1
|
Lv Y, Zhang B, Xie Y, Wang ZG. Self-assembled Cationic Poly (Thioctic acid)/Flavin-based Catalysts for Biomimetic Baeyer-Villiger Oxidation. Macromol Rapid Commun 2025:e2500267. [PMID: 40314075 DOI: 10.1002/marc.202500267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Indexed: 05/03/2025]
Abstract
In this study, we present a Baeyer-Villiger monooxygenase (BVMO)-mimetic catalyst, created through the self-assembly of a degradable arginine-tethered poly (thioctic acid) (pGTA) scaffold with flavin mononucleotide (FMN), driven by electrostatic and hydrophobic interactions. The cationic pGTA scaffold not only facilitated efficient nicotinamide adenine dinucleotide (NADH) access to the FMN center, but also incorporated arginine aiming to stabilize the peroxo intermediate, mimicking the microenvironment of the active site of BVMOs. The self-assembly is confirmed through 1H-NMR, fluorescence quenching, transmission electron microscopy, the zeta potential, and molecular dynamics simulations. The FMN-based supramolecular catalysts effectively catalyzed NADH oxidation, followed by BV oxidation of cycloketones (including bicyclo[3.2.0]hept-2-en-6-one, 2-phenylcyclobutanone and 3-phenylcyclobutanone) to yield the corresponding lactone with high selectivity. The system demonstrated excellent activity under mild, oxygen-driven conditions, and its performance is further enhanced upon heating. This work provides a promising strategy for designing environmentally friendly biomimetic catalysts with minimal reliance on toxic reagents, advancing green chemistry and sustainable industrial processes.
Collapse
Affiliation(s)
- Yunbo Lv
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baoli Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuanyuan Xie
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Mandal S, Kumar S, Metya S, Singh M, Das A. Observation of a Crossed Double β-Turn in a Capped DPro-Gly-Ala Tripeptide: One-to-One Correspondence between X-ray Crystallography, 2D-NMR, and Gas-Phase Laser Spectroscopy. J Phys Chem Lett 2025; 16:1729-1738. [PMID: 39929074 DOI: 10.1021/acs.jpclett.5c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Herein, we report for the first time a direct correspondence between the observation of a β-turn or a crossed double β-turn in the Boc-DPro-Gly-Ala-NHBn-OMe (DPGA) tripeptide by using a combination of X-ray crystallography, 2D-NMR spectroscopy, and gas-phase laser spectroscopy supported by quantum chemistry calculations. Type-II' and type-I double β-turns, involving the DPG and GA moieties of DPGA, respectively, are observed in both condensed-phase and gas-phase experiments. Additionally, a low-energy conformer of DPGA featuring a triple γ-turn backbone is detected in the gas-phase. This work also marks the first-ever observation of a type II' β-turn involving DPG in a polypeptide within the gas-phase. The type II' β-turn plays a crucial role in β-hairpin formation in polypeptides and proteins, whereas the type I β-turn is the most common structural feature, enabling a 180° reversal of polypeptide chains in proteins. Furthermore, our analyses of the Cambridge Structural Database (CSD) and Protein Data Bank (PDB) reveal that the crossed double β-turn structural motif is widely present in both peptides and proteins. A comprehensive investigation of this tripeptide's secondary structural motif, derived from both condensed-phase and gas-phase studies, highlights the localized nature of secondary structures. This reinforces the significance of the intrinsic folding tendencies of amino acid residues in determining the peptide conformation.
Collapse
Affiliation(s)
- Sourav Mandal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Satish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Surajit Metya
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Manjeet Singh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
3
|
Arumughan V, Medipally H, Torris A, Levä T, Grimm HC, Tammelin T, Kourist R, Kontturi E. Bioinspired Nanochitin-Based Porous Constructs for Light-Driven Whole-Cell Biotransformations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413058. [PMID: 39901454 DOI: 10.1002/adma.202413058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/05/2025] [Indexed: 02/05/2025]
Abstract
Solid-state photosynthetic cell factories (SSPCFs) are a new production concept that leverages the innate photosynthetic abilities of microbes to drive the production of valuable chemicals. It addresses practical challenges such as high energy and water demand and improper light distribution associated with suspension-based culturing; however, these systems often face significant challenges related to mass transfer. The approach focuses on overcoming these limitations by carefully engineering the microstructure of the immobilization matrix through freeze-induced assembly of nanochitin building blocks. The use of nanochitins with optimized size distribution enabled the formation of macropores with lamellar spatial organization, which significantly improves light transmittance and distribution, crucial for maximizing the efficiency of photosynthetic reactions. The biomimetic crosslinking strategy, leveraging specific interactions between polyphosphate anions and primary amine groups featured on chitin fibers, produced mechanically robust and wet-resilient cryogels that maintained their functionality under operational conditions. Various model biotransformation reactions leading to value-added chemicals are performed in chitin-based matrix. It demonstrates superior or comparable performance to existing state-of-the-art matrices and suspension-based systems. The findings suggest that chitin-based cryogel approach holds significant promise for advancing the development of solid-state photosynthetic cell factories, offering a scalable solution to improve the efficiency and productivity of light-driven biotransformation.
Collapse
Affiliation(s)
- Vishnu Arumughan
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, FI-00076, Finland
| | - Hitesh Medipally
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, Royal Institute of Technology, Tomtebodavägen 23, Stockholm, 17165, Sweden
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Tuukka Levä
- VTT Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, Espoo, FI-02044, Finland
| | - Hanna C Grimm
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, Espoo, FI-02044, Finland
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology, ACIB GmbH, Petersgasse 14/1, Graz, 8010, Austria
- BioTechMed-Graz, Mozartgasse 12/II, Graz, 8010, Austria
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, FI-00076, Finland
| |
Collapse
|
4
|
Li L, Liu Y, Wang J, Cai M, Liu S, Ma P, Wang J, Niu J. Ru Metalloligands Participate in the Construction of POM@MOF for Enhancing the Visible Photoinduced Baeyer-Villiger Oxidation Reaction. Inorg Chem 2024; 63:24506-24516. [PMID: 39688152 DOI: 10.1021/acs.inorgchem.4c03064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Directed synthesis of high-efficiency visible photoinduced Baeyer-Villiger oxidation catalysts is of primary significance. Here, the isopolymolybdate anion [β-Mo8O26]4- is for the first time encapsulated with the photosensitive metalloligand [Ru(bpy)2(H2dcbpy)]2+ (bpy = 2,2'-bipyridine; H2dcbpy = 2,2'-bipyridine-5,5'-dicarboxylic acid) to synthesize polyoxometalate@metal-organic frameworks, {(CdDMF)2[Ru(bpy)2(dcbpy)]3([β-Mo8O26])}·5DMF (Ru-Mo8). The composite photocatalyst Ru-Mo8 not only has a light absorption of 700 nm but also shortens the photogenerated electron transfer distances and accelerates charge and proton transfer. Ru-Mo8 can perform the Baeyer-Villiger oxidation with high selectivity and up to 96.7% yield under visible light (λ > 400 nm) irradiation. The turnover number and turnover frequency of the reaction were computed to be 967 and 548 h-1, respectively, and the apparent quantum yield was 6.84% by 425 nm. Simultaneously, the radical mechanism of Baeyer-Villiger oxidation of Ru-Mo8 in the O2/benzaldehyde system under visible light (λ > 400 nm) irradiation was proposed.
Collapse
Affiliation(s)
- Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanan Liu
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, P. R. China
| | - Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Minzhen Cai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Sen Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
5
|
Xu Q, Ning L, Xu W, Lin L, Feng X. Synthesis of γ-Butyrolactones with Chiral Quaternary-Tertiary Stereocenters via Catalytic Asymmetric Mukaiyama-Michael Addition. Org Lett 2024; 26:9665-9670. [PMID: 39495085 DOI: 10.1021/acs.orglett.4c03373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
A catalytic asymmetric Mukaiyama-Michael reaction of silyl ketene acetals (SKAs) with α- or β-substituted α,β-unsaturated pyrazolamides was realized with N,N'-dioxide/nickel(II) complex catalysts. Bidentate coordination of the substrate to the catalyst and elongation of the ligand were beneficial for stereocontrol. In addition, adjustment of the substituents on substrates tuned the reactivity significantly. A wide range of chiral γ-butyrolactones with quaternary-tertiary stereocenters were obtained in moderate to excellent yields, good diastereomeric ratio, and excellent enantiomeric excess values.
Collapse
Affiliation(s)
- Qifan Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Lichao Ning
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Wentao Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| |
Collapse
|
6
|
Bunyat-Zada AR, Ducharme SE, Cleveland ME, Hoffman ER, Howe GW. Genome Mining Leads to the Identification of a Stable and Promiscuous Baeyer-Villiger Monooxygenase from a Thermophilic Microorganism. Chembiochem 2024; 25:e202400443. [PMID: 38991205 DOI: 10.1002/cbic.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are NAD(P)H-dependent flavoproteins that convert ketones to esters and lactones. While these enzymes offer an appealing alternative to traditional Baeyer-Villiger oxidations, these proteins tend to be either too unstable or exhibit too narrow of a substrate scope for implementation as industrial biocatalysts. Here, sequence similarity networks were used to search for novel BVMOs that are both stable and promiscuous. Our genome mining led to the identification of an enzyme from Chloroflexota bacterium (strain G233) dubbed ssnBVMO that exhibits i) the highest melting temperature of any naturally sourced BVMO (62.5 °C), ii) a remarkable kinetic stability across a wide range of conditions, similar to those of PAMO and PockeMO, iii) optimal catalysis at 50 °C, and iv) a broad substrate scope that includes linear aliphatic, aromatic, and sterically bulky ketones. Subsequent quantitative assays using propiophenone demonstrated >95 % conversion. Several fusions were also constructed that linked ssnBVMO to a thermostable phosphite dehydrogenase. These fusions can recycle NADPH and catalyze oxidations with sub-stoichiometric quantities of this expensive cofactor. Characterization of these fusions permitted identification of PTDH-L1-ssnBVMO as the most promising protein that could have utility as a seed sequence for enzyme engineering campaigns aiming to develop biocatalysts for Baeyer-Villiger oxidations.
Collapse
Affiliation(s)
- Amir R Bunyat-Zada
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Stephan E Ducharme
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Maria E Cleveland
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Esther R Hoffman
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Graeme W Howe
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
7
|
Handjaya JP, Patankar N, Reid JP. The Diversity and Evolution of Chiral Brønsted Acid Structures. Chemistry 2024; 30:e202400921. [PMID: 38706381 DOI: 10.1002/chem.202400921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
The chemical space of chiral Brønsted acid catalysts is defined by quantity and complexity, reflecting the diverse synthetic challenges confronted and the innovative molecular designs introduced. Here, we detail how this successful outcome is a powerful demonstration of the benefits of utilizing both local structure searches and a comprehensive understanding of catalyst performance for effective and efficient exploration of Brønsted acid properties. In this concept article we provide an evolutionary overview of this field by summarizing the approaches to catalyst optimization, the resulting structures, and functions.
Collapse
Affiliation(s)
- Jasemine P Handjaya
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Niraja Patankar
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
8
|
Poursaitidis ET, Gkizis PL, Triandafillidi I, Kokotos CG. Organocatalytic activation of hydrogen peroxide: towards green and sustainable oxidations. Chem Sci 2024; 15:1177-1203. [PMID: 38274062 PMCID: PMC10806817 DOI: 10.1039/d3sc05618j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The advent of organocatalysis provided an additional option in every researcher's arsenal, towards the development of elegant and sustainable protocols for various organic transformations. Oxidation reactions are considered to be key in organic synthesis since oxygenated functionalities appear in many natural products. Hydrogen peroxide is categorized as a green oxidant, since its only by-product is water, offering novel opportunities for the development of green and sustainable protocols. In this review article, we intend to present recent developments in the field of the organocatalytic activation of hydrogen peroxide, providing useful insight into the applied oxidative protocols. At the same time, we will present some interesting mechanistic studies, providing information on the oxygen transfer processes.
Collapse
Affiliation(s)
- Efthymios T Poursaitidis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Ierasia Triandafillidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
9
|
Chang Z, Wang S, Huang J, Chen G, Tang Z, Wang R, Zhao D. Copper catalyzed Shono-type oxidation of proline residues in peptide. SCIENCE ADVANCES 2023; 9:eadj3090. [PMID: 37703373 PMCID: PMC10881060 DOI: 10.1126/sciadv.adj3090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023]
Abstract
Since the initial report in 1975, the Shono oxidation has become a powerful tool to functionalize the α position of amines, including proline derivatives, by electrochemical oxidation. However, the application of electrochemical Shono oxidations is restricted to the preparation of simple building blocks and homogeneous Shono-type oxidation of proline derivatives remains challenging. The late-stage functionalization at proline residues embedded within peptides is highly important as substitutions about the proline ring are known to affect biological and pharmacological activities. Here, we show that homogenous copper-catalyzed oxidation conditions complement the Shono oxidation and this general protocol can be applied to a series of formal C-C coupling reactions with a variety of nucleophiles using a one-pot procedure. This protocol shows good tolerance toward 19 proteinogenic amino acids and was used to functionalize several representative bioactive peptides, including captopril, enalapril, Smac, and endomorphin-2. Last, peptide cyclization can also be achieved by using an appropriately positioned side-chain hydroxyl moiety.
Collapse
Affiliation(s)
- Zhe Chang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Si Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jialin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Geshuyi Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhanyong Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Liu C, Zou FL, Wen KG, Peng YY, Ding QP, Zeng XP. Catalytic Desymmetrizing Baeyer-Villiger Oxidation of Quaternary Carbon-Containing Cyclobutane-1,3-diones. Org Lett 2023; 25:5719-5723. [PMID: 37503955 DOI: 10.1021/acs.orglett.3c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The first highly enantioselective Baeyer-Villiger oxidation of quaternary carbon-containing cyclobutane-1,3-diones using chiral phosphoric acid catalysis and commercially available oxidants was reported. According to the structure of the substrates, two optimized reaction conditions were developed to afford the corresponding chiral tetronic acid products in ≤93% and ≤95% ee values. This reaction offers the first catalytic asymmetric approach to chiral 5,5-disubstituted tetronic acid derivatives. The synthetic potential of this method has been demonstrated by the formal asymmetric synthesis of (-)-vertinolide and the first catalytic asymmetric total synthesis of plakinidone B.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Feng-Lan Zou
- Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Kai-Ge Wen
- Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Yi-Yuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Qiu-Ping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Xing-Ping Zeng
- Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| |
Collapse
|
11
|
Liles JP, Rouget-Virbel C, Wahlman JLH, Rahimoff R, Crawford JM, Medlin A, O’Connor V, Li J, Roytman VA, Toste FD, Sigman MS. Data Science Enables the Development of a New Class of Chiral Phosphoric Acid Catalysts. Chem 2023; 9:1518-1537. [PMID: 37519827 PMCID: PMC10373836 DOI: 10.1016/j.chempr.2023.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The widespread success of BINOL-chiral phosphoric acids (CPAs) has led to the development of several high molecular weight, sterically encumbered variants. Herein, we disclose an alternative, minimalistic chiral phosphoric acid backbone incorporating only a single instance of point chirality. Data science techniques were used to select a diverse training set of catalysts, which were benchmarked against the transfer hydrogenation of an 8-aminoquinoline. Using a univariate classification algorithm and multivariate linear regression, key catalyst features necessary for high levels of selectivity were deconvoluted, revealing a simple catalyst model capable of predicting selectivity for out-of-set catalysts. This workflow enabled extrapolation to a catalyst providing higher selectivity than both reported peptide-type and BINOL-type catalysts (up to 95:5 er). These techniques were then successfully applied towards two additional transforms. Taken together, these examples illustrate the power of combining rational design with data science (ab initio) to efficiently explore reactivity during catalyst development.
Collapse
Affiliation(s)
- Jordan P. Liles
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | | | - Julie L. H. Wahlman
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Rene Rahimoff
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jennifer M. Crawford
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Abby Medlin
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Veronica O’Connor
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Junqi Li
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Vladislav A. Roytman
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - F. Dean Toste
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
- Lead contact
| |
Collapse
|
12
|
Seitz A, Wende RC, Schreiner PR. Site-Selective Acylation of Pyranosides with Immobilized Oligopeptide Catalysts in Flow. Chemistry 2022; 29:e202203002. [PMID: 36538197 DOI: 10.1002/chem.202203002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
We report the site-selective acetylation of partially protected monosaccharides using immobilized oligopeptide catalysts, which are readily accessible via solid-phase peptide synthesis. The catalysts are able to invert the intrinsic selectivity, which was determined using N-methylimidazole, for a variety of pyranosides. We demonstrate that the catalysts are stable for multiple reaction cycles and can be easily reused after separation from the reaction solution. The catalysts can also be used in flow without loss of reactivity and selectivity.
Collapse
Affiliation(s)
- Alexander Seitz
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Raffael C Wende
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
13
|
Kratz T, Steinbach P, Breitenlechner S, Storch G, Bannwarth C, Bach T. Photochemical Deracemization of Chiral Alkenes via Triplet Energy Transfer. J Am Chem Soc 2022; 144:10133-10138. [PMID: 35658423 DOI: 10.1021/jacs.2c02511] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A visible-light-mediated, enantioselective approach to axially chiral alkenes is described. Starting from a racemic mixture, a major alkene enantiomer is formed due to selective triplet energy transfer from a catalytically active chiral sensitizer. A catalyst loading of 2 mol % was sufficient to guarantee consistently high enantioselectivities and yields (16 examples, 51%-quant., 81-96% ee). NMR studies and DFT computations revealed that triplet energy transfer is more rapid within the substrate-catalyst complex of the minor alkene enantiomer. Since this enantiomer is continuously racemized, the major enantiomer is enriched in the photostationary state.
Collapse
Affiliation(s)
- Thilo Kratz
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Pit Steinbach
- Institut für Physikalische Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Breitenlechner
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Golo Storch
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Christoph Bannwarth
- Institut für Physikalische Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Thorsten Bach
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
14
|
Zhang CS, Shao YP, Zhang FM, Han X, Zhang XM, Zhang K, Tu YQ. Cu(II)/SPDO complex-catalyzed asymmetric Baeyer–Villiger oxidation of 2-arylcyclobutanones and its application for the total synthesis of eupomatilones 5 and 6. Chem Sci 2022; 13:8429-8435. [PMID: 35919715 PMCID: PMC9297696 DOI: 10.1039/d2sc02079c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
A novel classical kinetic resolution of 2-aryl-substituted or 2,3-disubstituted cyclobutanones of Baeyer–Villiger oxidation catalyzed by a Cu(ii)/SPDO complex is reported for the first time, producing normal lactones in excellent enantioselectivities (up to 96% ee) and regioselectivities (up to >20/1), along with unreacted ketones in excellent enantioselectivities (up to 99% ee). The current transformation features a wide substrate scope. Moreover, catalytic asymmetric total syntheses of natural eupomatilones 5 and 6 are achieved in nine steps from commercially available 3-methylcyclobutan-1-one. A novel classical kinetic resolution of Baeyer–Villiger oxidation catalyzed by a Cu(ii)/SPDO complex with excellent enantioselectivity, regioselectivity and wide substrate scope is reported for the first time and explore the synthetic application.![]()
Collapse
Affiliation(s)
- Chang-Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Ya-Ping Shao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xue Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 Guangdong P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
15
|
Xu Y, Zhai TY, Xu Z, Ye LW. Recent advances towards organocatalytic enantioselective desymmetrizing reactions. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Tamura M. Enantioselective construction of ortho-substituted benzylic quaternary centers using a phenanthroline-Pd catalyst. Org Biomol Chem 2022; 20:8425-8429. [DOI: 10.1039/d2ob01743a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An efficient and enantioselective construction of ortho-substituted benzylic all-carbon quaternary centers via chiral phenanthroline-Pd complex catalyzed conjugate addition has been developed.
Collapse
Affiliation(s)
- Masafumi Tamura
- Department of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigakudori, Sanyo-onoda, Yamaguchi 756-0884, Japan
| |
Collapse
|
17
|
Chan YC, Sak MH, Frank SA, Miller SJ. Tunable and Cooperative Catalysis for Enantioselective Pictet-Spengler Reaction with Varied Nitrogen-Containing Heterocyclic Carboxaldehydes. Angew Chem Int Ed Engl 2021; 60:24573-24581. [PMID: 34487418 PMCID: PMC8556314 DOI: 10.1002/anie.202109694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Indexed: 01/16/2023]
Abstract
Herein we report an organocatalytic enantioselective functionalization of heterocyclic carboxaldehydes via the Pictet-Spengler reaction. Through careful pairing of novel squaramide and Brønsted acid catalysts, our method tolerates a breadth of heterocycles, enabling preparation of a series of heterocycle conjugated β-(tetrahydro)carbolines in good yield and enantioselectivity. Careful selection of carboxylic acid co-catalyst is essential for toleration of a variety of regioisomeric heterocycles. Utility is demonstrated via the three-step stereoselective preparation of pyridine-containing analogues of potent selective estrogen receptor downregulator and U.S. FDA approved drug Tadalafil.
Collapse
Affiliation(s)
- Yuk-Cheung Chan
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Marcus H Sak
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Scott A Frank
- Synthetic Molecule Design and Development, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
18
|
Chan Y, Sak MH, Frank SA, Miller SJ. Tunable and Cooperative Catalysis for Enantioselective Pictet‐Spengler Reaction with Varied Nitrogen‐Containing Heterocyclic Carboxaldehydes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuk‐Cheung Chan
- Department of Chemistry Yale University New Haven CT 06520 USA
| | - Marcus H. Sak
- Department of Chemistry Yale University New Haven CT 06520 USA
| | - Scott A. Frank
- Synthetic Molecule Design and Development Eli Lilly and Company Indianapolis IN 46285 USA
| | - Scott J. Miller
- Department of Chemistry Yale University New Haven CT 06520 USA
| |
Collapse
|
19
|
Chan YC, Wang X, Lam YP, Wong J, Tse YLS, Yeung YY. A Catalyst-Controlled Enantiodivergent Bromolactonization. J Am Chem Soc 2021; 143:12745-12754. [PMID: 34350758 DOI: 10.1021/jacs.1c05680] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A catalyst-controlled enantiodivergent bromolactonization of olefinic acids has been developed. Quinine-derived amino-amides bearing the same chiral core but different achiral aryl substituents were used as the catalysts. Switching the methoxy substituent in the aryl amide system from meta- to ortho-position results in a complete switch in asymmetric induction to afford the desired lactone in good enantioselectivity and yield. Mechanistic studies, including chemical experiments and density functional theory calculations, reveal that the differences in steric and electronic effects of the catalyst substituent alter the reaction mechanism.
Collapse
Affiliation(s)
- Yuk-Cheung Chan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xinyan Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Pong Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Jonathan Wong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Lung Steve Tse
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
20
|
Crawford JM, Kingston C, Toste FD, Sigman MS. Data Science Meets Physical Organic Chemistry. Acc Chem Res 2021; 54:10.1021/acs.accounts.1c00285. [PMID: 34351757 PMCID: PMC9078128 DOI: 10.1021/acs.accounts.1c00285] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ConspectusAt the heart of synthetic chemistry is the holy grail of predictable catalyst design. In particular, researchers involved in reaction development in asymmetric catalysis have pursued a variety of strategies toward this goal. This is driven by both the pragmatic need to achieve high selectivities and the inability to readily identify why a certain catalyst is effective for a given reaction. While empiricism and intuition have dominated the field of asymmetric catalysis since its inception, enantioselectivity offers a mechanistically rich platform to interrogate catalyst-structure response patterns that explain the performance of a particular catalyst or substrate.In the early stages of an asymmetric reaction development campaign, the overarching mechanism of the reaction, catalyst speciation, the turnover limiting step, and many other details are unknown or posited based on related reactions. Considering the unclear details leading to a successful reaction, initial enantioselectivity data are often used to intuitively guide the ultimate direction of optimization. However, if the conditions of the Curtin-Hammett principle are satisfied, then measured enantioselectivity can be directly connected to the ensemble of diastereomeric transition states (TSs) that lead to the enantiomeric products, and the associated free energy difference between competing TSs (ΔΔG⧧ = -RT ln[(S)/(R)], where (S) and (R) represent the concentrations of the enantiomeric products). We, and others, speculated that this important piece of information can be leveraged to guide reaction optimization in a quantitative way.Although traditional linear free energy relationships (LFERs), such as Hammett plots, have been used to illuminate important mechanistic features, we sought to develop data science derived tools to expand the power of LFERs in order to describe complex reactions frequently encountered in modern asymmetric catalysis. Specifically, we investigated whether enantioselectivity data from a reaction can be quantitatively connected to the attributes of reaction components, such as catalyst and substrate structural features, to harness data for asymmetric catalyst design.In this context, we developed a workflow to relate computationally derived features of reaction components to enantioselectivity using data science tools. The mathematical representation of molecules can incorporate many aspects of a transformation, such as molecular features from substrate, product, catalyst, and proposed transition states. Statistical models relating these features to reaction outputs can be used for various tasks, such as performance prediction of untested molecules. Perhaps most importantly, statistical models can guide the generation of mechanistic hypotheses that are embedded within complex patterns of reaction responses. Overall, merging traditional physical organic experiments with statistical modeling techniques creates a feedback loop that enables both evaluation of multiple mechanistic hypotheses and future catalyst design. In this Account, we highlight the evolution and application of this approach in the context of a collaborative program based on chiral phosphoric acid catalysts (CPAs) in asymmetric catalysis.
Collapse
Affiliation(s)
- Jennifer M Crawford
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Cian Kingston
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| |
Collapse
|
21
|
Fang G, Wang H, Zheng C, Pan L, Zhao G. Enantioselectivity switch in asymmetric Michael addition reactions using phosphonium salts. Org Biomol Chem 2021; 19:6334-6340. [PMID: 34231639 DOI: 10.1039/d1ob01027a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient access to two enantiomers of one chiral compound is critical for the discovery of drugs. However, it is still a challenging problem owing to the difficulty in obtaining two enantiomers of one chiral catalyst. Here, we report a general method to obtain both enantiomeric products via fine tuning the hydrogen-bonding interactions of phosphonium salts. Amino acid derived phosphonium salts and dipeptide derived phosphonium salts exhibited different properties for controlling the transition state, which could efficiently promote the Michael addition reaction to give opposite configurations of products with high yields and enantioselectivities. Preliminary investigations on the mechanism of the reaction and applications of the products were also performed.
Collapse
Affiliation(s)
- Guosheng Fang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Hongyu Wang
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Changwu Zheng
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Lu Pan
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Gang Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China. and Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| |
Collapse
|
22
|
Featherston AL, Kwon Y, Pompeo MM, Engl OD, Leahy DK, Miller SJ. Catalytic asymmetric and stereodivergent oligonucleotide synthesis. Science 2021; 371:702-707. [PMID: 33574208 DOI: 10.1126/science.abf4359] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
We report the catalytic stereocontrolled synthesis of dinucleotides. We have demonstrated, for the first time to our knowledge, that chiral phosphoric acid (CPA) catalysts control the formation of stereogenic phosphorous centers during phosphoramidite transfer. Unprecedented levels of diastereodivergence have also been demonstrated, enabling access to either phosphite diastereomer. Two different CPA scaffolds have proven to be essential for achieving stereodivergence: peptide-embedded phosphothreonine-derived CPAs, which reinforce and amplify the inherent substrate preference, and C2-symmetric BINOL-derived CPAs, which completely overturn this stereochemical preference. The presently reported catalytic method does not require stoichiometric activators or chiral auxiliaries and enables asymmetric catalysis with readily available phosphoramidites. The method was applied to the stereocontrolled synthesis of diastereomeric dinucleotides as well as cyclic dinucleotides, which are of broad interest in immuno-oncology as agonists of the stimulator of interferon genes (STING) pathway.
Collapse
Affiliation(s)
| | - Yongseok Kwon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Matthew M Pompeo
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Oliver D Engl
- Process Chemistry Development, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - David K Leahy
- Process Chemistry Development, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA.
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
23
|
Čmelová P, Vargová D, Šebesta R. Hybrid Peptide-Thiourea Catalyst for Asymmetric Michael Additions of Aldehydes to Heterocyclic Nitroalkenes. J Org Chem 2021; 86:581-592. [PMID: 33258590 DOI: 10.1021/acs.joc.0c02251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bifunctional organocatalysis combining covalent and noncovalent activation is presented. The hybrid peptide-thiourea catalyst features a N-terminal proline moiety for aldehyde activation and a thiourea unit for electrophile activation. This catalyst effectively promotes asymmetric Michael additions of aldehydes to challenging but biologically relevant heterocycle-containing nitroalkenes. The catalyst can be used under solvent-free conditions. Spectroscopic and density functional theory studies elucidate the catalyst structure and mode of action.
Collapse
Affiliation(s)
- Patrícia Čmelová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Denisa Vargová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
24
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
25
|
Du ZH, Qin WJ, Tao BX, Yuan M, Da CS. N-Primary-amine tetrapeptide-catalyzed highly asymmetric Michael addition of aliphatic aldehydes to maleimides. Org Biomol Chem 2020; 18:6899-6904. [PMID: 32856662 DOI: 10.1039/d0ob01457e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The highly asymmetric Michael addition reaction between maleimides and aliphatic aldehydes catalyzed by low-loading β-turn tetrapeptides with excellent yields and enantioselectivities at room temperature was reported. α-Branched and α-unbranched aldehydes both are suitable nucleophiles. N-Aryl, alkyl and hydrogen maleimides all are well tolerated and led to high yields and enantioselectivities. The transformation can be enlarged to the gram scale without decrease in the yield and enantioselectivity. Furthermore, the succinimides were converted into γ-lactams and γ-lactones, showing good practicality of this work. Some reaction intermediates in the proposed reaction mechanism can be captured with the HR-MS method.
Collapse
Affiliation(s)
- Zhi-Hong Du
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | | | | | | | | |
Collapse
|
26
|
Du ZH, Tao BX, Yuan M, Qin WJ, Xu YL, Wang P, Da CS. Peptide-Catalyzed Highly Asymmetric Cross-Aldol Reaction of Aldehydes to Biomimetically Synthesize 1,4-Dicarbonyls. Org Lett 2020; 22:4444-4450. [PMID: 32463241 DOI: 10.1021/acs.orglett.0c01407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
β-Turn tetrapeptides were demonstrated to catalyze asymmetric aldol reaction of α-branched aldehydes and α-carbonyl aldehydes, i.e. glyoxylates and α-ketoaldehydes, to biomimetically synthesize acyclic all-carbon quaternary center-bearing 1,4-dicarbonyls in high yield and excellent enantioselectivity under mild conditions. The spatially restricted environment of the tetrapeptide warrants high enantioselectivity and yield with broad substrates. Using this protocol, (R)-pantolactone, the key intermediate of vitamin B5, was readily accessed in a practical, efficient, and environmentally benign process from inexpensive starting materials.
Collapse
Affiliation(s)
- Zhi-Hong Du
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bao-Xiu Tao
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meng Yuan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wen-Juan Qin
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan-Li Xu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pei Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Chao-Shan Da
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, and Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
27
|
Sietmann J, Wahl JM. Enantioselective Desymmetrization of Cyclobutanones: A Speedway to Molecular Complexity. Angew Chem Int Ed Engl 2020; 59:6964-6974. [PMID: 31550067 PMCID: PMC7984208 DOI: 10.1002/anie.201910767] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Indexed: 12/16/2022]
Abstract
Cyclobutanones hold a privileged role in enantioselective desymmetrization because their inherent ring strain allows for a variety of unusual reactions to occur. Current strategies include α-functionalization, rearrangement, and C-C bond activation to directly convert cyclobutanones into a wide range of enantiomerically enriched compounds, including many biologically significant scaffolds. This Minireview provides an overview of state-of-the-art methods that generate complexity from prochiral cyclobutanones in a single operation.
Collapse
Affiliation(s)
- Jan Sietmann
- Westfälische Wilhelms-Universität MünsterInstitute of Organic ChemistryCorrensstrasse 4048149MünsterGermany
| | - Johannes M. Wahl
- Westfälische Wilhelms-Universität MünsterInstitute of Organic ChemistryCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
28
|
Ding D, Dong H, Wang C. Nickel-Catalyzed Asymmetric Domino Ring Opening/Cross-Coupling Reaction of Cyclobutanones via a Reductive Strategy. iScience 2020; 23:101017. [PMID: 32289735 PMCID: PMC7155205 DOI: 10.1016/j.isci.2020.101017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 01/01/2023] Open
Abstract
Herein we demonstrate the successful application of reductive strategy in the asymmetric domino ring opening/cross-coupling reaction of prochiral cyclobutanones. Under the catalysis of a chiral nickel complex, various aryl iodide-tethered cyclobutanones were reacted with alkyl bromides as the electrophilic coupling partner, providing a variety of chiral indanones bearing a quaternary stereogenic center in highly enantioselective manner, which can be further converted to diverse benzene-fused cyclic compounds including indane, indene, dihydrocoumarin, and dihydroquinolinone. The preliminary mechanistic investigations support a mechanism involving Ni(I)-mediated enantiotopic C-C σ-bond activation of cyclobutanones as key elementary step in the catalytic cycle.
Collapse
Affiliation(s)
- Decai Ding
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haiyan Dong
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
29
|
Temperini A, Aiello D, Mazzotti F, Athanassopoulos CM, De Luca P, Siciliano C. 2,3-Diaminopropanols Obtained from d-Serine as Intermediates in the Synthesis of Protected 2,3-l-Diaminopropanoic Acid (l-Dap) Methyl Esters. Molecules 2020; 25:E1313. [PMID: 32183079 PMCID: PMC7145313 DOI: 10.3390/molecules25061313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
A synthetic strategy for the preparation of two orthogonally protected methyl esters of the non-proteinogenic amino acid 2,3-l-diaminopropanoic acid (l-Dap) was developed. In these structures, the base-labile protecting group 9-fluorenylmethyloxycarbonyl (Fmoc) was paired to the p-toluensulfonyl (tosyl, Ts) or acid-labile tert-butyloxycarbonyl (Boc) moieties. The synthetic approach to protected l-Dap methyl esters uses appropriately masked 2,3-diaminopropanols, which are obtained via reductive amination of an aldehyde prepared from the commercial amino acid Nα-Fmoc-O-tert-butyl-d-serine, used as the starting material. Reductive amination is carried out with primary amines and sulfonamides, and the process is assisted by the Lewis acid Ti(OiPr)4. The required carboxyl group is installed by oxidizing the alcoholic function of 2,3-diaminopropanols bearing the tosyl or benzyl protecting group on the 3-NH2 site. The procedure can easily be applied using the crude product obtained after each step, minimizing the need for chromatographic purifications. Chirality of the carbon atom of the starting d-serine template is preserved throughout all synthetic steps.
Collapse
Affiliation(s)
- Andrea Temperini
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy;
| | - Donatella Aiello
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Via Ponte P. Bucci, Cubo 12D, Università della Calabria, I-87036 Arcavacata di Rende (CS), Italy; (D.A.); (F.M.)
| | - Fabio Mazzotti
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Via Ponte P. Bucci, Cubo 12D, Università della Calabria, I-87036 Arcavacata di Rende (CS), Italy; (D.A.); (F.M.)
| | | | - Pierantonio De Luca
- Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Università della Calabria, I-87036 Arcavacata di Rende (CS), Italy;
| | - Carlo Siciliano
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Edificio Polifunzionale, Università della Calabria, I-87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
30
|
Sietmann J, Wiest JM. Enantioselektive Desymmetrisierung von Cyclobutanonen: Eine Schnellstraße zu molekularer Komplexität. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201910767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jan Sietmann
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Johannes M. Wiest
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
31
|
Liu C, Wen K, Zeng X, Peng Y. Advances in Chemocatalytic Asymmetric Baeyer–Villiger Oxidations. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chao Liu
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 People's Republic of China
| | - Kai‐Ge Wen
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 People's Republic of China
| | - Xing‐Ping Zeng
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 People's Republic of China
| | - Yi‐Yuan Peng
- Key Laboratory of Small Functional Organic Molecule, Ministry of EducationJiangxi Normal University, Nanchang Jiangxi 330022 People's Republic of China
| |
Collapse
|
32
|
Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03396] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Alejandro Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Friso S. Aalbers
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| |
Collapse
|
33
|
You ZH, Chen YH, Tang Y, Liu YK. Application of E1cB Elimination in Asymmetric Organocatalytic Cascade Reactions To Construct Polyheterocyclic Compounds. Org Lett 2019; 21:8358-8363. [PMID: 31580692 DOI: 10.1021/acs.orglett.9b03138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
By introducing a carbon functionality at 2-position of chromane, the formal asymmetric functionalization of the 3-position of 2-substituted chromane has been realized via a highly chemo-, regio-, and stereoselective organocatalytic cascade reaction in a sequential one-pot manner involving an E1cB mechanism governed ring-opening process. Critical to our success was the design of a chiral dipeptide-based bifunctional acid-base organocatalyst, which exhibited high catalytic activity at low catalyst loading (1-0.1 mol %), leading to biologically interesting polyheterocyclic compounds.
Collapse
Affiliation(s)
- Zhi-Hao You
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China
| | - Ying-Han Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China
| | - Yu Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003 , China
| | - Yan-Kai Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , Qingdao 266003 , China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266003 , China
| |
Collapse
|
34
|
Kwon Y, Li J, Reid JP, Crawford JM, Jacob R, Sigman MS, Toste FD, Miller SJ. Disparate Catalytic Scaffolds for Atroposelective Cyclodehydration. J Am Chem Soc 2019; 141:6698-6705. [PMID: 30920223 PMCID: PMC6482060 DOI: 10.1021/jacs.9b01911] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalysts that control stereochemistry are prized tools in chemical synthesis. When an effective catalyst is found, it is often explored for other types of reactions, frequently under the auspices of different mechanisms. As successes mount, a unique catalyst scaffold may become viewed as "privileged". However, the mechanistic hallmarks of privileged catalysts are not easily enumerated or readily generalized to genuinely different classes of reactions or substrates. We explored the concept of scaffold uniqueness with two catalyst types for an unusual atropisomer-selective cyclodehydration: (a) C2-symmetric chiral phosphoric acids and (b) phosphothreonine-embedded, peptidic phosphoric acids. Pragmatically, both catalyst scaffolds proved fertile for enantioselective/atroposelective cyclodehydrations. Mechanistic studies revealed that the determinants of often equivalent and high atroposelectivity are different for the two catalyst classes. A data-descriptive classification of these asymmetric catalysts reveals an increasingly broad set of catalyst chemotypes, operating with different mechanistic features, that creates new opportunities for broad and complementary application of catalyst scaffolds in diverse substrate space.
Collapse
Affiliation(s)
- Yongseok Kwon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Junqi Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jolene P. Reid
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jennifer M. Crawford
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Roxane Jacob
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
35
|
Shugrue CR, Sculimbrene BR, Jarvo ER, Mercado BQ, Miller SJ. Outer-Sphere Control for Divergent Multicatalysis with Common Catalytic Moieties. J Org Chem 2019; 84:1664-1672. [PMID: 30608173 PMCID: PMC6358474 DOI: 10.1021/acs.joc.8b03068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report two examples of one-pot, simultaneous reactions, mediated by multiple, orthogonal catalysts with the same catalytic motif. First, BINOL-derived chiral phosphoric acids (CPA) and phosphothreonine (pThr)-embedded peptides were found to be matched for two different steps in double reductions of bisquinolines. Next, two π-methylhistidine (Pmh)-containing peptides catalyzed enantio- and chemoselective acylations and phosphorylations of multiple substrates in one pot. The selectivity exhibited by common reactive moieties is adjusted solely by the appended chiral scaffold through outer-sphere interactions.
Collapse
Affiliation(s)
- Christopher R. Shugrue
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | | | | | - Brandon Q. Mercado
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | | |
Collapse
|
36
|
Ban Z, Cui X, Hu F, Lu G, Luo N, Huang G. Copper-mediated synthesis of quinazolin-4(3 H)-ones from N-(quinolin-8-yl)benzamide and amidine hydrochlorides. NEW J CHEM 2019. [DOI: 10.1039/c9nj02311a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient copper-mediated tandem C(sp2)–H amination to provide quinazolinones from N-(quinolin-8-yl)benzamide and amidine hydrochlorides has been developed.
Collapse
Affiliation(s)
- Zihui Ban
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| | - Xinfeng Cui
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| | - Fangpeng Hu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| | - Guoqiang Lu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| | - Guosheng Huang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|