1
|
Matsuzaki T, Kosugi K, Iwami H, Kambe T, Kiuchi H, Harada Y, Asakura D, Uematsu T, Kuwabata S, Saga Y, Kondo M, Masaoka S. Iron-complex-based catalytic system for high-performance water oxidation in aqueous media. Nat Commun 2025; 16:2145. [PMID: 40044652 PMCID: PMC11882805 DOI: 10.1038/s41467-025-57169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
Water oxidation is the key reaction in natural and artificial photosyntheses but is kinetically and thermodynamically sluggish. Extensive efforts have been made to develop artificial systems comparable to the natural system. However, constructing a molecular system based on ubiquitous metal ions with high performance in aqueous media similar to a natural system, remains challenging. In this study, inspired by nature, we successfully achieve highly efficient water oxidation in aqueous media. By electrochemical polymerisation of a pentanuclear iron complex bearing carbazole moieties, we successfully integrate two essential features of the natural system: catalytic centre composed of ubiquitous metal ions and charge transporting site. The resulting material catalyses water oxidation with a Faradaic efficiency of up to 99% in aqueous media. Our results provide a strategy to develop catalytic systems for water oxidation.
Collapse
Affiliation(s)
- Takumi Matsuzaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kento Kosugi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Department of Chemistry, School of Science, Institute of Science Tokyo, Tokyo, Japan
| | - Hikaru Iwami
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Tetsuya Kambe
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, Japan
| | - Hisao Kiuchi
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Daisuke Asakura
- Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Taro Uematsu
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, Japan
| | - Susumu Kuwabata
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yutaka Saga
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, Japan
| | - Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.
- Department of Chemistry, School of Science, Institute of Science Tokyo, Tokyo, Japan.
- JST, PRESTO, Kawaguchi, Saitama, Japan.
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
2
|
Nayak P, Singh AK, Nayak M, Kar S, Sahu K, Meena K, Topwal D, Indra A, Kar S. Structural modification of nickel tetra(thiocyano)corroles during electrochemical water oxidation. Dalton Trans 2024; 53:14922-14932. [PMID: 39194402 DOI: 10.1039/d4dt01628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In this study, we present two fully characterized nickel tetrathiocyanocorroles, representing a novel class of 3d-metallocorroles. These nickel(II) ions form square planar complexes, exhibiting a d8-electronic configuration. These anionic complexes are stabilized by the electron-withdrawing SCN groups on the bipyrrole unit of the corrole. The reduced aromaticity in these anionic nickel(II) corrole complexes is evidenced by single crystal X-ray diffraction (XRD) data and a markedly altered absorption profile, with stronger Q bands compared to Soret bands. Notably, the UV-Vis and electrochemical data exhibit significant differences from previously reported nickel(II) corrole radical cation and nickel(II) porphyrin complexes. While these electrochemical data bear a resemblance to those of the anionic nickel(II) corrole by Gross et al., the UV-Vis data show substantial distinctions. Additionally, we explore the utilization of nickel(II)-corrole@CC (where CC denotes carbon cloth) as an electrocatalyst for the oxygen evolution reaction (OER) in an alkaline medium. During electrochemical water oxidation, the molecular catalyst is partially converted to nickel (oxy)hydroxide, Ni(O)OH. The structure reveals the coexistence of the molecular complex and Ni(O)OH in the active catalyst, achieving a turnover frequency (TOF) of 3.32 × 10-2 s-1. The synergy between the homogeneous and heterogeneous phases improves the OER activity, providing more active sites and edge sites and enhancing interfacial charge transfer.
Collapse
Affiliation(s)
- Panisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Ajit Kumar Singh
- Department of Chemistry, IIT(BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Manisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Subhajit Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Kasturi Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Kiran Meena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Dinesh Topwal
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
- Institute of Physics, Bhubaneswar 751005, India
| | - Arindam Indra
- Department of Chemistry, IIT(BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
3
|
Shee U, Sinha D, Mondal S, Rajak KK. Electrochemical water oxidation reaction by dinuclear Re(V) oxo complexes with a 1,4-benzoquinone core via the redox induced electron transfer (RIET) process. Dalton Trans 2024; 53:8254-8263. [PMID: 38656393 DOI: 10.1039/d4dt00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We report two dinuclear rhenium(V) oxo complexes 1 and 2 types, [ReV(O)(Cl)3(L2-)ReV(O)(Cl)3][NBu4]2 (1, L2- = dianionic 2,5-dihydroxy 1,4-benzoquinone (DBQ2-)) and (2, L2- = dianionic chloranilic acid (CA2-) ligands), as a homogeneous electrocatalyst for water oxidation reactions in the acetonitrile-water mixture. The evolution of dioxygen gas at the anode was confirmed by a GC-TCD study. In controlled potential electrolysis (CPE), oxidation at 1.30 V (vs. Ag/AgCl) at neutral pH, 1 and 2 afforded 1+ [ReVI(O)(Cl)3(DBQ˙3-)ReVI(O)(Cl)3]- and 2+ [ReVI(O)(Cl)3(CA˙3-)ReVI(O)(Cl)3]- ions, respectively, via the redox induced electron transfer (RIET) process. Electrochemically generated species of 1+ and 2+ could be isolated in dry acetonitrile. 1+ and 2+ ions give strong EPR signals in fluid solution as well as under frozen glass conditions due to the [ReVI(O)(Cl)3(L˙3-)ReVI(O)(Cl)3]- ↔ [ReVI(O)(Cl)3(L2-)ReV(O)(Cl)3]- (where L2- = DBQ2- and CA2-) equilibrium. However, the continuation of the CPE study (1.30 V vs. Ag/AgCl) in the presence of acetonitrile-water mixture oxidised the in situ generated species of 1+ and 2+ to higher valent ReVIO species. These species (1+ and 2+) bound water through the water nucleophilic attack (WNA) to produce peroxide intermediate species of [ReV(OOH)(Cl)3(DBQ2-)ReV(OOH)(Cl)3] (A1) and [ReV(OOH)(Cl)3(CA2-)ReV(OOH)(Cl)3] (A2) for catalysts 1 and 2, respectively. Interestingly, A1 and A2 were authenticated and analysed by ESI mass spectrometry and infrared spectroscopy and were the active precursors of this water oxidation process. The extent of current generation under similar conditions suggested that complex 1 is superior to complex 2 for the water oxidation reaction. Notably, the maximum turnover frequency (TOFmax) of catalysts 1 and 2 were 2.1 and 1.6 s-1 at 0.27 V and 0.24 V over potential, respectively, which is very significant in WOR.
Collapse
Affiliation(s)
- Uday Shee
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
| | - Debopam Sinha
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
- Department of Chemistry, Vijaygarh Jyotish Ray College, Kolkata, 700032, India
| | - Sandip Mondal
- Department of Chemistry, Darjeeling Govt. College, Darjeeling, 734101, India.
| | - Kajal Krishna Rajak
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
4
|
Khan S, Sengupta S, Khan MA, Sk MP, Jana NC, Naskar S. Electrocatalytic Water Oxidation by Mononuclear Copper Complexes of Bis-amide Ligands with N4 Donor: Experimental and Theoretical Investigation. Inorg Chem 2024; 63:1888-1897. [PMID: 38232755 DOI: 10.1021/acs.inorgchem.3c03512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The present work describes electrocatalytic water oxidation of three monomeric copper complexes [CuII(L1)] (1), [CuII(L2)(H2O)] (2), and [CuII(L3)] (3) with bis-amide tetradentate ligands: L1 = N,N'-(1,2-phenylene)dipicolinamide, L2 = N,N'-(4,5-dimethyl-1,2-phenylene)bis(pyrazine-2-carboxamide), L3 = N,N'-(1,2-phenylene)bis(pyrazine-2-carboxamide), for the production of molecular oxygen by the oxidation of water at pH 13.0. Ligands and all complexes have been synthesized and characterized by single crystal XRD, analytical, and spectroscopic techniques. X-ray crystallographic data show that the ligand coordinates to copper in a dianionic fashion through deprotonation of two -NH protons. Cyclic voltammetry study shows a reversible copper-centered redox couple with one ligand-based oxidation event. The electrocatalytic water oxidation occurs at an onset potential of 1.16 (overpotential, η ≈ 697 mV), 1.2 (η ≈ 737 mV), and 1.23 V (η ≈ 767 mV) for 1, 2, and 3 respectively. A systematic variation of the ligand scaffold has been found to display a profound effect on the rate of electrocatalytic oxygen evolution. The results of the theoretical (density functional theory) studies show the stepwise ligand-centered oxidation process and the formation of the O-O bond during water oxidation passes through the water nucleophilic attack for all the copper complexes. At pH = 13, the turnover frequencies have been experimentally obtained as 88, 1462, and 10 s-1 (peak current measurements) for complexes 1, 2, and 3, respectively. Production of oxygen gas during controlled potential electrolysis was detected by gas chromatography.
Collapse
Affiliation(s)
- Sahanwaj Khan
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi 835215, India
| | - Swaraj Sengupta
- Department of Chemical Engineering, Birla Institute of Technology-Mesra, Ranchi 835215, India
| | - Md Adnan Khan
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi 835215, India
| | - Md Palashuddin Sk
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Narayan Ch Jana
- School of Chemical Sciences, NISER, An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Subhendu Naskar
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi 835215, India
| |
Collapse
|
5
|
Pain T, Singh AK, Tarai A, Mondal S, Indra A, Kar S. C-H Bond Activation by an Antimony(V) Oxo Intermediate Accessed through Electrochemical Oxidation of Antimony(III) Tetrakis(thiocyano)corrole. Inorg Chem 2023; 62:18779-18788. [PMID: 37933554 DOI: 10.1021/acs.inorgchem.3c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A new class of antimony(III) corroles has been described. The photophysical properties of these newly synthesized tetrakis(thiocyano)corrolatoantimony(III) derivatives having four SCN groups on the bipyrrole unit of corrole are drastically altered compared to their β-unsubstituted corrolatoantimony(III) analogues. The UV-vis and emission spectra of tetrakis(thiocyano)corrolatoantimony(III) derivatives are significantly red-shifted (roughly 30-40 nm) in comparison with their β-unsubstituted corrolatoantimony(III) derivatives. The Q bands are significantly strengthened. The intensity of the most prominent Q band is roughly 70% that of the Soret band and absorbs strongly at the far-red region, i.e., at 700-720 nm. These molecules emit light in the near-infrared region (700-900 nm). Tetrakis(thiocyano)corrolatoantimony(III) undergoes electrochemical anodic oxidation to form SbV═O species, which facilitates electrocatalytic oxygen evolution reaction (OER) and the activation of benzylic C-H to produce benzoic acid selectively. Under optimized conditions, SbIII-corrole@NF (NF = nickel foam) required an overpotential of 380 mV to reach a 50 mA cm-2 current density, comparable with those of other transition-metal-based complexes. On the other hand, replacing the anodic OER with benzyl alcohol oxidation lowered the required potential by 150 mV (at 300 mA cm-2) to improve the energy efficiency of the electrochemical process.
Collapse
Affiliation(s)
- Tanmoy Pain
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Ajit Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Arup Tarai
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Sruti Mondal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
6
|
Lv H, Zhang XP, Guo K, Han J, Guo H, Lei H, Li X, Zhang W, Apfel UP, Cao R. Coordination Tuning of Metal Porphyrins for Improved Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202305938. [PMID: 37550259 DOI: 10.1002/anie.202305938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
The nucleophilic attack of water or hydroxide on metal-oxo units forms an O-O bond in the oxygen evolution reaction (OER). Coordination tuning to improve this attack is intriguing but has been rarely realized. We herein report on improved OER catalysis by metal porphyrin 1-M (M=Co, Fe) with a coordinatively unsaturated metal ion. We designed and synthesized 1-M by sterically blocking one porphyrin side with a tethered tetraazacyclododecane unit. With this protection, the metal-oxo species generated in OER can maintain an unoccupied trans axial site. Importantly, 1-M displays a higher OER activity in alkaline solutions than analogues lacking such an axial protection by decreasing up to 150-mV overpotential to achieve 10 mA/cm2 current density. Theoretical studies suggest that with an unoccupied trans axial site, the metal-oxo unit becomes more positively charged and thus is more favoured for the hydroxide nucleophilic attack as compared to metal-oxo units bearing trans axial ligands.
Collapse
Affiliation(s)
- Haoyuan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| |
Collapse
|
7
|
Gotico P, Halime Z, Leibl W, Aukauloo A. Bimetallic Molecular Catalyst Design for Carbon Dioxide Reduction. Chempluschem 2023; 88:e202300222. [PMID: 37466131 DOI: 10.1002/cplu.202300222] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
The core challenge in developing cost-efficient catalysts for carbon dioxide (CO2 ) conversion mainly lies in controlling its complex reaction pathways. One such strategy exploits bimetallic cooperativity, which relies on the synergistic interaction between two metal centers to activate and convert the CO2 substrate. While this approach has seen an important trend in heterogeneous catalysis as a handle to control stabilities of surface intermediates, it has not often been utilized in molecular and heterogenized molecular catalytic systems. In this review, we gather general principles on how natural CO2 activating enzymes take advantage of bimetallic strategy and how phosphines, cyclams, polypyridyls, porphyrins, and cryptates-based homo- and hetero-bimetallic molecular catalysts can help understand the synergistic effect of two metal centers.
Collapse
Affiliation(s)
- Philipp Gotico
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
| | - Zakaria Halime
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| | - Winfried Leibl
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
| | - Ally Aukauloo
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| |
Collapse
|
8
|
Serafim LF, Jayasinghe-Arachchige VM, Wang L, Rathee P, Yang J, Moorkkannur N S, Prabhakar R. Distinct chemical factors in hydrolytic reactions catalyzed by metalloenzymes and metal complexes. Chem Commun (Camb) 2023. [PMID: 37366367 DOI: 10.1039/d3cc01380d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The selective hydrolysis of the extremely stable phosphoester, peptide and ester bonds of molecules by bio-inspired metal-based catalysts (metallohydrolases) is required in a wide range of biological, biotechnological and industrial applications. Despite the impressive advances made in the field, the ultimate goal of designing efficient enzyme mimics for these reactions is still elusive. Its realization will require a deeper understanding of the diverse chemical factors that influence the activities of both natural and synthetic catalysts. They include catalyst-substrate complexation, non-covalent interactions and the electronic nature of the metal ion, ligand environment and nucleophile. Based on our computational studies, their roles are discussed for several mono- and binuclear metallohydrolases and their synthetic analogues. Hydrolysis by natural metallohydrolases is found to be promoted by a ligand environment with low basicity, a metal bound water and a heterobinuclear metal center (in binuclear enzymes). Additionally, peptide and phosphoester hydrolysis is dominated by two competing effects, i.e. nucleophilicity and Lewis acid activation, respectively. In synthetic analogues, hydrolysis is facilitated by the inclusion of a second metal center, hydrophobic effects, a biological metal (Zn, Cu and Co) and a terminal hydroxyl nucleophile. Due to the absence of the protein environment, hydrolysis by these small molecules is exclusively influenced by nucleophile activation. The results gleaned from these studies will enhance the understanding of fundamental principles of multiple hydrolytic reactions. They will also advance the development of computational methods as a predictive tool to design more efficient catalysts for hydrolysis, Diels-Alder reaction, Michael addition, epoxide opening and aldol condensation.
Collapse
Affiliation(s)
- Leonardo F Serafim
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Lukun Wang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Parth Rathee
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Jiawen Yang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
9
|
Yadav I, Prakash V, Maurya MR, Sankar M. Oxido-Molybdenum(V) Corroles as Robust Catalysts for Oxidative Bromination and Selective Epoxidation Reactions in Aqueous Media under Mild Conditions. Inorg Chem 2023; 62:5292-5301. [PMID: 36958040 DOI: 10.1021/acs.inorgchem.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Two new meso-substituted oxido-molybdenum corroles were synthesized and characterized by various spectroscopic techniques. In the thermogram, MoO[TTC] (1) exhibited excellent thermal stability up to 491 °C while MoO[TNPC] (2) exhibited good stability up to 318 °C. The oxidation states of the molybdenum(V) were verified by electron paramagnetic resonance (EPR) spectroscopy and exhibited an axial compression with dxy1 configuration. Oxido-molybdenum(V) complexes were utilized for the selective epoxidation of various olefins with high TOF values (2066-3287 h-1) in good yields in a CH3CN/H2O (3:2, v/v) mixture in the presence of hydrogen peroxide as a green oxidant and NaHCO3 as a promoter. The oxidative bromination catalytic activity of oxido-molybdenum(V) complexes in an aqueous medium has been reported for the first time. Surprisingly, MoO[TNPC] (2) biomimics of the vanadium bromoperoxidase (VBPO) enzyme activity exhibited remarkably high TOF values (36 988-61 646 h-1) for the selective oxidative bromination of p-cresol and other phenol derivatives. Catalyst MoO[TNPC] (2) exhibited higher TOF values and better catalytic activity than catalyst MoO[TTC] (1) due to the presence of electron-withdrawing nitro groups evident from cyclic voltammetric studies.
Collapse
Affiliation(s)
- Inderpal Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ved Prakash
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
10
|
Jayasinghe-Arachchige VM, Serafim LF, Hu Q, Ozen C, Moorkkannur SN, Schenk G, Prabhakar R. Elucidating the Roles of Distinct Chemical Factors in the Hydrolytic Activities of Hetero- and Homonuclear Synthetic Analogues of Binuclear Metalloenzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
| | - Leonardo F. Serafim
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Cihan Ozen
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Sreerag N. Moorkkannur
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
11
|
Santos CIM, Cicuéndez M, Gonçalves G, Rodríguez-Pérez L, Portolés MT, Faustino MAF, Herranz MÁ, Neves MGPMS, Martinho JMG, Maçôas EMS, Martín N. Safety assessment of new nanodiamonds@corrole hybrids addressed by the response of RAW-264.7 macrophages. J Mater Chem B 2023; 11:675-686. [PMID: 36562480 DOI: 10.1039/d2tb01863b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Safety assessment of carbon nanomaterials is of paramount importance since they are on the frontline for applications in sensing, bioimaging and drug delivery. The biocompatibility and safety of functionalized nanodiamonds (NDs) are here addressed through the study of the pro-inflammatory response of RAW-264.7 macrophages exposed to new nanodiamonds@corrole hybrids. The corrole unit selected is as a prototype for a hydrophobic organic molecule that can function as a NIR fluorophore reporter, an optical sensor, a photodynamic therapy agent or a photocatalyst. The new functional nanohybrids containing detonated nanodiamonds (NDs) were obtained through esterification using carboxylated NDs and glycol corroles. The success of the covalent functionalization via carbodiimide activation was confirmed through X-ray photoelectron spectroscopy (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy. The UV-vis absorption and emission spectra of the hybrids are additive with respect to the corrole features. The cellular uptake, localization, cell viability and effects on immune cell activation of the new hybrids and of the precursors were carefully investigated using RAW-264.7 macrophages. Overall results showed that the ND@corrole hybrids had no pro-inflammatory effects on the RAW-264.7 macrophage cell line, making them an ideal candidate for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Carla I M Santos
- CQE, Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mónica Cicuéndez
- Chemistry Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), E-28040, Madrid, Spain
| | - Gil Gonçalves
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.,Intelligent Systems Associate Laboratory (LASI), Portugal
| | - Laura Rodríguez-Pérez
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - M Teresa Portolés
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain, E-28040 Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M Ángeles Herranz
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - M Graça P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - José M G Martinho
- CQE, Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ermelinda M S Maçôas
- CQE, Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nazario Martín
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
12
|
Bera M, Kaur S, Keshari K, Moonshiram D, Paria S. Characterization of Reaction Intermediates Involved in the Water Oxidation Reaction of a Molecular Cobalt Complex. Inorg Chem 2022; 61:21035-21046. [PMID: 36517453 DOI: 10.1021/acs.inorgchem.2c03559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecular cobalt(III) complexes of bis-amidate-bis-alkoxide ligands, (Me4N)[CoIII(L1)] (1) and (Me4N)[CoIII(L2)] (2), are synthesized and assessed through a range of characterization techniques. Electrocatalytic water oxidation activity of the Co complexes in a 0.1 M phosphate buffer solution revealed a ligand-centered 2e-/1H+ transfer event at 0.99 V followed by catalytic water oxidation (WO) at an onset overpotential of 450 mV. By contrast, 2 reveals a ligand-based oxidation event at 0.9 V and a WO onset overpotential of 430 mV. Constant potential electrolysis study and rinse test experiments confirm the homogeneous nature of the Co complexes during WO. The mechanistic investigation further shows a pH-dependent change in the reaction pathway. On the one hand, below pH 7.5, two consecutive ligand-based oxidation events result in the formation of a CoIII(L2-)(OH) species, which, followed by a proton-coupled electron transfer reaction, generates a CoIV(L2-)(O) species that undergoes water nucleophilic attack to form the O-O bond. On the other hand, at higher pH, two ligand-based oxidation processes merge together and result in the formation of a CoIII(L2-)(OH) complex, which reacts with OH- to yield the O-O bond. The ligand-coordinated reaction intermediates involved in the WO reaction are thoroughly studied through an array of spectroscopic techniques, including UV-vis absorption spectroscopy, electron paramagnetic resonance, and X-ray absorption spectroscopy. A mononuclear CoIII(OH) complex supported by the one-electron oxidized ligand, [CoIII(L3-)(OH)]-, a formal CoIV(OH) complex, has been characterized, and the compound was shown to participate in the hydroxide rebound reaction, which is a functional mimic of Compound II of Cytochrome P450.
Collapse
Affiliation(s)
- Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Simarjeet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Kritika Keshari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Dooshaye Moonshiram
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz, 3, 28049Madrid, Spain
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
13
|
Reaction of Corroles with Sarcosine and Paraformaldehyde: A New Facet of Corrole Chemistry. Int J Mol Sci 2022; 23:ijms232113581. [DOI: 10.3390/ijms232113581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Details on the unexpected formation of two new (dimethylamino)methyl corrole isomers from the reaction of 5,10,15-tris(pentafluorophenyl)corrolatogallium(III) with sarcosine and paraformaldehyde are presented. Semi-empirical calculations on possible mechanism pathways seem to indicate that the new compounds are probably formed through a Mannich-type reaction. The extension of the protocol to the free-base 5,10,15-tris(pentafluorophenyl)corrole afforded an unexpected new seven-membered ring corrole derivative, confirming the peculiar behavior of corroles towards known reactions when compared to the well-behaved porphyrin counterparts.
Collapse
|
14
|
Huang Q, Chen J, Luan P, Ding C, Li C. Understanding the factors governing the water oxidation reaction pathway of mononuclear and binuclear cobalt phthalocyanine catalysts. Chem Sci 2022; 13:8797-8803. [PMID: 35975146 PMCID: PMC9350663 DOI: 10.1039/d2sc02213c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The rational design of efficient catalysts for electrochemical water oxidation highly depends on the understanding of reaction pathways, which still remains a challenge. Herein, mononuclear and binuclear cobalt phthalocyanine (mono-CoPc and bi-CoPc) with a well-defined molecular structure are selected as model electrocatalysts to study the water oxidation mechanism. We found that bi-CoPc on a carbon support (bi-CoPc/carbon) shows an overpotential of 357 mV at 10 mA cm-2, much lower than that of mono-CoPc/carbon (>450 mV). Kinetic analysis reveals that the rate-determining step (RDS) of the oxygen evolution reaction (OER) over both electrocatalysts is a nucleophilic attack process involving a hydroxy anion (OH-). However, the substrate nucleophilically attacked by OH- for bi-CoPc is the phthalocyanine cation-radical species (CoII-Pc-Pc˙+-CoII-OH) that is formed from the oxidation of the phthalocyanine ring, while cobalt oxidized species (Pc-CoIII-OH) is involved in mono-CoPc as evidenced by the operando UV-vis spectroelectrochemistry technique. DFT calculations show that the reaction barrier for the nucleophilic attack of OH- on CoII-Pc-Pc˙+-CoII-OH is 1.67 eV, lower than that of mono-CoPc with Pc-CoIII-OH nucleophilically attacked by OH- (1.78 eV). The good agreement between the experimental and theoretical results suggests that bi-CoPc can effectively stabilize the accumulated oxidative charges in the phthalocyanine ring, and is thus bestowed with a higher OER performance.
Collapse
Affiliation(s)
- Qing'e Huang
- Department of Chemical Physics, University of Science and Technology of China Hefei 230026 China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jun Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Peng Luan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Can Li
- Department of Chemical Physics, University of Science and Technology of China Hefei 230026 China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
15
|
Holubowitch NE, Nguyen G. Dimerization of [Fe III(bpy) 3] 3+ in Aqueous Solutions: Elucidating a Mechanism Based on Historical Proposals, Electrochemical Data, and Computational Free Energy Analysis. Inorg Chem 2022; 61:9541-9556. [PMID: 35699660 DOI: 10.1021/acs.inorgchem.2c00640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron(II) tris-bipyridine, [FeII(bpy)3]2+, is a historically significant organometallic coordination complex with attractive redox and photophysical properties. With respect to energy storage, it is a low-cost, high-redox potential complex and thus attractive for use as a catholyte in aqueous redox flow batteries. Despite these favorable characteristics, its oxidized Fe(III) form undergoes dimerization to form μ-O-[FeIII(bpy)2(H2O)]24+, leading to a dramatic ∼0.7 V decrease during battery discharge. To date, the energetics and complete mechanism of this slow, sequential electrochemical-chemical (EC) process, which includes electron transfer, nucleophilic attack, ligand cleavage, μ-oxo bond formation, and spin state transition, have not been elucidated. Using cyclic voltammetry, redox flow battery data, and density functional theory calculations guided by previously proposed mechanisms, we modeled more than 100 complexes and performed more than 50 geometry scans to resolve the key steps dictating these complex chemical processes. Quantitative free energy surfaces are developed to model the mechanism of dimerization accounting for the spins and identities of any possible Fe(II), Fe(III), or Fe(IV) intermediates. Electrochemical reduction of the dimer regenerates [FeII(bpy)3]2+ in an overall reversible process. Computational electrochemistry interrogates the influence of spin state, coordination environment, and molecular conformation at the electrode-electrolyte interface through a proposed stepwise dimer reduction process. Experimentally, we show that the considerable overpotential associated with this event can be catalytically mitigated with disparate materials, including platinum, copper hexacyanoferrate, and activated carbon. The findings are of fundamental and applied significance and could elevate [FeII(bpy)3]2+ and its derivatives to play a vital role in the burgeoning renewable energy economy.
Collapse
Affiliation(s)
- Nicolas E Holubowitch
- Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412, United States
| | - Giang Nguyen
- Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412, United States
| |
Collapse
|
16
|
Lei H, Zhang Q, Liang Z, Guo H, Wang Y, Lv H, Li X, Zhang W, Apfel UP, Cao R. Metal-Corrole-Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2022; 61:e202201104. [PMID: 35355376 DOI: 10.1002/anie.202201104] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 12/21/2022]
Abstract
Integrating molecular catalysts into designed frameworks often enables improved catalysis. Compared with porphyrin-based frameworks, metal-corrole-based frameworks have been rarely developed, although monomeric metal corroles are usually more efficient than porphyrin counterparts for the electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). We herein report on metal-corrole-based porous organic polymers (POPs) as ORR and OER electrocatalysts. M-POPs (M=Mn, Fe, Co, Cu) were synthesized by coupling metal 10-phenyl-5,15-(4-iodophenyl)corrole with tetrakis(4-ethynylphenyl)methane. Compared with metal corrole monomers, M-POPs displayed significantly enhanced catalytic activity and stability. Co-POP outperformed other M-POPs by achieving four-electron ORR with a half-wave potential of 0.87 V vs. RHE and reaching 10 mA cm-2 OER current density at 340 mV overpotential. This work is unparalleled to develop and explore metal-corrole-based POPs as electrocatalysts.
Collapse
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoyuan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
17
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 320] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
18
|
Hazari AS, Chandra S, Kar S, Sarkar B. Metal Complexes of Singly, Doubly and Triply Linked Porphyrins and Corroles: An Insight into the Physicochemical Properties. Chemistry 2022; 28:e202104550. [PMID: 35088477 PMCID: PMC9311859 DOI: 10.1002/chem.202104550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/19/2022]
Abstract
Metal complexes of multi-porphyrins and multi-corroles are unique systems that display a host of extremely interesting properties. Availability of free meso and β positions allow formation of different types of directly linked bis-porphyrins giving rise to intriguing optical and electronic properties. While the fields of metalloporphyrin and corroles monomer have seen exponential growth in the last decades, the chemistry of metal complexes of bis-porphyrins and bis-corroles remain rather underexplored. Therefore, the impact of covalent linkages on the optical, electronic, (spectro)electrochemical, magnetic and electrocatalytic activities of metal complexes of bis-porphyrins and -corroles has been summarized in this review article. This article shows that despite the (still) somewhat difficult synthetic access to these molecules, their extremely exciting properties do make a strong case for pursuing research on these classes of compounds.
Collapse
Affiliation(s)
- Arijit Singha Hazari
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Shubhadeep Chandra
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sanjib Kar
- School of Chemical SciencesNational Institute of Science Education and Research (NISER)Bhubaneswar752050India
- Homi Bhabha National InstituteTraining School ComplexMumbai400094(India)
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
19
|
Lei H, Zhang Q, Liang Z, Guo H, Wang Y, Lv H, Li X, Zhang W, Apfel U, Cao R. Metal‐Corrole‐Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haoyuan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
20
|
Shahaf Y, Mahammed A, Raslin A, Kumar A, Farber EM, Gross Z, Eisenberg D. Orthogonal Design of Fe‐N4 Active Sites and Hierarchical Porosity in Hydrazine Oxidation Electrocatalysts. ChemElectroChem 2022. [DOI: 10.1002/celc.202200045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yair Shahaf
- Technion Israel Institute of Technology Schulich Faculty of Chemistry and the Grand Technion Energy Program ISRAEL
| | - Atif Mahammed
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Arik Raslin
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Amit Kumar
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - Eliyahu M. Farber
- Technion Israel Institute of Technology Schulich Faculty of Chemistry and the Grand Technion Energy Program ISRAEL
| | - Zeev Gross
- Technion Israel Institute of Technology Schulich Faculty of Chemistry ISRAEL
| | - David Eisenberg
- Technion Israel Institute of Technology Schulich Faculty of Chemistry, the Grand Technion Energy Program, and the Russel Berrie Nanotechnology Institute Technion City Haifa ISRAEL
| |
Collapse
|
21
|
Hou Y, Lv J, Quan W, Lin Y, Hong Z, Huang Y. Strategies for Electrochemically Sustainable H 2 Production in Acid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104916. [PMID: 35018743 PMCID: PMC8895139 DOI: 10.1002/advs.202104916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Acidified water electrolysis with fast kinetics is widely regarded as a promising option for producing H2 . The main challenge of this technique is the difficulty in realizing sustainable H2 production (SHP) because of the poor stability of most electrode catalysts, especially on the anode side, under strongly acidic and highly polarized electrochemical environments, which leads to surface corrosion and performance degradation. Research efforts focused on tuning the atomic/nano structures of catalysts have been made to address this stability issue, with only limited effectiveness because of inevitable catalyst degradation. A systems approach considering reaction types and system configurations/operations may provide innovative viewpoints and strategies for SHP, although these aspects have been overlooked thus far. This review provides an overview of acidified water electrolysis for systematic investigations of these aspects to achieve SHP. First, the fundamental principles of SHP are discussed. Then, recent advances on design of stable electrode materials are examined, and several new strategies for SHP are proposed, including fabrication of symmetrical heterogeneous electrolysis system and fluid homogeneous electrolysis system, as well as decoupling/hybrid-governed sustainability. Finally, remaining challenges and corresponding opportunities are outlined to stimulate endeavors toward the development of advanced acidified water electrolysis techniques for SHP.
Collapse
Affiliation(s)
- Yuxi Hou
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
| | - Jiangquan Lv
- College of Electronics and Information Science & Organic Optoelectronics Engineering Research Center of Fujian's UniversitiesFujian Jiangxia UniversityFuzhouFujian350108P. R. China
| | - Weiwei Quan
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
| | - Yingbin Lin
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Zhensheng Hong
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Yiyin Huang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| |
Collapse
|
22
|
Bera M, Keshari K, Bhardwaj A, Gupta G, Mondal B, Paria S. Electrocatalytic Water Oxidation Activity of Molecular Copper Complexes: Effect of Redox-Active Ligands. Inorg Chem 2022; 61:3152-3165. [PMID: 35119860 DOI: 10.1021/acs.inorgchem.1c03537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two molecular copper(II) complexes, (NMe4)2[CuII(L1)] (1) and (NMe4)2[CuII(L2)] (2), ligated by a N2O2 donor set of ligands [L1 = N,N'-(1,2-phenylene)bis(2-hydroxy-2-methylpropanamide), and L2 = N,N'-(4,5-dimethyl-1,2-phenylene)bis(2-hydroxy-2-methylpropanamide)] have been synthesized and thoroughly characterized. An electrochemical study of 1 in a carbonate buffer at pH 9.2 revealed a reversible copper-centered redox couple at 0.51 V, followed by two ligand-based oxidation events at 1.02 and 1.25 V, and catalytic water oxidation at an onset potential of 1.28 V (overpotential of 580 mV). The electron-rich nature of the ligand likely supports access to high-valent copper species on the CV time scale. The results of the theoretical electronic structure investigation were quite consistent with the observed stepwise ligand-centered oxidation process. A constant potential electrolysis experiment with 1 reveals a catalytic current density of >2.4 mA cm-2 for 3 h. A one-electron-oxidized species of 1, (NMe4)[CuIII(L1)] (3), was isolated and characterized. Complex 2, on the contrary, revealed copper and ligand oxidation peaks at 0.505, 0.90, and 1.06 V, followed by an onset water oxidation (WO) at 1.26 V (overpotential of 560 mV). The findings show that the ligand-based oxidation reactions strongly depend upon the ligand's electronic substitution; however, such effects on the copper-centered redox couple and catalytic WO are minimal. The energetically favorable mechanism has been established through the theoretical calculation of stepwise reaction energies, which nicely explains the experimentally observed electron transfer events. Furthermore, as revealed by the theoretical calculations, the O-O bond formation process occurs through a water nucleophilic attack mechanism with an easily accessible reaction barrier. This study demonstrates the importance of redox-active ligands in the development of molecular late-transition-metal electrocatalysts for WO reactions.
Collapse
Affiliation(s)
- Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kritika Keshari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akhil Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| | - Geetika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhaskar Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
23
|
Electrochemical-driven water reduction and oxidation catalyzed by an iron(III) complex supported by a N2O2 ligand. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Vaillard VA, Nieres PD, Vaillard SE, Doctorovich F, Sarkar B, Neuman NI. Cobalt, Iron, and Manganese Metallocorroles in Catalytic Oxidation of Water. An Overview of the Synthesis, Selected Redox and Electronic Properties, and Catalytic Activities. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Victoria A. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Pablo D. Nieres
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Santiago E. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón II Buenos Aires C1428EHA Argentina
| | - Biprajit Sarkar
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Nicolás I. Neuman
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
25
|
Di Natale C, Gros CP, Paolesse R. Corroles at work: a small macrocycle for great applications. Chem Soc Rev 2022; 51:1277-1335. [PMID: 35037929 DOI: 10.1039/d1cs00662b] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Corrole chemistry has witnessed an impressive boost in studies in the last 20 years, thanks to the possibility of preparing corrole derivatives by simple synthetic procedures. The investigation of a large number of corroles has highlighted some peculiar characteristics of these macrocycles, having features different from those of the parent porphyrins. With this progress in the elucidation of corrole properties, attention has been focused on the potential for the exploitation of corrole derivatives in different important application fields. In some areas, the potential of corroles has been studied in certain detail, for example, the use of corrole metal complexes as electrocatalysts for energy conversion. In some other areas, the field is still in its infancy, such as in the exploitation of corroles in solar cells. Herein, we report an overview of the different applications of corroles, focusing on the studies reported in the last five years.
Collapse
Affiliation(s)
- Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Viale del Politecnico, 00133 Rome, Italy.
| | - Claude P Gros
- Université Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France.
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
26
|
Sun XX, Du J, Tan JJ, Zhan SZ. A mono-oxo-bridged binuclear iron(iii) complex with a Fe–O–Fe angle of 180.0° and its catalytic activity for hydrogen evolution. NEW J CHEM 2022. [DOI: 10.1039/d1nj05904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There are potential applications for binuclear oxo-bridged iron complexes in biological processes, catalysts, and magnetic materials, and the design of new bridged-iron complexes is important.
Collapse
Affiliation(s)
- Xia-Xing Sun
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Juan Du
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jie-Jie Tan
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shu-Zhong Zhan
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
27
|
Zhang X, Zhang X, Zhu W, Liang X. Boosting Electrocatalyzed Hydrogen Evolutions with Electropolymerized Thiophene Substituted CoIIICorroles. Dalton Trans 2022; 51:6177-6185. [DOI: 10.1039/d2dt00515h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a A3 type and a A2B type meso-thiophene-substituted CoIIIcorroles are prepared and the electronic structures are investigated. Interestingly, these two CoIIIcorroles are facilely polymerized under electrochemical conditions, and are...
Collapse
|
28
|
Liu Z, Lai JW, Yang G, Ren BP, Lv ZY, Si LP, Zhang H, Liu HY. Electrocatalytic Hydrogen Production by CN‑ substituted Cobalt Triaryl Corroles. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00606e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four cobalt corrole complexes bearing 0–3 cyano groups on the para-position of the three meso-phenyl rings of the macrocycle were synthesized, characterized and applied for electrocatalytic H2 production under both...
Collapse
|
29
|
Guo WX, shen Z, Su YF, Li K, Lin WQ, Chen GH, Guan J, Wang XM, Li Z, Yu Z, Zou Z. Iron-N-Heterocyclic Carbene Complexes as Efficient Electrocatalysts for Water Oxidation in Acidic Conditions. Dalton Trans 2022; 51:12494-12501. [DOI: 10.1039/d2dt01474b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of stable, earth-abundant, and high-activity molecular water oxidation catalysts in acidic and neutral conditions remains a great challenge. Here, the use of N-heterocyclic carbene (NHC)-based iron(III) complex 1...
Collapse
|
30
|
Chen G, Chen ZW, Wang YM, He P, Liu C, Tong HX, Yi XY. Efficient Electrochemical Water Oxidation Mediated by Pyridylpyrrole-Carboxylate Ruthenium Complexes. Inorg Chem 2021; 60:15627-15634. [PMID: 34613720 DOI: 10.1021/acs.inorgchem.1c02251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spurred by the rapid growth of Ru-based complexes as molecular water oxidation catalysts (WOCs), we propose novel ruthenium(II) complexes bearing pyridylpyrrole-carboxylate (H2ppc) ligands as members of the WOC family. The structure of these complexes has 4-picoline (pic)/dimethyl sulfoxide (DMSO) in [Ru(ppc)(pic)2(dmso)] and pic/pic in [Ru(ppc)(pic)3] as axial ligands. Another ppc2- ligand and one pic ligand are located at the equatorial positions. [Ru(ppc)(pic)2(dmso)] behaves as a WOC as determined by electrochemical measurement and has an ultrahigh electrocatalytic current density of 8.17 mA cm-2 at 1.55 V (vs NHE) with a low onset potential of 0.352 V (vs NHE), a turnover number of 241, a turnover frequency of 203.39 s-1, and kcat of 16.34 s-1 under neutral conditions. The H2O/pic exchange of the complexes accompanied by oxidation of a ruthenium center is the initial step in the catalytic cycle. The cyclic voltametric measurements of [Ru(ppc)(pic)2(dmso)] at various scan rates, Pourbaix diagrams (plots of E vs pH), and kinetic studies suggested a water nucleophilic attack mechanism. HPO42- in a phosphate buffer solution is invoked in water oxidation as the proton acceptor.
Collapse
Affiliation(s)
- Guo Chen
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ze-Wen Chen
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yuan-Mei Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Piao He
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Hai-Xia Tong
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
31
|
Chen Y, Yang S, Liu H, Zhang W, Cao R. An unusual network of α-MnO2 nanowires with structure-induced hydrophilicity and conductivity for improved electrocatalysis. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63793-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Neuman NI, Singha Hazari A, Beerhues J, Doctorovich F, Vaillard SE, Sarkar B. Synthesis and Characterization of a Cobalt(III) Corrole with an S‐Bound DMSO Ligand. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nicolás I. Neuman
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC, UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Arijit Singha Hazari
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Julia Beerhues
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Fabio Doctorovich
- Departamento de Química Inorgánica Analítica y Química Física/INQUIMAE-CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria Pabellón II Buenos Aires C1428EHA) Argentina
| | - Santiago E. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC, UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
33
|
Li X, Zhang XP, Guo M, Lv B, Guo K, Jin X, Zhang W, Lee YM, Fukuzumi S, Nam W, Cao R. Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex. J Am Chem Soc 2021; 143:14613-14621. [PMID: 34469154 DOI: 10.1021/jacs.1c05204] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water nucleophilic attack (WNA) on high-valent terminal Mn-oxo species is proposed for O-O bond formation in natural and artificial water oxidation. Herein, we report an electrocatalytic water oxidation reaction with MnIII tris(pentafluorophenyl)corrole (1) in propylene carbonate (PC). O2 was generated at the MnV/IV potential with hydroxide, but a more anodic potential was required to evolve O2 with only water. With a synthetic MnV(O) complex of 1, a second-order rate constant, k2(OH-), of 7.4 × 103 M-1 s-1 was determined in the reaction of the MnV(O) complex of 1 with hydroxide, whereas its reaction with water occurred much more slowly with a k2(H2O) value of 4.4 × 10-3 M-1 s-1. This large reactivity difference of MnV(O) with hydroxide and water is consistent with different electrocatalytic behaviors of 1 with these two substrates. Significantly, during the electrolysis of 1 with water, a MnIV-peroxo species was identified with various spectroscopic methods, including UV-vis, electron paramagnetic resonance, and infrared spectroscopy. Isotope-labeling experiments confirmed that both O atoms of this peroxo species are derived from water, suggesting the involvement of the WNA mechanism in water oxidation by a Mn complex. Density functional theory calculations suggested that the nucleophilic attack of hydroxide on MnV(O) and also WNA to 1e--oxidized MnV(O) are feasibly involved in the catalytic cycles but that direct WNA to MnV(O) is not likely to be the main O-O bond formation pathway in the electrocatalytic water oxidation by 1.
Collapse
Affiliation(s)
- Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Mian Guo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
34
|
Lee W, Zhan X, Palma J, Vestfrid J, Gross Z, Churchill DG. Minding our P-block and Q-bands: paving inroads into main group corrole research to help instil broader potential. Chem Commun (Camb) 2021; 57:4605-4641. [PMID: 33881055 DOI: 10.1039/d1cc00105a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Main group chemistry is often considered less "dynamic" than transition metal (TM) chemistry because of predictable VSEPR-based central atom geometries, relatively slower redox switching and lack of electronic d-d transitions. However, we delineate what has been made possible with main group chemistry to give it its proper due and up-to-date treatment. The huge untapped potential regarding photophysical properties and functioning hereby spurred us to review a range of corrole reports addressing primarily photophysical trends, synthetic aspects, and important guidelines regarding substitution and inorganic principles. We also look at Ag and Au systems and also consider substitutions such as CF3, halogens, additives and also counterions. Throughout, as well as at the end of this review, we suggest various future directions; further future industrial catalytic and health science research is encouraged.
Collapse
Affiliation(s)
- Woohyun Lee
- Korea Advanced Institute of Science and Technology (KAIST), Department of Chemistry, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Xuan Zhan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Jaymee Palma
- Korea Advanced Institute of Science and Technology (KAIST), Department of Chemistry, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jenya Vestfrid
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel. and Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S3E5, Canada.
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - David G Churchill
- Korea Advanced Institute of Science and Technology (KAIST), Department of Chemistry, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea. and Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Republic of Korea and KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering Section), Daejeon 34141, Republic of Korea
| |
Collapse
|
35
|
Yadav I, Dhiman D, Sankar M. β-Disubstituted silver(III) corroles: Facile synthesis, photophysical and electrochemical redox properties. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Facile synthesis of 3,17-disubstituted Ag(III) tritolylcorroles (2-5), R2[TTC]Ag where R = methyl (2), phenyl (3), methyl acrylate (MA) (4) and phenylethynyl (PE) (5) using Pd-catalyzed reactions in good to excellent yields are reported. All synthesized corroles were characterized by various spectroscopic techniques and mass spectrometry. MA2[TTC]Ag (4) and PE2[TTC]Ag (5) exhibited highly red-shifted electronic spectral bands with considerable broadening due to extended [Formula: see text]-conjugation and electron withdrawing effect of [Formula: see text]-substituents. Geometry optimization of these corroles was performed using density functional theory (DFT). Among all, MA2[TTC]Ag (4) exhibited very high dipole moment (10.31 D) which could be the potential candidate for nonlinear optical (NLO) applications. The redox tunability was achieved by substituting electron donating and withdrawing substituents at the [Formula: see text]-positions. Particularly, corroles 4 and 5 exhibited lower HOMO–LUMO gap due to extended [Formula: see text]-conjugation and electron withdrawing [Formula: see text]-substituents.
Collapse
Affiliation(s)
- Inderpal Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Divyansh Dhiman
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| |
Collapse
|
36
|
Hu S, Xu P, Xu RX, Zheng X. Unveiling the High Catalytic Activity of a Dinuclear Iron Complex for the Oxygen Evolution Reaction. Inorg Chem 2021; 60:7297-7305. [PMID: 33914515 DOI: 10.1021/acs.inorgchem.1c00394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dinuclear iron complex [(H2O)-FeIII-(ppq)-O-(ppq)-FeIII-Cl]3+ (FeIII(ppq), ppq = 2-(pyrid-2'-yl)-8-(1″,10″-phenanthrolin-2″-yl)-quinoline) demonstrates a catalytic activity about one order of magnitude higher than the mononuclear iron complex [Cl-FeIII(dpa)-Cl]+ (FeIII(dpa), dpa = N,N-di(1,10-phenanthrolin-2-yl)-N-isopentylamine) for the oxygen evolution reaction (OER). However, the mechanism behind such an unusually high activity has remained largely unclear. To solve this puzzle, a decomposition-and-reaction mechanism is proposed for the OER with the dinuclear FeIII(ppq) complex as the initial state of the catalytic agent. In this mechanism, the high-valent dinuclear iron complex first dissociates into two mononuclear moieties, and the oxidized mononuclear iron complexes directly catalyze the formation of an O-O bond through a nitrate attack pathway with nitrate functioning as a cocatalyst. Density functional theory calculations reveal that it is the electron-deficient microenvironment around the iron center that gives rise to the remarkable catalytic activity observed experimentally. Therefore, the outstanding performance of the FeIII(ppq) catalyst can be ascribed to the high reactivity of its mononuclear moieties in a high oxidation state, which is concomitant with the structural stability of the low-valent dinuclear complex. The theoretical insights provided by this study could be useful for the optimization and design of novel iron-based water oxidation catalysts.
Collapse
Affiliation(s)
- Shaojin Hu
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics & CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Penglin Xu
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics & CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics & CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China.,Department of Chemical Physics & Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics & CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China.,Department of Chemical Physics & Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
37
|
Kumar Maurya Y, Wei P, Shimada T, Yamasumi K, Mori S, Furukawa K, Kusaba H, Ishihara T, Xie Y, Ishida M, Furuta H. Chiral Interlocked Corrole Dimers Directly Linked at Inner Carbon Atoms of Confused Pyrrole Rings. Chem Asian J 2021; 16:743-747. [PMID: 33624937 DOI: 10.1002/asia.202100083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Indexed: 12/13/2022]
Abstract
A facile synthetic strategy towards conformationally stable chiral chromophores based on dimeric porphyrinoids has been established. A peculiar class of face-to-face intramolecularly interlocked corrole dimers were formed by the oxidative C-C coupling linked at the inner carbon sites upon simple treatment of copper(II) ions. Their intrinsic electronic structures were modulated by the peripheral corrole ring annulations, which lead to distinct optical properties and redox profiles. The stereogenic carbon centers implemented in the confused corrole skeleton provided a rationale for designing novel chiral materials.
Collapse
Affiliation(s)
- Yogesh Kumar Maurya
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Pingchun Wei
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takahide Shimada
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kazuhisa Yamasumi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Ko Furukawa
- Center for Instrumental Analysis, Niigata University, Niigata, 950-2181, Japan
| | - Hajime Kusaba
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Tatsumi Ishihara
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, State Key Laboratory of Bioreactor Engineering, Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science & Technology, 200237, Shanghai, P. R. China
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
38
|
Neuman NI, Albold U, Ferretti E, Chandra S, Steinhauer S, Rößner P, Meyer F, Doctorovich F, Vaillard SE, Sarkar B. Cobalt Corroles as Electrocatalysts for Water Oxidation: Strong Effect of Substituents on Catalytic Activity. Inorg Chem 2020; 59:16622-16634. [PMID: 33153263 DOI: 10.1021/acs.inorgchem.0c02550] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two Co(III) complexes (1Py2 and 2Py2) of new corrole ligands H3L1 (5,15-bis(p-methylcarboxyphenyl)-10-(o-methylcarboxyphenyl)corrole) and H3L2 (5,15-bis(p-nitrophenyl)-10-(o-methylcarboxyphenyl)corrole) with two apical pyridine ligands have been synthesized and thoroughly characterized by cyclic voltammetry, UV-vis-NIR, and EPR spectroscopy, spectroelectrochemistry, single-crystal X-ray diffraction studies, and DFT methods. Complexes 1Py2 and 2Py2 possess much lower oxidation potentials than cobalt(III)-tris-pentafluorophenylcorrole (Co(tpfc)) and similar corroles containing pentafluorophenyl (C6F5) substituents, thus allowing access to high oxidation states of the former metallocorroles using mild chemical oxidants. The spectroscopic (UV-vis-NIR and EPR) and electronic properties of several oxidation states of these complexes have been determined by a combination of the mentioned methods. Complexes 1Py2 and 2Py2 undergo three oxidations within 1.3 V vs FcH+/FcH in MeCN, and we show that both complexes catalyze water oxidation in an MeCN/H2O mixture upon the third oxidation, with kobs (TOF) values of 1.86 s-1 at 1.29 V (1Py2) and 1.67 s-1 at 1.37 V (2Py2). These values are five times higher than previously reported TOF values for C6F5-substituted cobalt(III) corroles, a finding we ascribe to the additional charge in the corrole macrocycle due to the increased oxidation state. This work opens up new possibilities in the study of metallocorrole water oxidation catalysts, particularly by allowing spectroscopic probing of high-oxidation states and showing strong substituent-effects on catalytic activity of the corrole complexes.
Collapse
Affiliation(s)
- Nicolás I Neuman
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin 14195, Germany.,Instituto de Desarrollo Tecnológico para la Industria Química, INTEC, UNL-CONICET Paraje El Pozo, Santa Fe, Argentina.,Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Uta Albold
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin 14195, Germany
| | - Eleonora Ferretti
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin 14195, Germany
| | - Shubhadeep Chandra
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin 14195, Germany
| | - Simon Steinhauer
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin 14195, Germany
| | - Paul Rößner
- Institut für Technische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart D-70569, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany
| | - Fabio Doctorovich
- Departamento de Química Inorgánica; Analítica y Química Física/INQUIMAE-CONICET; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires C1428EHA, Argentina
| | - Santiago E Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC, UNL-CONICET Paraje El Pozo, Santa Fe, Argentina
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin 14195, Germany.,Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, Göttingen 37077, Germany
| |
Collapse
|
39
|
Computational mechanistic study on molecular catalysis of water oxidation by cyclam ligand-based iron complex. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02664-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
An Iron(III) Complex with Pincer Ligand—Catalytic Water Oxidation through Controllable Ligand Exchange. REACTIONS 2020. [DOI: 10.3390/reactions1010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pincer ligands occupy three coplanar sites at metal centers and often support both stability and reactivity. The five-coordinate [FeIIICl2(tia-BAI)] complex (tia-BAI− = 1,3-bis(2’-thiazolylimino)isoindolinate(−)) was considered as a potential pre-catalyst for water oxidation providing the active form via the exchange of chloride ligands to water molecules. The tia-BAI− pincer ligand renders water-insolubility to the Fe–(tia-BAI) assembly, but it tolerates the presence of water in acetone and produces electrocatalytic current in cyclic voltammetry associated with molecular water oxidation catalysis. Upon addition of water to [FeIIICl2(tia-BAI)] in acetone the changes in the Fe3+/2+ redox transition and the UV-visible spectra could be associated with solvent-dependent equilibria between the aqua and chloride complex forms. Immobilization of the complex from methanol on indium-tin-oxide (ITO) electrode by means of drop-casting resulted in water oxidation catalysis in borate buffer. The O2 detected by gas chromatography upon electrolysis at pH 8.3 indicates >80% Faraday efficiency by a TON > 193. The investigation of the complex/ITO assembly by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) before and after electrolysis, and re-dissolution tests suggest that an immobilized molecular catalyst is responsible for catalysis and de-activation occurs by depletion of the metal.
Collapse
|