1
|
Wu Y, Liu Z, Wang H, Shi H, Yuan W, Wang Y, Liu Y, Lv Y, Qin X, Zheng A, Wang L, Xiao FS. Hydroformylation over Zeolite Catalysts with Solvophobic Micropores. J Am Chem Soc 2025; 147:11301-11308. [PMID: 40106682 DOI: 10.1021/jacs.4c18771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Traditional gas-liquid-solid triphase reactions are often limited by gas solubility and diffusion in the liquid phase. We reported that a solvophobic catalyst with gas-filled micropores could enrich enormous amounts of gas molecules to accelerate Rh-catalyzed hydroformylation. This reaction used siliceous MFI zeolite fixed Rh nanoparticles in a mesitylene solvent. Owing to the shape selectivity, zeolite micropores prevent mesitylene from wetting the solid, allowing the rapid transport and efficient enrichment of gaseous reactants. This catalyst catalyzed ethylene hydroformylation with a propanal production rate significantly higher than those of the generally supported catalysts.
Collapse
Affiliation(s)
- Yuexin Wu
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Baima Lake Laboratory, Hangzhou 311121, China
| | - Zhiqiang Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hai Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hui Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon and Advanced Semiconductor, Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon and Advanced Semiconductor, Materials School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yifeng Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yating Lv
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuedi Qin
- Zhejiang Baima Lake Laboratory, Hangzhou 311121, China
| | - Anmin Zheng
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Baima Lake Laboratory, Hangzhou 311121, China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Baima Lake Laboratory, Hangzhou 311121, China
| |
Collapse
|
2
|
Ahn S, Friedman SK, Notestein JM. Effect of surface modification on silica supported Ti catalysts for cyclohexene oxidation with vapor-phase hydrogen peroxide. RSC Adv 2024; 14:25425-25428. [PMID: 39139225 PMCID: PMC11321206 DOI: 10.1039/d4ra04552a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Surface modification via grafting of organic moieties on a Lewis acid catalyst (silica supported Ti catalyst, Ti-SiO2) alters the activation of H2O2 in vapor-phase cyclohexene epoxidation. Grafting a fluorous group (1H,1H-perfluoro-octyl) suppresses activity of Ti-SiO2. Conversely, grafting either a nonpolar group (octyl) or a polar aprotic group (triethylene glycol monomethyl ether) enhances rates and shifts selectivity toward trans-1,2-cyclohexanediol.
Collapse
Affiliation(s)
- Sol Ahn
- Department of Chemical Engineering, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul 06974 Republic of Korea
| | | | - Justin M Notestein
- Department of Chemical and Biological Engineering USA
- Center for Catalysis and Surface Science 2145 Sheridan Rd Evanston Illinois 60208 USA
| |
Collapse
|
3
|
Kwon O, Zeynep Ayla E, Potts DS, Flaherty DW. Influence of Ti-incorporated Zeolite Topology and Pore Condensation on Vapor Phase Propylene Epoxidation Kinetics with Gaseous H 2O 2. Angew Chem Int Ed Engl 2024; 63:e202405950. [PMID: 38735848 DOI: 10.1002/anie.202405950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Vapor-phase propylene (C3H6) epoxidation kinetics with hydrogen peroxide (H2O2) strongly reflects the physical properties of Ti-incorporated zeolite catalysts and the presence of spectating molecules ("solvent") near active sites even without a bulk liquid phase. Steady-state turnover rates of C3H6 epoxidation and product selectivities vary by orders of magnitudes, depending on the zeolite silanol ((SiOH)x) density, pore topology (MFI, *BEA, FAU), and the quantity of condensed acetonitrile (CH3CN) molecules nearby active sites, under identical reaction mechanisms sharing activated H2O2 intermediates on Ti surfaces. Individual kinetic analyses for propylene oxide (PO) ring-opening, homogeneous diol oxidative cleavage, and homogeneous aldehyde oxidation reveal that secondary reaction kinetics following C3H6 epoxidation responds more sensitively to the changes in zeolite physical properties and pore condensation with CH3CN. Thus, higher PO selectivities achieved in hydrophilic Ti-MFI at steady-state reflect the preferential stabilization of transition states for C3H6 epoxidation (a primary reaction) relative to PO ring-opening and oxidative cleavage (secondary reactions) that solvation effects that reflect interactions among condensed CH3CN within pores and the extended pore structure.
Collapse
Affiliation(s)
- Ohsung Kwon
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - E Zeynep Ayla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Torkashvand Z, Sepehrmansourie H, Zolfigol MA, Gu Y. Ti-based MOFs with acetic acid pendings as an efficient catalyst in the preparation of new spiropyrans with biological moieties. Sci Rep 2024; 14:14101. [PMID: 38890358 PMCID: PMC11189590 DOI: 10.1038/s41598-024-62757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The strategy of designing heterogeneous porous catalysts by a post-modification method is a smart strategy to increase the catalytic power of desired catalysts. Accordingly, in this report, metal-organic frameworks based on titanium with acetic acid pending were designed and synthesized via post-modification method. The structure of the target catalyst has been investigated using different techniques such as FT-IR, XRD, SEM, EDX, Mapping, and N2 adsorption/desorption (BET/the BJH) the correctness of its formation has been proven. The catalytic application of Ti-based MOFs functionalized with acetic acid was evaluated in the preparation of new spiropyrans, and the obtained results show that the catalytic performance is improved by this modification. The strategy of designing heterogeneous porous catalysts through post-modification methods presents a sophisticated approach to enhancing the catalytic efficacy of desired catalysts. In this context, our study focuses on the synthesis and characterization of metal-organic frameworks (MOFs) based on titanium, functionalized with acetic acid pendants, using a post-modification method. Various characterization techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), mapping, and N2 adsorption/desorption (BET/BJH), were employed to investigate the structure and composition of the synthesized catalyst. These techniques collectively confirmed the successful formation and structural integrity of the target catalyst. The structure of the synthesized products was confirmed by melting point, 1H-NMR and 13C-NMR and FT-IR techniques. Examining the general process of catalyst synthesis and its catalytic application shows that the mentioned modification is very useful for catalytic purposes. The presented catalyst was used in synthesis of a wide range of biologically active spiropyrans with good yields. The simultaneous presence of several biologically active cores in the synthesized products will highlight the biological properties of these compounds. The present study offers a promising insight into the rational design, synthesis, and application of task-specific porous catalysts, particularly in the context of synthesizing biologically active candidate molecules.
Collapse
Affiliation(s)
- Zahra Torkashvand
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, China
| |
Collapse
|
5
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
6
|
He Z, Lei Q, Dai W, Zhang H. Solvent Tunes the Selectivity of Alkenes Epoxidation over Ti-Beta Zeolite: A Systematic Kinetic Assessment on Elementary Steps, Kinetically Relevant and Reaction Barriers. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
7
|
McCullough K, King DS, Chheda SP, Ferrandon MS, Goetjen TA, Syed ZH, Graham TR, Washton NM, Farha OK, Gagliardi L, Delferro M. High-Throughput Experimentation, Theoretical Modeling, and Human Intuition: Lessons Learned in Metal-Organic-Framework-Supported Catalyst Design. ACS CENTRAL SCIENCE 2023; 9:266-276. [PMID: 36844483 PMCID: PMC9951283 DOI: 10.1021/acscentsci.2c01422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/18/2023]
Abstract
We have screened an array of 23 metals deposited onto the metal-organic framework (MOF) NU-1000 for propyne dimerization to hexadienes. By a first-of-its-kind study utilizing data-driven algorithms and high-throughput experimentation (HTE) in MOF catalysis, yields on Cu-deposited NU-1000 were improved from 0.4 to 24.4%. Characterization of the best-performing catalysts reveal conversion to hexadiene to be due to the formation of large Cu nanoparticles, which is further supported by reaction mechanisms calculated with density functional theory (DFT). Our results demonstrate both the strengths and weaknesses of the HTE approach. As a strength, HTE excels at being able to find interesting and novel catalytic activity; any a priori theoretical approach would be hard-pressed to find success, as high-performing catalysts required highly specific operating conditions difficult to model theoretically, and initial simple single-atom models of the active site did not prove representative of the nanoparticle catalysts responsible for conversion to hexadiene. As a weakness, our results show how the HTE approach must be designed and monitored carefully to find success; in our initial campaign, only minor catalytic performances (up to 4.2% yield) were achieved, which were only improved following a complete overhaul of our HTE approach and questioning our initial assumptions.
Collapse
Affiliation(s)
- Katherine
E. McCullough
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
| | - Daniel S. King
- Department
of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Saumil P. Chheda
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Magali S. Ferrandon
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
| | - Timothy A. Goetjen
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Zoha H. Syed
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Trent R. Graham
- Pacific
Northwest National Laboratory, Richland, Washington99354, United States
| | - Nancy M. Washton
- Pacific
Northwest National Laboratory, Richland, Washington99354, United States
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Laura Gagliardi
- Department
of Chemistry, University of Chicago, Chicago, Illinois60637, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois60637, United
States
- James
Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Massimiliano Delferro
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois60637, United
States
| |
Collapse
|
8
|
Iliescu A, Oppenheim JJ, Sun C, Dincǎ M. Conceptual and Practical Aspects of Metal-Organic Frameworks for Solid-Gas Reactions. Chem Rev 2023; 123:6197-6232. [PMID: 36802581 DOI: 10.1021/acs.chemrev.2c00537] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The presence of site-isolated and well-defined metal sites has enabled the use of metal-organic frameworks (MOFs) as catalysts that can be rationally modulated. Because MOFs can be addressed and manipulated through molecular synthetic pathways, they are chemically similar to molecular catalysts. They are, nevertheless, solid-state materials and therefore can be thought of as privileged solid molecular catalysts that excel in applications involving gas-phase reactions. This contrasts with homogeneous catalysts, which are overwhelmingly used in the solution phase. Herein, we review theories dictating gas phase reactivity within porous solids and discuss key catalytic gas-solid reactions. We further treat theoretical aspects of diffusion within confined pores, the enrichment of adsorbates, the types of solvation spheres that a MOF might impart on adsorbates, definitions of acidity/basicity in the absence of solvent, the stabilization of reactive intermediates, and the generation and characterization of defect sites. The key catalytic reactions we discuss broadly include reductive reactions (olefin hydrogenation, semihydrogenation, and selective catalytic reduction), oxidative reactions (oxygenation of hydrocarbons, oxidative dehydrogenation, and carbon monoxide oxidation), and C-C bond forming reactions (olefin dimerization/polymerization, isomerization, and carbonylation reactions).
Collapse
Affiliation(s)
- Andrei Iliescu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chenyue Sun
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincǎ
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Chen Y, Ahn S, Mian MR, Wang X, Ma Q, Son FA, Yang L, Ma K, Zhang X, Notestein JM, Farha OK. Modulating Chemical Environments of Metal-Organic Framework-Supported Molybdenum(VI) Catalysts for Insights into the Structure-Activity Relationship in Cyclohexene Epoxidation. J Am Chem Soc 2022; 144:3554-3563. [PMID: 35179900 DOI: 10.1021/jacs.1c12421] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Solid supports are crucial in heterogeneous catalysis due to their profound effects on catalytic activity and selectivity. However, elucidating the specific effects arising from such supports remains challenging. We selected a series of metal-organic frameworks (MOFs) with 8-connected Zr6 nodes as supports to deposit molybdenum(VI) onto to study the effects of pore environment and topology on the resulting Mo-supported catalysts. As characterized by X-ray absorption spectroscopy (XAS) and single-crystal X-ray diffraction (SCXRD), we modulated the chemical environments of the deposited Mo species. For Mo-NU-1000, the Mo species monodentately bound to the Zr6 nodes were anchored in the microporous c-pore, but for Mo-NU-1008 they were bound in the mesopore of Mo-NU-1008. Both monodentate and bidentate modes were found in the mesopore of Mo-NU-1200. Cyclohexene epoxidation with H2O2 was probed to evaluate the support effect on catalytic activity and to unveil the resulting structure-activity relationships. SCXRD and XAS studies demonstrated the atomically precise structural differences of the Mo binding motifs over the course of cyclohexene epoxidation. No apparent structural change was observed for Mo-NU-1000, whereas the monodentate mode of Mo species in Mo-NU-1008 and the monodentate and bidentate Mo species in Mo-NU-1200 evolved to a new bidentate mode bound between two adjacent oxygen atoms from the Zr6 node. This work demonstrates the great advantage of using MOF supports for constructing heterogeneous catalysts with modulated chemical environments of an active species and elucidating structure-activity relationships in the resulting reactions.
Collapse
Affiliation(s)
- Yongwei Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.,Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sol Ahn
- Center for Catalysis and Surface Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qing Ma
- DND-CAT, Northwestern Synchrotron Research Center at the Advanced Photon Source, Argonne, Illinois 60439, United States
| | - Florencia A Son
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lifeng Yang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin M Notestein
- Center for Catalysis and Surface Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
11
|
Potts DS, Bregante DT, Adams JS, Torres C, Flaherty DW. Influence of solvent structure and hydrogen bonding on catalysis at solid-liquid interfaces. Chem Soc Rev 2021; 50:12308-12337. [PMID: 34569580 DOI: 10.1039/d1cs00539a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solvent molecules interact with reactive species and alter the rates and selectivities of catalytic reactions by orders of magnitude. Specifically, solvent molecules can modify the free energies of liquid phase and surface species via solvation, participating directly as a reactant or co-catalyst, or competitively binding to active sites. These effects carry consequences for reactions relevant for the conversion of renewable or recyclable feedstocks, the development of distributed chemical manufacturing, and the utilization of renewable energy to drive chemical reactions. First, we describe the quantitative impact of these effects on steady-state catalytic turnover rates through a rate expression derived for a generic catalytic reaction (A → B), which illustrates the functional dependence of rates on each category of solvent interaction. Second, we connect these concepts to recent investigations of the effects of solvents on catalysis to show how interactions between solvent and reactant molecules at solid-liquid interfaces influence catalytic reactions. This discussion demonstrates that the design of effective liquid phase catalytic processes benefits from a clear understanding of these intermolecular interactions and their implications for rates and selectivities.
Collapse
Affiliation(s)
- David S Potts
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Daniel T Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jason S Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Chris Torres
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
12
|
Otake KI, Ahn S, Knapp J, Hupp JT, Notestein JM, Farha OK. Vapor-Phase Cyclohexene Epoxidation by Single-Ion Fe(III) Sites in Metal-Organic Frameworks. Inorg Chem 2021; 60:2457-2463. [PMID: 33497212 DOI: 10.1021/acs.inorgchem.0c03364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heterogeneous catalysts supported on metal-organic frameworks (MOFs), which possess uniform porosity and crystallinity, have attracted significant interest for recent years due to the ease of active-site characterization via X-ray diffraction and the subsequent relation of the active site structure to the catalytic activity. We report the syntheses, structures, and oxidation catalytic activities of single-ion iron catalysts incorporated into the zirconium MOF NU-1000. Single-ion iron catalysts with different counteranions were anchored onto the Zr node through postsynthetic solvothermal deposition. Crystallographic characterization of the resulting MOFs (NU-1000-Fe-Cl and NU-1000-Fe-NO3) revealed that, while both frameworks have similar Fe coordination, the distance between Fe and the Zr6 node differs significantly between the two. The product rate profiles of the two catalysts for vapor-phase cyclohexene epoxidation demonstrate different initial rates and product formations, likely originating from the different Fe-O distances.
Collapse
|
13
|
Yang X, Li X, Dong J. Farringtonite as an efficient catalyst for linear-chain α-olefin epoxidation with aqueous hydrogen peroxide. NEW J CHEM 2021. [DOI: 10.1039/d1nj01872h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A convenient, scalable, benign, and efficient epoxidation method based on farringtonite, without the use of transition metals, was developed for the first time.
Collapse
Affiliation(s)
- Xingyu Yang
- Department of Chemical Product Engineering
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Xu Li
- Department of Chemical Product Engineering
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Jinxiang Dong
- Department of Chemical Product Engineering
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| |
Collapse
|
14
|
Hicks KE, Rosen AS, Syed ZH, Snurr RQ, Farha OK, Notestein JM. Zr 6O 8 Node-Catalyzed Butene Hydrogenation and Isomerization in the Metal–Organic Framework NU-1000. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenton E. Hicks
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Andrew S. Rosen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zoha H. Syed
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q. Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Yoon TU, Ahn S, Kim AR, Notestein JM, Farha OK, Bae YS. Cyclohexene epoxidation with H2O2 in the vapor and liquid phases over a vanadium-based metal–organic framework. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00833h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A V-containing metal–organic framework exhibits significantly different catalytic mechanisms between liquid-phase and gas-phase cyclohexene oxidations.
Collapse
Affiliation(s)
- Tae-Ung Yoon
- Department of Chemical and Biomolecular Engineering
- Yonsei University
- Seoul 03722
- Korea
| | - Sol Ahn
- Department of Chemical and Biological Engineering
- Northwestern University
- Evanston
- USA
| | - Ah-Reum Kim
- Department of Chemical and Biomolecular Engineering
- Yonsei University
- Seoul 03722
- Korea
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering
- Northwestern University
- Evanston
- USA
| | - Omar K. Farha
- Department of Chemical and Biological Engineering
- Northwestern University
- Evanston
- USA
- International Institute of Nanotechnology and Department of Chemistry
| | - Youn-Sang Bae
- Department of Chemical and Biomolecular Engineering
- Yonsei University
- Seoul 03722
- Korea
| |
Collapse
|