetic solid acid exhibited great separation ability and reusability. After six times of recycle, the conversion of the grafted magnetic solid acid still attained 85.61% compared with that of the impregnated magnetic solid acid, which reduced to 81.35%, holding great potential for green chemical processes.
Collapse
|
21
|
Li N, Wang Q, Ullah S, Zheng XC, Peng ZK, Zheng GP. Esterification of levulinic acid in the production of fuel additives catalyzed by porous sulfonated carbon derived from pine needle. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.105755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Tang Z, Su J. Direct conversion of cellulose to 5-hydroxymethylfurfural (HMF) using an efficient and inexpensive boehmite catalyst. Carbohydr Res 2019; 481:52-59. [DOI: 10.1016/j.carres.2019.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 01/23/2023]
|
23
|
Tarabanko N, Tarabanko VE, Kukhtetskiy SV, Taran OP. Electrical Double Layer as a Model of Interaction between Cellulose and Solid Acid Catalysts of Hydrolysis. Chemphyschem 2019; 20:706-718. [PMID: 30653820 DOI: 10.1002/cphc.201801160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/17/2019] [Indexed: 01/02/2023]
Abstract
Solid acid catalysts of cellulose hydrolysis in aqueous media attract considerable research interest because of the ease of their separation from the reaction products. The nature of interaction between the two solids is a relevant topic of ongoing research. One aspect of behavior of solid acids in water was not previously discussed in literature with regard to hydrolysis of cellulose: electrolytic dissociation and formation of electric double layers. In this work, on theoretical level, we consider the role of the double layer created by the solid acid when cellulose hydrolysis takes place. The diffuse layer of protons is regarded as the medium where the hydrolysis reaction occurs. Protonation of cellulose by these protons imparts positive charge onto its surface, and cellulose is electrostatically attracted to the polyanion of the catalyst. Thus, the two solid surfaces stay close to each other despite Brownian motion; this allows explaining the high activity of solid catalysts even when chemisorption of carbohydrates on a catalyst is not favorable.
Collapse
Affiliation(s)
- Nikolay Tarabanko
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/24, Krasnoyarsk, 660036, Russia
| | - Valery E Tarabanko
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/24, Krasnoyarsk, 660036, Russia
| | - Sergey V Kukhtetskiy
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/24, Krasnoyarsk, 660036, Russia
| | - Oxana P Taran
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/24, Krasnoyarsk, 660036, Russia.,Siberian Federal University, Svobodny 79, Krasnoyarsk, 660041, Russia
| |
Collapse
|
24
|
Zhao J, Zhang Y, Wang K, Yan C, Da Z, Li C, Yan Y. Development of Hierarchical Porous MOF-Based Catalyst of UiO-66(Hf) and Its Application for 5-Hydroxymethylfurfural Production from Cellulose. ChemistrySelect 2018. [DOI: 10.1002/slct.201802423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jiaojiao Zhao
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301 Zhenjiang 212013, PR China
| | - Yunlei Zhang
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301 Zhenjiang 212013, PR China
| | - Kai Wang
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301 Zhenjiang 212013, PR China
| | - Changhao Yan
- Research Center of Fluid Machinery Engineering and Technology; Jiangsu University; Xuefu Road 301 Zhenjiang 212013 PR China
| | - Zulin Da
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301 Zhenjiang 212013, PR China
| | - Chunxiang Li
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301 Zhenjiang 212013, PR China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering; Jiangsu University; Xuefu Road 301 Zhenjiang 212013, PR China
| |
Collapse
|
25
|
Abstract
Chemocatalytic transformation of lignocellulosic biomass to value-added chemicals has attracted global interest in order to build up sustainable societies. Cellulose, the first most abundant constituent of lignocellulosic biomass, has received extensive attention for its comprehensive utilization of resource, such as its catalytic conversion into high value-added chemicals and fuels (e.g., HMF, DMF, and isosorbide). However, the low reactivity of cellulose has prevented its use in chemical industry due to stable chemical structure and poor solubility in common solvents over the cellulose. Recently, homogeneous or heterogeneous catalysis for the conversion of cellulose has been expected to overcome this issue, because various types of pretreatment and homogeneous or heterogeneous catalysts can be designed and applied in a wide range of reaction conditions. In this review, we show the present situation and perspective of homogeneous or heterogeneous catalysis for the direct conversion of cellulose into useful platform chemicals.
Collapse
|