1
|
Lu X, Zhang F, Yan F, Liu Q, Zhao Y, Du M, Zhang L, Li X, Zhao Z, Liu H. Pd-catalyzed imine synthesis from nitroarenes via Fe-H 2O under electromagnetic milling. Chem Commun (Camb) 2025; 61:6316-6319. [PMID: 40166922 DOI: 10.1039/d5cc00498e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
This article introduces a novel, eco-friendly, one-pot method for synthesizing imines via mechanochemistry. Using water as a hydrogen donor and iron as a reducing agent, nitroaromatics react with aldehydes in the presence of a palladium catalyst to form imines efficiently.
Collapse
Affiliation(s)
- Xiangming Lu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Feng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Fachao Yan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Yan Zhao
- Medical Laboratory Department, Zibo Central Hospital, Zibo, Shandong 255036, China.
| | - Mengcheng Du
- POME Technology Co., Ltd, Liaocheng, Shandong 252399, China.
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Xinjin Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China.
| |
Collapse
|
2
|
Stavarache I, Palade C, Slav A, Dascalescu I, Lepadatu AM, Matei E, Besleaga C, Ciurea ML, Kardynal BE, Stoica T. Effect of molecular adsorption on the conductivity of selectively grown, interconnected 2D-MoS 2 atomically thin flake structures. NANOSCALE ADVANCES 2025; 7:2368-2380. [PMID: 40061838 PMCID: PMC11886618 DOI: 10.1039/d5na00138b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 04/10/2025]
Abstract
The gas sensitivity of field-effect structures with 2D-MoS2 channels selectively grown between Mo electrodes using the Mo-CVD method was investigated by measuring the effect of molecular adsorption from air on the device source-drain current (I sd). The channels were composed of interconnected atomically thin MoS2 grains, with their density and average thickness varied by choosing two different distances (15 and 20 μm) between the Mo contacts. A high response to the tested stimuli, including molecule adsorption, illumination and gate voltage changes, was observed. A significant, persistent photoconduction was induced by positive charge accumulation on traps, most likely at grain boundaries and associated defects. I sd increased under high vacuum, both in the dark and under illumination. The relative dark current response to the transition from air to high vacuum reached up to 1000% at the turn-on voltage. When monitored during the gradual change in air pressure, I sd exhibited a non-monotonic function, sharply peaking at about 10-2 mbar, suggesting molecular adsorption on different defect sites and orientations of adsorbed H2O molecules, which were capable of inducing electron accumulation or depletion. Despite the screening of disorder by extra electrons, the #20 μm sample remained more sensitive to air molecules on its surface. The high vacuum state was also investigated by annealing devices at temperatures up to 340 K in high vacuum, followed by measurements down to 100 K. This revealed thermally stimulated currents and activation energies of trapping electronic states assigned to sulfur vacancies (230 meV) and other shallow levels (85-120 meV), possibly due to natural impurities, grain boundaries or disorder defects. The results demonstrate the high sensitivity of these devices to molecular adsorption, making the technology promising for the easy fabrication of chemical sensors.
Collapse
Affiliation(s)
- Ionel Stavarache
- National Institute of Materials Physics 405A Atomistilor Street 077125 Magurele Romania
| | - Catalin Palade
- National Institute of Materials Physics 405A Atomistilor Street 077125 Magurele Romania
| | - Adrian Slav
- National Institute of Materials Physics 405A Atomistilor Street 077125 Magurele Romania
| | - Ioana Dascalescu
- National Institute of Materials Physics 405A Atomistilor Street 077125 Magurele Romania
| | - Ana-Maria Lepadatu
- National Institute of Materials Physics 405A Atomistilor Street 077125 Magurele Romania
| | - Elena Matei
- National Institute of Materials Physics 405A Atomistilor Street 077125 Magurele Romania
| | - Cristina Besleaga
- National Institute of Materials Physics 405A Atomistilor Street 077125 Magurele Romania
| | - Magdalena Lidia Ciurea
- National Institute of Materials Physics 405A Atomistilor Street 077125 Magurele Romania
- Academy of Romanian Scientists 54 Splaiul Independentei 050094 Bucharest Romania
| | - Beata E Kardynal
- Peter Grünberg Institute 9, JARA-FIT, Forschungszentrum Jülich 52425 Jülich Germany
- Department of Physics, RWTH Aachen University 52074 Aachen Germany
| | - Toma Stoica
- National Institute of Materials Physics 405A Atomistilor Street 077125 Magurele Romania
| |
Collapse
|
3
|
Tan J, Feng L, Shao J, Zhang W, Qin H, Liu H, Shu Y, Yang L, Meng Y, Tang Y, Gao Q. In Situ Li + Intercalation into Nanosized Chevrel Phase Mo 6S 8 toward Efficient Electrochemical Nitroarene Reduction. J Am Chem Soc 2025; 147:10118-10128. [PMID: 40068004 DOI: 10.1021/jacs.4c14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Electrochemical nitroarene reduction enables the green production of anilines at ambient conditions thanks to the manipulated transfer of multiple electrons and protons via controlling potentials and currents, but challenges remain in pH-neutral electrolysis using nonprecious catalysts. Here, Chevrel phase Mo6S8 with high conductivity and insertable frameworks is proposed for the first time as a cost-efficient candidate with prominent performance and, more importantly, as a new platform to unravel cation effects on nitroarene electroreduction. Nanosized Mo6S8 derived from polymer-confined sulfidation affords a high yield (∼95%) and Faradaic efficiency (∼99%) for reducing 4-nitrostyrene to 4-aminostyrene at -0.45 V (vs RHE) in 0.1 M LiClO4, outperforming a series of counterparts of metal sulfides and even noble metals. The combination of experimental and theoretical analyses identifies an intercalation-correlated cation effect, expanding the current knowledge limited to the outer Helmholtz plane of electrodes. In situ Li+ intercalation into Mo6S8 cavities during electrolysis ameliorates the electronic configurations and thereby promotes the adsorption of the nitro group on low-coordinated Mo sites for hydrogenation via a proton-coupled electron transfer mechanism. Furthermore, the efficient electrosynthesis of aniline derivatives with conserved reducing groups from a wide range of substrates highlights the promise of Mo6S8 for electrochemical refinery.
Collapse
Affiliation(s)
- Jingwen Tan
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Lei Feng
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Junjie Shao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Haoran Qin
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Hongxi Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Yijin Shu
- School of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675099, P. R. China
| | - Lichun Yang
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China
| | - Yuying Meng
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
4
|
Morant-Giner M, Gentile G, Prato M, Filippini G. Molybdenum Disulfide-Based Catalysts in Organic Synthesis: State of the Art, Open Issues, and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406697. [PMID: 39428828 DOI: 10.1002/smll.202406697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/20/2024] [Indexed: 10/22/2024]
Abstract
In the field of heterogeneous organic catalysis, molybdenum disulfide (MoS2) is gaining increasing attention as a catalytically active material due to its low toxicity, earth abundance, and affordability. Interestingly, the catalytic properties of this metal-based material can be improved by several strategies. In this Perspective, through the analysis of some explicative examples, the main approaches used to prepare highly efficient MoS2-based catalysts in relevant organic reactions are summarized and critically discussed, namely: i) increment of the specific surface area, ii) generation of the metallic 1T phase, iii) introduction of vacancies, iv) preparation of nanostructured hybrids/composites, v) doping with transition metal ions, and vi) partial oxidation of MoS2. Finally, emerging trends in MoS2-based materials catalysis leading to a richer organic synthesis are presented.
Collapse
Affiliation(s)
- Marc Morant-Giner
- Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Giuseppe Gentile
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
- Center for the Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Basque Foundation for Science, Ikerbasque, Plaza Euskadi 5, Bilbao, 48013, Spain
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| |
Collapse
|
5
|
Lee Y, Hong S, Moon I, Kim CJ, Lee Y, Hong BH. Laser-assisted synthesis and modification of 2D materials. NANOTECHNOLOGY 2024; 36:052003. [PMID: 39433061 DOI: 10.1088/1361-6528/ad892a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Two-dimensional (2D) materials with unique physical, electronic, and optical properties have been intensively studied to be utilized for the next-generation electronic and optical devices, and the use of laser energy in the synthesis and modification of 2D materials is advantageous due to its convenient and fast fabrication processes as well as selective, controllable, and cost-effective characteristics allowing the precise control in materials properties. This paper summarizes the recent progress in utilizations of laser technology in synthesizing, doping, etching, transfer and strain engineering of 2D materials, which is expected to provide an insight for the future applications across diverse research areas.
Collapse
Affiliation(s)
- Yejun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunhwa Hong
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Issac Moon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan-Jin Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunseok Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Graphene Research Center & Graphene Square Inc., Advanced Institute of Convergence Technology, Suwon 16229, Republic of Korea
| |
Collapse
|
6
|
Liang J, Wu L, Li Z, Liu Y, Ding N, Dong Z. Preparation of core-shell catalyst for the tandem reaction of amino compounds with aldehydes. RSC Adv 2023; 13:5186-5196. [PMID: 36777936 PMCID: PMC9909682 DOI: 10.1039/d2ra08016h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Heterogeneous noble metal-based catalysts with stable, precise structures and high catalytic performance are of great research interest for sustainable catalysis. In this article, we designed a novel core-shell catalyst, Pd@UiO-66-NH2@mSiO2, with Pd@UiO-66-NH2 as the core and mesoporous SiO2 (mSiO2) as the shell. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) measurement results demonstrated that the obtained catalyst has an excellent core-shell structure. It can significantly prevent the aggregation of Pd nanoparticles (NPs), as well as the leaching of Pd NPs during the reaction process, owing to the protective effect of mSiO2. During the tandem reaction of aniline and benzaldehyde to generate secondary amines, the prepared Pd@UiO-66-NH2@mSiO2 is highly efficient, due to the strong acid sites provided by UiO-66-NH2 and the hydrogenation reduction sites provided by Pd NPs. Meanwhile, the Pd@UiO-66-NH2@mSiO2 with porous structure can also enhance the mass transfer of reactants to improve the reaction efficiency. Additionally, the prepared catalyst was used to catalyze the series reaction of amino compounds and aldehydes, and the results showed that just 5 mg of the catalyst can convert more than 99% of the reactants within 60 minutes in the presence of 1 atm H2 at room temperature. Finally, the selectivity and stability of the as-prepared catalyst were also confirmed.
Collapse
Affiliation(s)
- Jinhua Liang
- College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 PR China +86 931 4512932 +86 931 4512932
| | - Lan Wu
- College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 PR China +86 931 4512932 +86 931 4512932
| | - Zhenhua Li
- College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 PR China +86 931 4512932 +86 931 4512932
| | - Yang Liu
- College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 PR China +86 931 4512932 +86 931 4512932
| | - Nana Ding
- College of Chemical Engineering, Northwest Minzu University Lanzhou Gansu 730030 PR China +86 931 4512932 +86 931 4512932
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 PR China
| |
Collapse
|
7
|
Chen B, Zhang Q, Zhao P, Cen M, Song Y, Zhao W, Peng W, Li Y, Zhang F, Fan X. Coupled Co-Doped MoS 2 and CoS 2 as the Dual-Active Site Catalyst for Chemoselective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1317-1325. [PMID: 36542820 DOI: 10.1021/acsami.2c19069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Catalytic hydrogenation plays an important role in the industrial production of fine chemicals. Herein, we report a Co-doped MoS2 and CoS2 composite with a coupling interface and successfully apply it for the chemoselective hydrogenation of p-chloronitrobenzene to p-chloroaniline. The target catalyst 0.5CoMoS has ∼100% conversion and ∼100% selectivity. Experiments and theoretical calculations reveal that CoS2 is more favorable for adsorbing and activating H2 and provides active hydrogen (Ha) to Co-doped MoS2 by the coupling interface. By matching the production and consumption rates of Ha, the maximization of the reaction yield was achieved. This work may promote the study of MoS2-based catalysts for chemoselective hydrogenation.
Collapse
Affiliation(s)
- Bin Chen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Qicheng Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Pengwei Zhao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Mingjun Cen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Yue Song
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Weipeng Zhao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
- Institute of Shaoxing, Tianjin University, Zhejiang312300, China
| |
Collapse
|
8
|
Wang X, Wu J, Zhang Y, Sun Y, Ma K, Xie Y, Zheng W, Tian Z, Kang Z, Zhang Y. Vacancy Defects in 2D Transition Metal Dichalcogenide Electrocatalysts: From Aggregated to Atomic Configuration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206576. [PMID: 36189862 DOI: 10.1002/adma.202206576] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Vacancy defect engineering has been well leveraged to flexibly shape comprehensive physicochemical properties of diverse catalysts. In particular, growing research effort has been devoted to engineering chalcogen anionic vacancies (S/Se/Te) of 2D transition metal dichalcogenides (2D TMDs) toward the ultimate performance limit of electrocatalytic hydrogen evolution reaction (HER). In spite of remarkable progress achieved in the past decade, systematic and in-depth insights into the state-of-the-art vacancy engineering for 2D-TMDs-based electrocatalysis are still lacking. Herein, this review delivers a full picture of vacancy engineering evolving from aggregated to atomic configurations covering their development background, controllable manufacturing, thorough characterization, and representative HER application. Of particular interest, the deep-seated correlations between specific vacancy regulation routes and resulting catalytic performance improvement are logically clarified in terms of atomic rearrangement, charge redistribution, energy band variation, intermediate adsorption-desorption optimization, and charge/mass transfer facilitation. Beyond that, a broader vision is cast into the cutting-edge research fields of vacancy-engineering-based single-atom catalysis and dynamic structure-performance correlations across catalyst service lifetime. Together with critical discussion on residual challenges and future prospects, this review sheds new light on the rational design of advanced defect catalysts and navigates their broader application in high-efficiency energy conversion and storage fields.
Collapse
Affiliation(s)
- Xin Wang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jing Wu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuwei Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yu Sun
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Kaikai Ma
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yong Xie
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wenhao Zheng
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhen Tian
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
9
|
A novel 2D sulfide gallium heterojunction as a high-performance electrocatalyst for overall water splitting. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Zhou S, Zeng HC. Boxlike Assemblages of Few-Layer MoS 2 Nanosheets with Edge Blockage for High-Efficiency Hydrogenation of CO 2 to Methanol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shenghui Zhou
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
11
|
Zhao Y, Chang K, Gu Q, Yang B, Xu J, Zhang Y, Pan C, Wang Z, Lou Y, Zhu Y. Noble Metal-Free 2D 1T-MoS 2 Edge Sites Boosting Selective Hydrogenation of Maleic Anhydride. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yi Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kuan Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qingqing Gu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian 116023, China
| | - Bing Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian 116023, China
| | - Jing Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengsi Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenlin Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Rodenes M, Gonell F, Martín S, Corma A, Sorribes I. Molecularly Engineering Defective Basal Planes in Molybdenum Sulfide for the Direct Synthesis of Benzimidazoles by Reductive Coupling of Dinitroarenes with Aldehydes. JACS AU 2022; 2:601-612. [PMID: 35373204 PMCID: PMC8965831 DOI: 10.1021/jacsau.1c00477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Developing more sustainable catalytic processes for preparing N-heterocyclic compounds in a less costly, compact, and greener manner from cheap and readily available reagents is highly desirable in modern synthetic chemistry. Herein, we report a straightforward synthesis of benzimidazoles by reductive coupling of o-dinitroarenes with aldehydes in the presence of molecular hydrogen. An innovative molecular cluster-based synthetic strategy that employs Mo3S4 complexes as precursors have been used to engineer a sulfur-deficient molybdenum disulfide (MoS2)-type material displaying structural defects on both the naturally occurring edge positions and along the typically inactive basal planes. By applying this catalyst, a broad range of functionalized 2-substituted benzimidazoles, including bioactive compounds, can be selectively synthesized by such a direct hydrogenative coupling protocol even in the presence of hydrogenation-sensitive functional groups, such as double and triple carbon-carbon bonds, nitrile and ester groups, and halogens as well as diverse types of heteroarenes.
Collapse
Affiliation(s)
- Miriam Rodenes
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | - Francisco Gonell
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | - Santiago Martín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Departamento
de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Avelino Corma
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | - Iván Sorribes
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| |
Collapse
|
13
|
Shao F, Wang X, Zhao Z, Wei Z, Zhong X, Yao Z, Deng S, Wang S, Wang H, Li A, Wang J. Ru Cluster-Decorated Cu Nanoparticles Enhanced Selectivity to Imine from One-Pot Cascade Transformations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fangjun Shao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaojian Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zijiang Zhao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xing Zhong
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zihao Yao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shenwei Deng
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shibin Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Aiyuan Li
- Zhejiang Collaborative Innovation Center for High Value Utilization of byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo, Zhejiang 315800, P. R. China
| | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
14
|
Li S, Huang Z, Liu H, Liu M, Zhang C, Wang F. Polar hydrogen species mediated nitroarenes selective reduction to anilines over an [FeMo]S x catalyst. Dalton Trans 2022; 51:1553-1560. [PMID: 34989728 DOI: 10.1039/d1dt03107d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein present an efficient approach for the chemoselective synthesis of arylamines from nitroarenes and hydrazine over an iron-molybdenum sulfide catalyst ([FeMo]Sx). The heterogeneous hydrogen transfer reduction can be efficiently carried out at 30 °C and provides anilines with 95-99% selectivities. The in situ gas product analysis demonstrates that [FeMo]Sx can catalyze the decomposition of N2H4 to H* species, not H2. Combining with the kinetic analysis of the aniline generation rates from nitrobenzene and intermediates, the nitro group reduction to the nitroso group is confirmed to be the rate-determining step. The positive slope of Hammett's equation suggests that the critical intermediate in the rate-determining step is in the negative state, which suggests that the active H* should be in polar states (Hδ- and Hδ+). These findings will provide a novel route for the synthesis of substituted anilines and broaden the application of MoSx catalysts under mild conditions.
Collapse
Affiliation(s)
- Siqi Li
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China.,State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhipeng Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Meijiang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaofeng Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
15
|
Zhao H, Li B, Zhao H, Li J, Kou J, Zhu H, Liu B, Li Z, Sun X, Dong Z. Construction of a sandwich-like UiO-66-NH 2@Pt@mSiO 2 catalyst for one-pot cascade reductive amination of nitrobenzene with benzaldehyde. J Colloid Interface Sci 2022; 606:1524-1533. [PMID: 34500155 DOI: 10.1016/j.jcis.2021.08.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Heterogeneous noble metal-based catalysts with stable, precise structures and high catalytic performance are of great research interest for sustainable catalysis. Herein, we designed the novel sandwich-like metal-organic-framework composite nanocatalyst UiO-66-NH2@Pt@mSiO2 using UiO-66-NH2@Pt as the core, and mesoporous SiO2 as the shell. The obtained UiO-66-NH2@Pt@mSiO2 catalyst shows a well-defined structure and interface, and the protection of the mSiO2 shell can efficiently prevent Pt NPs from aggregating and leaching in the reaction process. In the one-pot cascade reaction of nitroarenes and aromatic aldehydes to secondary amines, UiO-66-NH2@Pt@mSiO2 shows excellent catalytic performance due to acid catalytic sites provided by UiO-66-NH2 and Pt hydrogenation catalytic sites. Furthermore, the porous structure of the UiO-66-NH2@Pt@mSiO2 catalyst also enhances reactant diffusion and improves the reaction efficiency. This work provides a new avenue to meticulously design well-defined nanocatalysts with superior catalytic performance and stability for challenging reactions.
Collapse
Affiliation(s)
- Hong Zhao
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Boyang Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Huacheng Zhao
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jianfeng Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jinfang Kou
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Hanghang Zhu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Bing Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Zhenhua Li
- Key Laboratory of Environmental Friendly Composite Materials and Biomass in Universities of Gansu Province, Northwest Minzu University, Lanzhou 730030, PR China.
| | - Xun Sun
- Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
16
|
Zhu H, David Wang W, Li F, Sun X, Li B, Song Q, Kou J, Ma K, Ren X, Dong Z. Facile preparation of ultrafine Pd nanoparticles anchored on covalent triazine frameworks catalysts for efficient N-alkylation. J Colloid Interface Sci 2022; 606:1340-1351. [PMID: 34500150 DOI: 10.1016/j.jcis.2021.08.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 01/25/2023]
Abstract
The fabrication of stable and efficient catalysts for green and economic catalytic transformation is significant. Here, highly stable covalent triazine frameworks (CTF-1) were used as the supporting material for anchoring ultrafine Pd nanoparticles (NPs) via a facile impregnation process and a one-pot calcination-reduction strategy. The widespread dispersion of ultrafine Pd NPs was a result of the abundant high nitrogen-content triazine groups of CTF-1 that endowed the catalyst Pd@CTF-1 with high catalytic activity. The catalytic performance of Pd@CTF-1 was demonstrated by the one-pot N-alkylation of benzaldehyde with aniline (or nitrobenzene) under mild reaction conditions, and Pd@CTF-1 exhibited a wide range of general applicability for N-alkylation reactions. The reaction mechanism for the N-alkylation reaction was also studied in detail. In addition, the Pd@CTF-1 catalyst exhibited high thermal and chemical stability, maintaining good catalytic efficiency after multiple reaction cycles. This study provides new insights for the fabrication of organic supporting materials with highly dispersed active catalytic sites that can lead to excellent catalytic performance for efficient, economical, and green reactions.
Collapse
Affiliation(s)
- Hanghang Zhu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Feng Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Xun Sun
- Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Boyang Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Qiang Song
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jinfang Kou
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Kexin Ma
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xuanguang Ren
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
17
|
Ramalingam A, Samaraj E, Venkateshwaran S, Senthilkumar SM, Senadi GC. 1T-MoS 2 catalysed reduction of nitroarenes and a one-pot synthesis of imines. NEW J CHEM 2022. [DOI: 10.1039/d2nj00732k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An expedient synthesis of aromatic amines and imines via the reduction of nitroaromatics using 1T-MoS2 as a heterogeneous catalyst.
Collapse
Affiliation(s)
- Ariprasanth Ramalingam
- Department of Chemistry, SRM Institute of science and technology, Kattankulathur, Chennai, 603203, India
| | - Elavarasan Samaraj
- Department of Chemistry, SRM Institute of science and technology, Kattankulathur, Chennai, 603203, India
| | - Selvaraj Venkateshwaran
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sakkarapalayam Murugesan Senthilkumar
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gopal Chandru Senadi
- Department of Chemistry, SRM Institute of science and technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
18
|
Binary CuO/TiO2 nanocomposites as high-performance catalysts for tandem hydrogenation of nitroaromatics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
She W, Wang J, Li X, Li J, Mao G, Li W, Li G. Highly chemoselective synthesis of imine over Co/Zn bimetallic MOFs derived Co3ZnC-ZnO embed in carbon nanosheet catalyst. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Spatial intimacy of binary active-sites for selective sequential hydrogenation-condensation of nitriles into secondary imines. Nat Commun 2021; 12:3382. [PMID: 34099687 PMCID: PMC8184996 DOI: 10.1038/s41467-021-23705-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 05/06/2021] [Indexed: 11/18/2022] Open
Abstract
Precisely controlling the spatial intimacy of multiple active sites at sub-nanoscale in heterogeneous catalysts can improve their selectivity and activity. Herein, we realize a highly selective nitrile-to-secondary imine transformation through a cascaded hydrogenation and condensation process by Pt1/CoBOx comprising the binary active sites of the single-dispersed Pt and interfacial Lewis acidic B. Atomic Pt sites with large inter-distances (>nanometers) only activate hydrogen for nitrile hydrogenation, but inhibit condensation. Both adjacent B…B on CoBOx and neighbouring Pt…B pairs with close intimacy of ~0.45 nm can satisfy the spatial prerequisites for condensation. Mechanism investigations demonstrate the energetically favorable pathway occurred on adjacent Lewis acidic B sites through the nitrile adsorption (acid-base interaction), hydrogenation via hydrogen spillover from Pt to B sites and sequential condensation. Strong intermolecular tension and steric hindrance of secondary imines on active sites lead to their effective desorption and thereby a high chemoselectivity of secondary imines. Precisely controlling the spatial intimacy of multiple active sites in heterogeneous catalysts can significantly affect the selectivity and activity. Here the authors show a binary active site of single atom Pt and Lewis acidic B with spatial intimacy enables a highly selective nitrile-to-secondary imine transformation.
Collapse
|
21
|
Romanazzi G, Petrelli V, Fiore AM, Mastrorilli P, Dell’Anna MM. Metal-based Heterogeneous Catalysts for One-Pot Synthesis of Secondary Anilines from Nitroarenes and Aldehydes. Molecules 2021; 26:1120. [PMID: 33672487 PMCID: PMC7923527 DOI: 10.3390/molecules26041120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 01/25/2023] Open
Abstract
Recently, N-substituted anilines have been the object of increasing research interest in the field of organic chemistry due to their role as key intermediates for the synthesis of important compounds such as polymers, dyes, drugs, agrochemicals and pharmaceutical products. Among the various methods reported in literature for the formation of C-N bonds to access secondary anilines, the one-pot reductive amination of aldehydes with nitroarenes is the most interesting procedure, because it allows to obtain diverse N-substituted aryl amines by simple reduction of nitro compounds followed by condensation with aldehydes and subsequent reduction of the imine intermediates. These kinds of tandem reactions are generally catalyzed by transition metal-based catalysts, mainly potentially reusable metal nanoparticles. The rapid growth in the last years in the field of metal-based heterogeneous catalysts for the one-pot reductive amination of aldehydes with nitroarenes demands for a review on the state of the art with a special emphasis on the different kinds of metals used as catalysts and their recyclability features.
Collapse
Affiliation(s)
- Giuseppe Romanazzi
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, Bari 70125, Italy; (V.P.); (A.M.F.); (P.M.)
| | | | | | | | - Maria Michela Dell’Anna
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, via Orabona 4, Bari 70125, Italy; (V.P.); (A.M.F.); (P.M.)
| |
Collapse
|
22
|
Chai K, Shi Y, Wang Y, Zou P, Yuan Q, Xu W, Zhang P. Visible light-driven oxidative coupling of dibenzylamine and substituted anilines with a 2D WSe 2 nanomesh material. NANOSCALE 2020; 12:21869-21878. [PMID: 33107549 DOI: 10.1039/d0nr05128d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel 2D WSe2 nanomesh material was synthesized with a 3D SBA-15 mesoporous material via a nanocasting strategy. The formation of the 2D sheet-like nanomesh structure of WSe2 inside a 3D confined pore space is mainly attributed to the synergistic effect arising from the crystal self-limitation growth caused by the layered crystal structure of the WSe2 material and to the space-limitation effect coming from the unique pore structure of the SBA-15 template. The 2D WSe2 nanomesh material possesses extremely high exposure of crystal layer edges, making it an excellent photocatalyst. It shows good visible light-driven photocatalytic performance in oxidative coupling of dibenzylamine and 2-amino/hydroxy/mercaptoanilines to prepare a group of heterocyclic compounds, including benzimidazoles, benzoxazoles and benzothiazoles with oxygen as the sole oxidant. A gram-scale experiment was also carried out to exhibit the scope of this method.
Collapse
Affiliation(s)
- Kejie Chai
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Gong W, Han M, Chen C, Lin Y, Wang G, Zhang H, Zhao H. Rational Design of Cobalt‐Platinum Alloy Decorated Cobalt Nanoparticles for One‐Pot Synthesis of Imines from Nitroarenes and Aldehydes. ChemCatChem 2020. [DOI: 10.1002/cctc.202001331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wanbing Gong
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences 350 Shushanhu Road Hefei 230031 P. R. China
| | - Miaomiao Han
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences 350 Shushanhu Road Hefei 230031 P. R. China
| | - Chun Chen
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences 350 Shushanhu Road Hefei 230031 P. R. China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China 96 Jinzhai Road Hefei 230026 P. R. China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences 350 Shushanhu Road Hefei 230031 P. R. China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences 350 Shushanhu Road Hefei 230031 P. R. China
| | - Huijun Zhao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology CAS Center for Excellence in Nanoscience Institute of Solid State Physics Chinese Academy of Sciences 350 Shushanhu Road Hefei 230031 P. R. China
- Centre for Clean Environment and Energy Griffith University Gold Coast Campus Queensland 4222 Australia
| |
Collapse
|
24
|
Cheng H, Long X, Bian F, Yang C, Liu X, Jiang H. Efficient photocatalytic one-pot hydrogenation and N-alkylation of nitrobenzenes/benzonitriles with alcohols over Pd/MOFs: Effect of the crystal morphology & “quasi-MOF” structure. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Lin G, Li H, Xie K. Twisted Surfaces in Porous Single Crystals to Deliver Enhanced Catalytic Activity and Stability. Angew Chem Int Ed Engl 2020; 59:16440-16444. [DOI: 10.1002/anie.202006299] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Guoming Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Hao Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Key Laboratory of Design & Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
26
|
Lin G, Li H, Xie K. Twisted Surfaces in Porous Single Crystals to Deliver Enhanced Catalytic Activity and Stability. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guoming Lin
- Key Laboratory of Optoelectronic Materials Chemistry and PhysicsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Hao Li
- Key Laboratory of Optoelectronic Materials Chemistry and PhysicsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and PhysicsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
- Key Laboratory of Design & Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
27
|
Chen X, Liu Y, Wang J. Lignocellulosic Biomass Upgrading into Valuable Nitrogen-Containing Compounds by Heterogeneous Catalysts. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01815] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xi Chen
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, 201306 Shanghai, China
| | - Ying Liu
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, 201306 Shanghai, China
| | - Jingyu Wang
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, 201306 Shanghai, China
| |
Collapse
|
28
|
Ravi K, Advani JH, Bankar BD, Singh AS, Biradar AV. Sustainable route for the synthesis of flower-like Ni@N-doped carbon nanosheets from bagasse and its catalytic activity towards reductive amination of nitroarenes with bio-derived aldehydes. NEW J CHEM 2020. [DOI: 10.1039/d0nj04673f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Waste derived N-doped carbon for one pot domino catalytic transformation starting from nitroarenes and carbonyl compounds directed towards the preparation of imines and benzimidazole products.
Collapse
Affiliation(s)
- Krishnan Ravi
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Jacky H. Advani
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Balasaheb D. Bankar
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Amravati S. Singh
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ankush V. Biradar
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
29
|
Kita Y, Kai S, Supriadi Rustad LB, Kamata K, Hara M. One-pot reductive amination of carbonyl compounds with nitro compounds over a Ni/NiO composite. RSC Adv 2020; 10:32296-32300. [PMID: 35516507 PMCID: PMC9056697 DOI: 10.1039/d0ra06937j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022] Open
Abstract
Easy-to-prepare Ni/NiO acts as an efficient heterogeneous catalyst for one-pot reductive amination of carbonyl compounds with nitroarenes.
Collapse
Affiliation(s)
- Yusuke Kita
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Sayaka Kai
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Lesandre Binti Supriadi Rustad
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|