1
|
Altinbay M, Wang J, Chen J, Schäfer D, Sprang M, Blagojevic B, Wölfl S, Andrade-Navarro M, Dikic I, Knapp S, Cheng X. Chem-CRISPR/dCas9FCPF: a platform for chemically induced epigenome editing. Nucleic Acids Res 2024; 52:11587-11601. [PMID: 39315698 PMCID: PMC11514490 DOI: 10.1093/nar/gkae798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/20/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024] Open
Abstract
Epigenetic aberration is one of the major driving factors in human cancer, often leading to acquired resistance to chemotherapies. Various small molecule epigenetic modulators have been reported. Nonetheless, outcomes from animal models and clinical trials have underscored the substantial setbacks attributed to pronounced on- and off-target toxicities. To address these challenges, CRISPR/dCas9 technology is emerging as a potent tool for precise modulation of epigenetic mechanism. However, this technology involves co-expressing exogenous epigenetic modulator proteins, which presents technical challenges in preparation and delivery with potential undesirable side effects. Recently, our research demonstrated that Cas9 tagged with the Phe-Cys-Pro-Phe (FCPF)-peptide motif can be specifically targeted by perfluorobiphenyl (PFB) derivatives. Here, we integrated the FCPF-tag into dCas9 and established a chemically inducible platform for epigenome editing, called Chem-CRISPR/dCas9FCPF. We designed a series of chemical inhibitor-PFB conjugates targeting various epigenetic modulator proteins. Focusing on JQ1, a panBET inhibitor, we demonstrate that c-MYC-sgRNA-guided JQ1-PFB specifically inhibits BRD4 in close proximity to the c-MYC promoter/enhancer, thereby effectively repressing the intricate transcription networks orchestrated by c-MYC as compared with JQ1 alone. In conclusion, our Chem-CRISPR/dCas9FCPF platform significantly increased target specificity of chemical epigenetic inhibitors, offering a viable alternative to conventional fusion protein systems for epigenome editing.
Collapse
Affiliation(s)
- Mukaddes Altinbay
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Jianhui Wang
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Jie Chen
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Theodor-Stern-Kai7, 60590, Frankfurt am Main, Germany
| | - Daniel Schäfer
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg University Mainz, Gresemundweg 2, 55128 Mainz, Germany
| | - Biljana Blagojevic
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg, Germany
| | | | - Ivan Dikic
- Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stefan Knapp
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
- DKTK translational cancer network, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Xinlai Cheng
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Theodor-Stern-Kai7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Přibylová A, Fischer L. How to use CRISPR/Cas9 in plants: from target site selection to DNA repair. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5325-5343. [PMID: 38648173 PMCID: PMC11389839 DOI: 10.1093/jxb/erae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
A tool for precise, target-specific, efficient, and affordable genome editing is a dream for many researchers, from those who conduct basic research to those who use it for applied research. Since 2012, we have tool that almost fulfils such requirements; it is based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems. However, even CRISPR/Cas has limitations and obstacles that might surprise its users. In this review, we focus on the most frequently used variant, CRISPR/Cas9 from Streptococcus pyogenes, and highlight key factors affecting its mutagenesis outcomes: (i) factors affecting the CRISPR/Cas9 activity, such as the effect of the target sequence, chromatin state, or Cas9 variant, and how long it remains in place after cleavage; and (ii) factors affecting the follow-up DNA repair mechanisms including mostly the cell type and cell cycle phase, but also, for example, the type of DNA ends produced by Cas9 cleavage (blunt/staggered). Moreover, we note some differences between using CRISPR/Cas9 in plants, yeasts, and animals, as knowledge from individual kingdoms is not fully transferable. Awareness of these factors can increase the likelihood of achieving the expected results of plant genome editing, for which we provide detailed guidelines.
Collapse
Affiliation(s)
- Adéla Přibylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| |
Collapse
|
3
|
Sánchez Rivera FJ, Dow LE. How CRISPR Is Revolutionizing the Generation of New Models for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041384. [PMID: 37487630 PMCID: PMC11065179 DOI: 10.1101/cshperspect.a041384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cancers arise through acquisition of mutations in genes that regulate core biological processes like cell proliferation and cell death. Decades of cancer research have led to the identification of genes and mutations causally involved in disease development and evolution, yet defining their precise function across different cancer types and how they influence therapy responses has been challenging. Mouse models have helped define the in vivo function of cancer-associated alterations, and genome-editing approaches using CRISPR have dramatically accelerated the pace at which these models are developed and studied. Here, we highlight how CRISPR technologies have impacted the development and use of mouse models for cancer research and discuss the many ways in which these rapidly evolving platforms will continue to transform our understanding of this disease.
Collapse
Affiliation(s)
- Francisco J Sánchez Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
4
|
Li Z, You L, Hermann A, Bier E. Developmental progression of DNA double-strand break repair deciphered by a single-allele resolution mutation classifier. Nat Commun 2024; 15:2629. [PMID: 38521791 PMCID: PMC10960810 DOI: 10.1038/s41467-024-46479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
DNA double-strand breaks (DSBs) are repaired by a hierarchically regulated network of pathways. Factors influencing the choice of particular repair pathways, however remain poorly characterized. Here we develop an Integrated Classification Pipeline (ICP) to decompose and categorize CRISPR/Cas9 generated mutations on genomic target sites in complex multicellular insects. The ICP outputs graphic rank ordered classifications of mutant alleles to visualize discriminating DSB repair fingerprints generated from different target sites and alternative inheritance patterns of CRISPR components. We uncover highly reproducible lineage-specific mutation fingerprints in individual organisms and a developmental progression wherein Microhomology-Mediated End-Joining (MMEJ) or Insertion events predominate during early rapid mitotic cell cycles, switching to distinct subsets of Non-Homologous End-Joining (NHEJ) alleles, and then to Homology-Directed Repair (HDR)-based gene conversion. These repair signatures enable marker-free tracking of specific mutations in dynamic populations, including NHEJ and HDR events within the same samples, for in-depth analysis of diverse gene editing events.
Collapse
Affiliation(s)
- Zhiqian Li
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lang You
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anita Hermann
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Lawer A, Schulz L, Sawyer R, Liu X. Harmony of Protein Tags and Chimeric Molecules Empowers Targeted Protein Ubiquitination and Beyond. Cells 2024; 13:426. [PMID: 38474390 PMCID: PMC10930881 DOI: 10.3390/cells13050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Post-translational modifications (PTMs) are crucial mechanisms that underlie the intricacies of biological systems and disease mechanisms. This review focuses on the latest advancements in the design of heterobifunctional small molecules that hijack PTM machineries for target-specific modifications in living systems. A key innovation in this field is the development of proteolysis-targeting chimeras (PROTACs), which promote the ubiquitination of target proteins for proteasomal degradation. The past decade has seen several adaptations of the PROTAC concept to facilitate targeted (de)phosphorylation and acetylation. Protein fusion tags have been particularly vital in these proof-of-concept studies, aiding in the investigation of the functional roles of post-translationally modified proteins linked to diseases. This overview delves into protein-tagging strategies that enable the targeted modulation of ubiquitination, phosphorylation, and acetylation, emphasizing the synergies and challenges of integrating heterobifunctional molecules with protein tags in PTM research. Despite significant progress, many PTMs remain to be explored, and protein tag-assisted PTM-inducing chimeras will continue to play an important role in understanding the fundamental roles of protein PTMs and in exploring the therapeutic potential of manipulating protein modifications, particularly for targets not yet addressed by existing drugs.
Collapse
Affiliation(s)
- Aggie Lawer
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| | - Luke Schulz
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Renata Sawyer
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| | - Xuyu Liu
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| |
Collapse
|
6
|
Nguyen TM, Sreekanth V, Deb A, Kokkonda P, Tiwari PK, Donovan KA, Shoba V, Chaudhary SK, Mercer JAM, Lai S, Sadagopan A, Jan M, Fischer ES, Liu DR, Ebert BL, Choudhary A. Proteolysis-targeting chimeras with reduced off-targets. Nat Chem 2024; 16:218-228. [PMID: 38110475 PMCID: PMC10913580 DOI: 10.1038/s41557-023-01379-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/13/2023] [Indexed: 12/20/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) are molecules that induce proximity between target proteins and E3 ligases triggering target protein degradation. Pomalidomide, a widely used E3 ligase recruiter in PROTACs, can independently degrade other proteins, including zinc-finger (ZF) proteins, with vital roles in health and disease. This off-target degradation hampers the therapeutic applicability of pomalidomide-based PROTACs, requiring development of PROTAC design rules that minimize off-target degradation. Here we developed a high-throughput platform that interrogates off-target degradation and found that reported pomalidomide-based PROTACs induce degradation of several ZF proteins. We generated a library of pomalidomide analogues to understand how functionalizing different positions of the phthalimide ring, hydrogen bonding, and steric and hydrophobic effects impact ZF protein degradation. Modifications of appropriate size on the C5 position reduced off-target ZF degradation, which we validated through target engagement and proteomics studies. By applying these design principles, we developed anaplastic lymphoma kinase oncoprotein-targeting PROTACs with enhanced potency and minimal off-target degradation.
Collapse
Affiliation(s)
- Tuan M Nguyen
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Vedagopuram Sreekanth
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Arghya Deb
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Praveen Kokkonda
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Praveen K Tiwari
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Veronika Shoba
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Santosh K Chaudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jaron A M Mercer
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Sophia Lai
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Ananthan Sadagopan
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Max Jan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
Noviello G, Gjaltema RAF. Fine-Tuning the Epigenetic Landscape: Chemical Modulation of Epigenome Editors. Methods Mol Biol 2024; 2842:57-77. [PMID: 39012590 DOI: 10.1007/978-1-0716-4051-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenome editing has emerged as a powerful technique for targeted manipulation of the chromatin and transcriptional landscape, employing designer DNA binding domains fused with effector domains, known as epi-editors. However, the constitutive expression of dCas9-based epi-editors presents challenges, including off-target activity and lack of temporal resolution. Recent advancements of dCas9-based epi-editors have addressed these limitations by introducing innovative switch systems that enable temporal control of their activity. These systems allow precise modulation of gene expression over time and offer a means to deactivate epi-editors, thereby reducing off-target effects associated with prolonged expression. The development of novel dCas9 effectors regulated by exogenous chemical signals has revolutionized temporal control in epigenome editing, significantly expanding the researcher's toolbox. Here, we provide a comprehensive review of the current state of these cutting-edge systems and specifically discuss their advantages and limitations, offering context to better understand their capabilities.
Collapse
Affiliation(s)
- Gemma Noviello
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rutger A F Gjaltema
- Molecular & Cellular Epigenetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Xu Y, Wang Y, Liang FS. Site-Specific m 6 A Erasing via Conditionally Stabilized CRISPR-Cas13b Editor. Angew Chem Int Ed Engl 2023; 62:e202309291. [PMID: 37713087 PMCID: PMC10592254 DOI: 10.1002/anie.202309291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 09/16/2023]
Abstract
N6-methyladenosine (m6 A) on RNAs plays an important role in regulating various biological processes and CRIPSR technology has been employed for programmable m6 A editing. However, the bulky size of CRISPR protein and constitutively expressed CRISPR/RNA editing enzymes can interfere with the native function of target RNAs and cells. Herein, we reported a conditional m6 A editing platform (FKBP*-dCas13b-ALK) based on a ligand stabilized dCas13 editor. The inducible expression of this m6 A editing system was achieved by adding or removing the Shield-1 molecule. We further demonstrated that the targeted recruitment of dCas13b-m6 A eraser fusion protein and site-specific m6 A erasing were achieved under the control of Shield-1. Moreover, the release and degradation of dCas13b fusion protein occurred faster than the restoration of m6 A on the target RNAs after Shield-1 removal, which provides an ideal opportunity to study the m6 A function with minimal steric interference from bulky dCas13b fusion protein.
Collapse
Affiliation(s)
- Ying Xu
- Department of Chemistry, Case Western Reserve Universit, 2080 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Yufan Wang
- Department of Chemistry, Case Western Reserve Universit, 2080 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Fu-Sen Liang
- Department of Chemistry, Case Western Reserve Universit, 2080 Adelbert Rd, Cleveland, OH, 44106, USA
| |
Collapse
|
9
|
Sreekanth V, Jan M, Zhao KT, Lim D, Davis JR, McConkey M, Kovalcik V, Barkal S, Law BK, Fife J, Tian R, Vinyard ME, Becerra B, Kampmann M, Sherwood RI, Pinello L, Liu DR, Ebert BL, Choudhary A. A molecular glue approach to control the half-life of CRISPR-based technologies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.531757. [PMID: 36945568 PMCID: PMC10028966 DOI: 10.1101/2023.03.12.531757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Cas9 is a programmable nuclease that has furnished transformative technologies, including base editors and transcription modulators (e.g., CRISPRi/a), but several applications of these technologies, including therapeutics, mandatorily require precision control of their half-life. For example, such control can help avert any potential immunological and adverse events in clinical trials. Current genome editing technologies to control the half-life of Cas9 are slow, have lower activity, involve fusion of large response elements (> 230 amino acids), utilize expensive controllers with poor pharmacological attributes, and cannot be implemented in vivo on several CRISPR-based technologies. We report a general platform for half-life control using the molecular glue, pomalidomide, that binds to a ubiquitin ligase complex and a response-element bearing CRISPR-based technology, thereby causing the latter's rapid ubiquitination and degradation. Using pomalidomide, we were able to control the half-life of large CRISPR-based technologies (e.g., base editors, CRISPRi) and small anti-CRISPRs that inhibit such technologies, allowing us to build the first examples of on-switch for base editors. The ability to switch on, fine-tune and switch-off CRISPR-based technologies with pomalidomide allowed complete control over their activity, specificity, and genome editing outcome. Importantly, the miniature size of the response element and favorable pharmacological attributes of the drug pomalidomide allowed control of activity of base editor in vivo using AAV as the delivery vehicle. These studies provide methods and reagents to precisely control the dosage and half-life of CRISPR-based technologies, propelling their therapeutic development.
Collapse
Affiliation(s)
- Vedagopuram Sreekanth
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Max Jan
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kevin T. Zhao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Donghyun Lim
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jessie R. Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Marie McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Veronica Kovalcik
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sam Barkal
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Benjamin K. Law
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - James Fife
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ruilin Tian
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Michael E. Vinyard
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Basheer Becerra
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Richard I. Sherwood
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Luca Pinello
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Benjamin L. Ebert
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Shin S, Jang S, Lim D. Small Molecules for Enhancing the Precision and Safety of Genome Editing. Molecules 2022; 27:6266. [PMID: 36234804 PMCID: PMC9573751 DOI: 10.3390/molecules27196266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome-editing technologies have revolutionized biology, biotechnology, and medicine, and have spurred the development of new therapeutic modalities. However, there remain several barriers to the safe use of CRISPR technologies, such as unintended off-target DNA cleavages. Small molecules are important resources to solve these problems, given their facile delivery and fast action to enable temporal control of the CRISPR systems. Here, we provide a comprehensive overview of small molecules that can precisely modulate CRISPR-associated (Cas) nucleases and guide RNAs (gRNAs). We also discuss the small-molecule control of emerging genome editors (e.g., base editors) and anti-CRISPR proteins. These molecules could be used for the precise investigation of biological systems and the development of safer therapeutic modalities.
Collapse
Affiliation(s)
- Siyoon Shin
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Korea
- Department of Next-Generation Applied Science, Sungshin University, Seoul 01133, Korea
| | - Seeun Jang
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Korea
- Department of Next-Generation Applied Science, Sungshin University, Seoul 01133, Korea
| | - Donghyun Lim
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul 01133, Korea
- Department of Next-Generation Applied Science, Sungshin University, Seoul 01133, Korea
| |
Collapse
|
11
|
Khajanchi N, Saha K. Controlling CRISPR with small molecule regulation for somatic cell genome editing. Mol Ther 2022; 30:17-31. [PMID: 34174442 PMCID: PMC8753294 DOI: 10.1016/j.ymthe.2021.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
Biomedical research has been revolutionized by the introduction of many CRISPR-Cas systems that induce programmable edits to nearly any gene in the human genome. Nuclease-based CRISPR-Cas editors can produce on-target genomic changes but can also generate unwanted genotoxicity and adverse events, in part by cleaving non-targeted sites in the genome. Additional translational challenges for in vivo somatic cell editing include limited packaging capacity of viral vectors and host immune responses. Altogether, these challenges motivate recent efforts to control the expression and activity of different Cas systems in vivo. Current strategies utilize small molecules, light, magnetism, and temperature to conditionally control Cas systems through various activation, inhibition, or degradation mechanisms. This review focuses on small molecules that can be incorporated as regulatory switches to control Cas genome editors. Additional development of CRISPR-Cas-based therapeutic approaches with small molecule regulation have high potential to increase editing efficiency with less adverse effects for somatic cell genome editing strategies in vivo.
Collapse
Affiliation(s)
- Namita Khajanchi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
12
|
Small molecule inhibition of ATM kinase increases CRISPR-Cas9 1-bp insertion frequency. Nat Commun 2021; 12:5111. [PMID: 34433825 PMCID: PMC8387472 DOI: 10.1038/s41467-021-25415-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
Mutational outcomes following CRISPR-Cas9-nuclease cutting in mammalian cells have recently been shown to be predictable and, in certain cases, skewed toward single genotypes. However, the ability to control these outcomes remains limited, especially for 1-bp insertions, a common and therapeutically relevant class of repair outcomes. Here, through a small molecule screen, we identify the ATM kinase inhibitor KU-60019 as a compound capable of reproducibly increasing the fraction of 1-bp insertions relative to other Cas9 repair outcomes. Small molecule or genetic ATM inhibition increases 1-bp insertion outcome fraction across three human and mouse cell lines, two Cas9 species, and dozens of target sites, although concomitantly reducing the fraction of edited alleles. Notably, KU-60019 increases the relative frequency of 1-bp insertions to over 80% of edited alleles at several native human genomic loci and improves the efficiency of correction for pathogenic 1-bp deletion variants. The ability to increase 1-bp insertion frequency adds another dimension to precise template-free Cas9-nuclease genome editing. The mutational outcome of CRISPR-Cas9 editing can be both predictable and targeted. Here the authors show that ATM inhibitor KU-60019 increases 1 bp insertions at the targeted locus.
Collapse
|
13
|
Gama-Brambila R, Chen J, Dabiri Y, Tascher G, Němec V, Münch C, Song G, Knapp S, Cheng X. A Chemical Toolbox for Labeling and Degrading Engineered Cas Proteins. JACS AU 2021; 1:777-785. [PMID: 34467332 PMCID: PMC8395650 DOI: 10.1021/jacsau.1c00007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 06/01/2023]
Abstract
The discovery of clustered regularly interspaced short palindromic repeats and their associated proteins (Cas) has revolutionized the field of genome and epigenome editing. A number of new methods have been developed to precisely control the function and activity of Cas proteins, including fusion proteins and small-molecule modulators. Proteolysis-targeting chimeras (PROTACs) represent a new concept using the ubiquitin-proteasome system to degrade a protein of interest, highlighting the significance of chemically induced protein-E3 ligase interaction in drug discovery. Here, we engineered Cas proteins (Cas9, dCas9, Cas12, and Cas13) by inserting a Phe-Cys-Pro-Phe (FCPF) amino acid sequence (known as the π-clamp system) and demonstrate that the modified CasFCPF proteins can be (1) labeled in live cells by perfluoroaromatics carrying the fluorescein or (2) degraded by a perfluoroaromatics-functionalized PROTAC (PROTAC-FCPF). A proteome-wide analysis of PROTAC-FCPF-mediated Cas9FCPF protein degradation revealed a high target specificity, suggesting a wide range of applications of perfluoroaromatics-induced proximity in the regulation of stability, activity, and functionality of any FCPF-tagging protein.
Collapse
Affiliation(s)
- Rodrigo
A. Gama-Brambila
- Buchmann
Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, D-60438 Frankfurt am Main, Germany
| | - Jie Chen
- Buchmann
Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, D-60438 Frankfurt am Main, Germany
| | - Yasamin Dabiri
- Institute
of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Georg Tascher
- Institute
of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Václav Němec
- Buchmann
Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, D-60438 Frankfurt am Main, Germany
| | - Christian Münch
- Institute
of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Guangqi Song
- Department
of Gastroenterology, Zhongshan Hospital
of Fudan University, 180 Fenglin Road, Xuhui District, 200032 Shanghai, China
| | - Stefan Knapp
- Buchmann
Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, D-60438 Frankfurt am Main, Germany
| | - Xinlai Cheng
- Buchmann
Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, D-60438 Frankfurt am Main, Germany
- Institute
of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|