1
|
Jain P, Witkowski B, Błaziak A, Gierczak T. Efficient Formation of Secondary Organic Aerosols from the Aqueous Oxidation of Terpenoic 1,2-Diols by OH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22089-22103. [PMID: 39636612 DOI: 10.1021/acs.est.4c06347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Aqueous oxidation of pinanediol (PND) and camphanediol (CND) by hydroxyl radical (OH) was investigated using gas and liquid chromatography coupled with mass spectrometry. The yields of the products formed were measured with authentic and surrogate standards. This approach quantified >97% of the products for both reactions under investigation. For the first time, the formation of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and other terpenoic acids (TAs) from the aqueous OH reaction with PND was confirmed with authentic standards. Based on the data acquired, mechanisms of OH oxidation of PND and CND were proposed. The yields of aqSOAs were evaluated by combining kinetic and air-water partitioning models developed for the the precursors, PND and CND, and for the first-generation products: cis-pinonic and camphoric acids. Modeled yields of aqSOAs ranged from 0.05 to 2.5. At liquid water content (LWC) from 1 × 10-4 to 4 × 10-3 (g × m-3, haze, and fogs), oxidized TAs were the major components of aqSOAs. In clouds with LWC > 0.06 (g × m-3), the contribution of nonacidic products to the mass of aqSOAs became dominant. Aqueous OH reaction with PND can produce up to 0.3 (Tg × yr-1) of aqSOA, assuming the average flux of the precursor at 0.5 (Tg × yr-1).
Collapse
Affiliation(s)
- Priyanka Jain
- Faculty of Chemistry, University of Warsaw, al. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Bartłomiej Witkowski
- Faculty of Chemistry, University of Warsaw, al. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Agata Błaziak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Gierczak
- Faculty of Chemistry, University of Warsaw, al. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
2
|
El Haber M, Gérard V, Kleinheins J, Ferronato C, Nozière B. Measuring the Surface Tension of Atmospheric Particles and Relevant Mixtures to Better Understand Key Atmospheric Processes. Chem Rev 2024; 124:10924-10963. [PMID: 39177157 PMCID: PMC11467905 DOI: 10.1021/acs.chemrev.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Aerosol and aqueous particles are ubiquitous in Earth's atmosphere and play key roles in geochemical processes such as natural chemical cycles, cloud and fog formation, air pollution, visibility, climate forcing, etc. The surface tension of atmospheric particles can affect their size distribution, condensational growth, evaporation, and exchange of chemicals with the atmosphere, which, in turn, are important in the above-mentioned geochemical processes. However, because measuring this quantity is challenging, its role in atmospheric processes was dismissed for decades. Over the last 15 years, this field of research has seen some tremendous developments and is rapidly evolving. This review presents the state-of-the-art of this subject focusing on the experimental approaches. It also presents a unique inventory of experimental adsorption isotherms for over 130 mixtures of organic compounds in water of relevance for model development and validation. Potential future areas of research seeking to better determine the surface tension of atmospheric particles, better constrain laboratory investigations, or better understand the role of surface tension in various atmospheric processes, are discussed. We hope that this review appeals not only to atmospheric scientists but also to researchers from other fields, who could help identify new approaches and solutions to the current challenges.
Collapse
Affiliation(s)
- Manuella El Haber
- Institut
de Recherches sur l’Environnement et la Catalyse de Lyon (IRCELYON),
CNRS and Université Lyon 1, Villeurbanne 69626, France
| | - Violaine Gérard
- Institut
de Recherches sur l’Environnement et la Catalyse de Lyon (IRCELYON),
CNRS and Université Lyon 1, Villeurbanne 69626, France
| | - Judith Kleinheins
- Institute
for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Corinne Ferronato
- Institut
de Recherches sur l’Environnement et la Catalyse de Lyon (IRCELYON),
CNRS and Université Lyon 1, Villeurbanne 69626, France
| | - Barbara Nozière
- Department
of Chemistry, KTH Royal Institute of Technology, Stockholm 114 28, Sweden
| |
Collapse
|
3
|
Luo J, Upshur MA, Vega M, Doering NA, Varelas J, Ren Z, Geiger FM, Sarpong R, Thomson RJ. Strategies and Tactics for Site Specific Deuterium Incorporation at Each Available Carbon Atom of α-Pinene. J Org Chem 2024; 89:14265-14278. [PMID: 39306764 PMCID: PMC11608105 DOI: 10.1021/acs.joc.4c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The development of several unique strategies and tactics for the synthesis of α-pinene isotopologues that has culminated in access to all eight possible isomers with deuterium incorporated selectively at each available carbon atom is described. Access to this library of isotopologues provides new tools to more fully investigate the atmospheric autoxidation of α-pinene, a complex process that plays a major role in the formation of secondary organic aerosol in the Earth's atmosphere.
Collapse
Affiliation(s)
- Jingyi Luo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mary Alice Upshur
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marvin Vega
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicolle A Doering
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jonathan Varelas
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhouyang Ren
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Kołodziejczyk A, Wróblewska A, Pietrzak M, Pyrcz P, Błaziak K, Szmigielski R. Dissociation constants of relevant secondary organic aerosol components in the atmosphere. CHEMOSPHERE 2024; 351:141166. [PMID: 38224752 DOI: 10.1016/j.chemosphere.2024.141166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
The presented studies focus on measuring the determination of the acidity constant (pKa) of relevant secondary organic aerosol components. For our research, we selected important oxidation products (mainly carboxylic acids) of the most abundant terpene compounds, such as α-pinene, β-pinene, β-caryophyllene, and δ-3-carene. The research covered the synthesis and determination of the acidity constant of selected compounds. We used three methods to measure the acidity constant, i.e., 1H NMR titration, pH-metric titration, Bates-Schwarzenbach spectrophotometric method. Moreover, the pKa values were calculated with Marvin 21.17.0 software to compare the experimentally derived values with those calculated from the chemical structure. pKa values measured with 1H NMR titration ranged from 3.51 ± 0.01 for terebic acid to 5.18 ± 0.06 for β-norcaryophyllonic acid. Moreover, the data determined by the 1H NMR method revealed a good correlation with the data obtained with the commonly used potentiometric and UV-spectroscopic methods (R2 = 0.92). In contrast, the comparison with in silico results exhibits a relatively low correlation (R2Marvin = 0.66). We found that most of the values calculated with the Marvin Program are lower than experimental values obtained with pH-metric titration with an average difference of 0.44 pKa units. For di- and tricarboxylic acids, we obtained two and three pKa values, respectively. A good correlation with the literature values was observed, for example, Howell and Fisher (1958) used pH-metric titration and measured pKa1 and pKa2 to be 4.48 and 5.48, while our results are 4.24 ± 0.10 and 5.40 ± 0.02, respectively.
Collapse
Affiliation(s)
- Agata Kołodziejczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Aleksandra Wróblewska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Patryk Pyrcz
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Kacper Błaziak
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 01-224, Warsaw, Poland; Biological and Chemical Research Center, University of Warsaw, ul. Żwirki i Wigury 101, 01-224, Warsaw, Poland
| | - Rafał Szmigielski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
5
|
Gao D, Chen H, Li H, Yang X, Guo X, Zhang Y, Ma J, Yang J, Ma S. Extraction, structural characterization, and antioxidant activity of polysaccharides derived from Arctium lappa L. Front Nutr 2023; 10:1149137. [PMID: 37025610 PMCID: PMC10070700 DOI: 10.3389/fnut.2023.1149137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Arctium lappa L. root has high nutritional and medicinal values and has been identified as a healthy food raw material by the Ministry of Health of the People's Republic of China. Methods In the present study, an aqueous two-phase system (ATPS) of polyethylene glycol (PEG)-(NH4)2SO4 was used to extract Arctium lappa L. polysaccharides (ALPs) from the Arctium lappa L. roots, the optimal extraction conditions of crude ALPs were optimized by using the single-factor experiment and response surface methodology. The structure and composition of ALPs were determined by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high-performance liquid chromatography (HPLC). At the same time, the antioxidant activity of ALPs was investigated by in vitro antioxidant experiment. Results The optimized extraction parameters for extraction ALPs were as follows: the PEG relative molecular weight of 6,000, a quality fraction of PEG 25%, a quality fraction of (NH4)2SO4 18%, and an extraction temperature of 80°C. Under these conditions, the extraction rate of ALPs could reach 28.83%. FTIR, SEM and HPLC results showed that ALPs were typical acidic heteropolysaccharides and had uneven particle size distribution, an irregular shape, and a rough surface. The ALPs were chiefly composed of glucose, rhamnose, arabinose, and galactose with a molar ratio of 70.19:10.95:11.16:6.90. In addition, the ALPs had intense antioxidant activity in vitro with IC50 values in the ·OH radical (1.732 mg/ml), DPPH radical (0.29 mg/ml), and superoxide anion (0.15 mg/ml) scavenging abilities. Discussion The results showed that ATPS was an efficient method to extract polysaccharides and could be used for the extraction of other polysaccharides. These results indicated that ALPs had great prospects as a functional food and could be exploited in multiple fields.
Collapse
Affiliation(s)
- Dandan Gao
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Haixing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xuhua Yang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xingchen Guo
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yuxuan Zhang
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jinpu Ma
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jutian Yang
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| | - Shuwen Ma
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
6
|
Upshur MA, Bé AG, Luo J, Varelas JG, Geiger FM, Thomson RJ. Organic synthesis in the study of terpene-derived oxidation products in the atmosphere. Nat Prod Rep 2023; 40:890-921. [PMID: 36938683 DOI: 10.1039/d2np00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Covering: 1997 up to 2022Volatile biogenic terpenes involved in the formation of secondary organic aerosol (SOA) particles participate in rich atmospheric chemistry that impacts numerous aspects of the earth's complex climate system. Despite the importance of these species, understanding their fate in the atmosphere and determining their atmospherically-relevant properties has been limited by the availability of authentic standards and probe molecules. Advances in synthetic organic chemistry directly aimed at answering these questions have, however, led to exciting discoveries at the interface of chemistry and atmospheric science. Herein we provide a review of the literature regarding the synthesis of commercially unavailable authentic standards used to analyze the composition, properties, and mechanisms of SOA particles in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Ariana Gray Bé
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jingyi Luo
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jonathan G Varelas
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| |
Collapse
|
7
|
Beltrán FJ, Chávez AM, Cintas P, Martínez RF. Mechanistic Insights into the Oxidative Degradation of Formic and Oxalic Acids with Ozone and OH Radical. A Computational Rationale. J Phys Chem A 2023; 127:1491-1498. [PMID: 36749871 PMCID: PMC9940222 DOI: 10.1021/acs.jpca.2c08091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Gas-phase and aqueous oxidations of formic and oxalic acids with ozone and OH radicals have been thoroughly examined by DFT methods. Such acids are not only important feedstocks for the iterative construction of other organic compounds but also final products generated by mineralization and advanced oxidation of higher organics. Our computational simulation unravels both common and distinctive reaction channels, albeit consistent with known H atom abstraction pathways and formation of hydropolyoxide derivatives. Notably, reactions with neutral ozone and OH radical proceed through low-energy concerted mechanisms involving asynchronous transition structures. For formic acid, carbonylic H-abstraction appears to be more favorable than the dissociative abstraction of the acid proton. Formation of long oxygen chains does not cause a significant energy penalty and highly oxygenated products are stable enough, even if subsequent decomposition releases environmentally benign side substances like O2 and H2O.
Collapse
Affiliation(s)
- Fernando J. Beltrán
- Departamento
de Ingeniería Química y Química Física,
Facultad de Ciencias, and Instituto Universitario de Investigación
del Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain,
| | - Ana María Chávez
- Departamento
de Ingeniería Química y Química Física,
Facultad de Ciencias, and Instituto Universitario de Investigación
del Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Pedro Cintas
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto Universitario de Investigación del
Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - R. Fernando Martínez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto Universitario de Investigación del
Agua, Cambio Climático y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain,
| |
Collapse
|
8
|
Bougas L, Byron J, Budker D, Williams J. Absolute optical chiral analysis using cavity-enhanced polarimetry. SCIENCE ADVANCES 2022; 8:eabm3749. [PMID: 35658039 PMCID: PMC9166628 DOI: 10.1126/sciadv.abm3749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chiral analysis is central for scientific advancement in the fields of chemistry, biology, and medicine. It is also indispensable in the development and quality control of chiral compounds in the chemical and pharmaceutical industries. Here, we present the concept of absolute optical chiral analysis, as enabled by cavity-enhanced polarimetry, which allows for accurate unambiguous enantiomeric characterization and enantiomeric excess determination of chiral compounds within complex mixtures at trace levels, without the need for calibration, even in the gas phase. Our approach and technology enable the absolute postchromatographic chiral analysis of complex gaseous mixtures, the rapid quality control of complex mixtures containing chiral volatile compounds, and the online in situ observation of chiral volatile emissions from a plant under stress.
Collapse
Affiliation(s)
- Lykourgos Bougas
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | - Dmitry Budker
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany
- Helmholtz Institute Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan Williams
- Max-Planck-Institut für Chemie, Mainz, Germany
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| |
Collapse
|
9
|
Caryophyllene and caryophyllene oxide: a variety of chemical transformations and biological activities. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01865-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Bellcross A, Bé AG, Geiger FM, Thomson RJ. Molecular Chirality and Cloud Activation Potentials of Dimeric α-Pinene Oxidation Products. J Am Chem Soc 2021; 143:16653-16662. [PMID: 34605643 DOI: 10.1021/jacs.1c07509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The surface activity of ten atmospherically relevant α-pinene-derived dimers having varying terminal functional groups and backbone stereochemistry is reported. We find ∼10% differences in surface activity between diastereomers of the same dimer, demonstrating that surface activity depends upon backbone stereochemistry. Octanol-water (KOW) and octanol-ammonium sulfate partitioning coefficient (KOAS) measurements of our standards align well with the surface activity measurements, with the more surface-active dimers exhibiting increased hydrophobicity. Our findings establish a link between molecular chirality and cloud activation potential of secondary organic aerosol particles. Given the diurnal variations in enantiomeric excess of biogenic emissions, possible contributions of such a link to biosphere:atmosphere feedbacks as well as aerosol particle viscosity and phase separation are discussed.
Collapse
Affiliation(s)
- Aleia Bellcross
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ariana Gray Bé
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Riva M, Sun J, McNeill VF, Ragon C, Perrier S, Rudich Y, Nizkorodov SA, Chen J, Caupin F, Hoffmann T, George C. High Pressure Inside Nanometer-Sized Particles Influences the Rate and Products of Chemical Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7786-7793. [PMID: 34060825 DOI: 10.1021/acs.est.0c07386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The composition of organic aerosol has a pivotal influence on aerosol properties such as toxicity and cloud droplet formation capability, which could affect both climate and air quality. However, a comprehensive and fundamental understanding of the chemical and physical processes that occur in nanometer-sized atmospheric particles remains a challenge that severely limits the quantification and predictive capabilities of aerosol formation pathways. Here, we investigated the effects of a fundamental and hitherto unconsidered physical property of nanoparticles-the Laplace pressure. By studying the reaction of glyoxal with ammonium sulfate, both ubiquitous and important atmospheric constituents, we show that high pressure can significantly affect the chemical processes that occur in atmospheric ultrafine particles (i.e., particles < 100 nm). Using high-resolution mass spectrometry and UV-vis spectroscopy, we demonstrated that the formation of reaction products is strongly (i.e., up to a factor of 2) slowed down under high pressures typical of atmospheric nanoparticles. A size-dependent relative rate constant is determined and numerical simulations illustrate the reduction in the production of the main glyoxal reaction products. These results established that the high pressure inside nanometer-sized aerosols must be considered as a key property that significantly impacts chemical processes that govern atmospheric aerosol growth and evolution.
Collapse
Affiliation(s)
- Matthieu Riva
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Jianfeng Sun
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - V Faye McNeill
- Department of Chemical Engineering and Department of Earth and Environmental Sciences, Columbia University, New York 10025, New York, United States
| | - Charline Ragon
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Sebastien Perrier
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California, Irvine 92697, California, United States
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Frédéric Caupin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne F-69622, France
| | - Thorsten Hoffmann
- Department of Chemistry, Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Christian George
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| |
Collapse
|
12
|
Zhang Y, Apsokardu MJ, Kerecman DE, Achtenhagen M, Johnston MV. Reaction Kinetics of Organic Aerosol Studied by Droplet Assisted Ionization: Enhanced Reactivity in Droplets Relative to Bulk Solution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:46-54. [PMID: 32469218 DOI: 10.1021/jasms.0c00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Droplet Assisted Ionization (DAI) is a relatively new method for online analysis of aerosol droplets that enables measurement of the rate of an aerosol reaction. Here, we used DAI to study the reaction of carbonyl functionalities in secondary organic aerosol (SOA) with Girard's T (GT) reagent, a reaction that can potentially be used to enhance the detection of SOA in online measurements. SOA was produced by α-pinene ozonolysis. Particulate matter was collected on a filter, extracted, and mixed with GT reagent in water. While the reaction hardly proceeded at all in bulk solution, products were readily observed with DAI when the solution was atomized to produce micron-size droplets. Varying the droplet transit time between the atomizer and mass spectrometer allowed the reaction rate constant to be determined, which was found to be 4 orders of magnitude faster than what would be expected from bulk solution kinetics. Decreasing the water content of the droplets, either by heating the capillary inlet to the mass spectrometer or by decreasing the relative humidity of the air surrounding the droplets in the transit line from the atomizer to the mass spectrometer, enhanced product formation. The results suggest that reaction enhancement occurs at the droplet surface, which is consistent with previous reports of reaction acceleration during mass spectrometric analysis, where a bulk solution is analyzed with an ionization method that produces aerosol droplets.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Michael J Apsokardu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Devan E Kerecman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Marcel Achtenhagen
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Murray V Johnston
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
13
|
Qin Y, Ye J, Ohno PE, Lei Y, Wang J, Liu P, Thomson RJ, Martin ST. Synergistic Uptake by Acidic Sulfate Particles of Gaseous Mixtures of Glyoxal and Pinanediol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11762-11770. [PMID: 32838520 DOI: 10.1021/acs.est.0c02062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The uptake of gaseous organic species by atmospheric particles can be affected by the reactive interactions among multiple co-condensing species, yet the underlying mechanisms remain poorly understand. Here, the uptake of unary and binary mixtures of glyoxal and pinanediol by neutral and acidic sulfate particles is investigated. These species are important products from the oxidation of volatile organic compounds (VOCs) under atmospheric conditions. The uptake to acidic aerosol particles greatly increased for a binary mixture of glyoxal and pinanediol compared to the unary counterparts. The strength of the synergism depended on the particle acidity and water content (i.e., relative humidity). The greater uptake was up to 2.5× to 8× at 10% relative humidity (RH) for glyoxal and pinanediol, respectively. At 50% RH, it was 2× and 1.2× for the two species. Possible mechanisms of acid-catalyzed cross reactions between the species are proposed to explain the synergistic uptake. The proposed mechanisms are applicable to a broader extent across atmospheric species having carbonyl and hydroxyl functionalities. The results thus suggest that synergistic uptake reactions can be expected to significantly influence the gas-particle partitioning of VOC oxidation products under atmospheric conditions and thus greatly affect their atmospheric transport and lifetime.
Collapse
Affiliation(s)
- Yiming Qin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jianhuai Ye
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Paul E Ohno
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard University Center for the Environment, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yali Lei
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Junfeng Wang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Pengfei Liu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Scot T Martin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
14
|
Stakanovs G, Mishnev A, Rasina D, Jirgensons A. A Concise Bioinspired Semisynthesis of Rumphellaones A-C and Their C-8 Epimers from β-Caryophyllene. JOURNAL OF NATURAL PRODUCTS 2020; 83:2004-2009. [PMID: 32538090 DOI: 10.1021/acs.jnatprod.0c00403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The first semisynthetic route toward rumphellaones B (2) and C (3) and their C-8 epimers as well as the shortest synthesis of rumphellaone A (1) and its C-8 epimer from the most accessible sesquiterpene, β-caryophyllene (4), is presented. Synthetic routes involved caryophyllonic acid as a key intermediate, which was converted to rumphellaone A (and epimer) via acid-catalyzed lactonization and rumphellaone C (and epimer) using one-pot epoxidation-lactonization. Rumphellaone B (2) and its epimer were obtained from rumphellaone A (1) and its epimer, respectively, using Saegusa-Ito oxidation. The absolute configuration at C-8 was confirmed by single-crystal X-ray analysis of rumphellaone B (2) and an acylated derivative of rumphellaone C.
Collapse
Affiliation(s)
- Georgijs Stakanovs
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
| | - Dace Rasina
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
| |
Collapse
|
15
|
Kołodziejczyk A, Pyrcz P, Błaziak K, Pobudkowska A, Sarang K, Szmigielski R. Physicochemical Properties of Terebic Acid, MBTCA, Diaterpenylic Acid Acetate, and Pinanediol as Relevant α-Pinene Oxidation Products. ACS OMEGA 2020; 5:7919-7927. [PMID: 32309701 PMCID: PMC7160834 DOI: 10.1021/acsomega.9b04231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/20/2020] [Indexed: 05/14/2023]
Abstract
The physicochemical properties and the synthesis of four α-pinene oxidation products, terebic acid, 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), diaterpenylic acid acetate (DTAA), and pinanediol, are presented in this study. The physicochemical properties encompass thermal properties, solubility in water, and dissociation constant (pK a) for the investigated compounds. It was found that terebic acid exhibits a relatively high melting temperature of 449.29 K, whereas pinanediol revealed a low melting temperature of 329.26 K. The solubility in water was determined with the dynamic method and the experimental results were correlated using three different mathematical models: Wilson, NRTL, and UNIQUAC equations. The results of the correlation indicate that the Wilson equation appears to work the best for terebic acid and pinanediol. The calculated standard deviation was for 3.79 for terebic acid and 1.25 for pinanediol. In contrast, UNIQUAC was the best mathematical model for DTAA and MBTCA. The calculated standard deviation was 0.57 for DTAA and 2.21 for MBTCA. The measured water solubility increased in the following order: pinanediol > DTAA ≥ MBTCA > terebic acid, which affects their multiphase aging chemistry in the atmosphere. Moreover, acidity constants (pK a) at 298, 303, and 308 K were determined for DTAA with the Bates-Schwarzenbach spectrophotometric method. The pK a values obtained at 298, 303, and 308 K were found to be 3.76, 3.85, and 3.88, respectively.
Collapse
Affiliation(s)
- Agata Kołodziejczyk
- Institute
of Physical Chemistry, Polish Academy of
Sciences, ul. Kasprzaka
44/52, 01-224 Warsaw, Poland
- E-mail: . Phone: +48 22 343 34 02
| | - Patryk Pyrcz
- Institute
of Physical Chemistry, Polish Academy of
Sciences, ul. Kasprzaka
44/52, 01-224 Warsaw, Poland
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kacper Błaziak
- University
of Warsaw, Faculty of Chemistry, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Aneta Pobudkowska
- Department
of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kumar Sarang
- Institute
of Physical Chemistry, Polish Academy of
Sciences, ul. Kasprzaka
44/52, 01-224 Warsaw, Poland
| | - Rafał Szmigielski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, ul. Kasprzaka
44/52, 01-224 Warsaw, Poland
- E-mail:
| |
Collapse
|
16
|
Bagchi A, Yu Y, Huang JH, Tsai CC, Hu WP, Wang CC. Evidence and evolution of Criegee intermediates, hydroperoxides and secondary organic aerosols formedviaozonolysis of α-pinene. Phys Chem Chem Phys 2020; 22:6528-6537. [DOI: 10.1039/c9cp06306d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first experimental evidence of Criegee intermediates formedviaα-pinene ozonolysis and the formation of secondary organic aerosols is reported using a rapid scan time-resolved FTIR spectrometer coupled with a long-path aerosol cooling chamber.
Collapse
Affiliation(s)
- Arnab Bagchi
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung
- Republic of China
- Aerosol Science Research Center
| | - Youqing Yu
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung
- Republic of China
| | - Jhih-Hong Huang
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung
- Republic of China
- Aerosol Science Research Center
| | - Cheng-Cheng Tsai
- Department of Chemistry and Biochemistry
- National Chung Cheng University
- Chiayi
- Republic of China
| | - Wei-Ping Hu
- Department of Chemistry and Biochemistry
- National Chung Cheng University
- Chiayi
- Republic of China
| | - Chia C. Wang
- Department of Chemistry
- National Sun Yat-sen University
- Kaohsiung
- Republic of China
- Aerosol Science Research Center
| |
Collapse
|
17
|
Vidović K, Kroflič A, Jovanovič P, Šala M, Grgić I. Electrochemistry as a Tool for Studies of Complex Reaction Mechanisms: The Case of the Atmospheric Aqueous-Phase Aging of Catechols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11195-11203. [PMID: 31482713 DOI: 10.1021/acs.est.9b02456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ultimate goal in the understanding of complex chemical processes is a complete description of the underlying reaction mechanism. In the present study and for this purpose, a novel experimental platform is introduced that builds upon electrochemistry capable of generating reactive intermediate species at the electrode surface. The atmospherically relevant nitration of catechols is taken as a case example. First, we confirm the recently proposed nitration mechanism, advancing the understanding of atmospheric brown carbon formation in the dark. We are able to selectively quantify aromatic isomers, which is beyond the limits of conventional electroanalysis. Second, we identify a new pathway of nitrocatechol hydroxylation, which proceeds simply by oxidation and the addition of water. This pathway can be environmentally significant in the dark aqueous-phase formation of secondary organic aerosols. Third, the developed methodology is capable of selectively detecting a wide range of nitroaromatics; a possible application in environmental monitoring is proposed.
Collapse
Affiliation(s)
- Kristijan Vidović
- Department of Analytical Chemistry , National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Ana Kroflič
- Department of Analytical Chemistry , National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| | - Primož Jovanovič
- Department of Analytical Chemistry , National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| | - Martin Šala
- Department of Analytical Chemistry , National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| | - Irena Grgić
- Department of Analytical Chemistry , National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
18
|
Kołodziejczyk A, Pyrcz P, Pobudkowska A, Błaziak K, Szmigielski R. Physicochemical Properties of Pinic, Pinonic, Norpinic, and Norpinonic Acids as Relevant α-Pinene Oxidation Products. J Phys Chem B 2019; 123:8261-8267. [PMID: 31455074 DOI: 10.1021/acs.jpcb.9b05211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, the study is focused on the synthesis and determination of physicochemical properties of four α-pinene secondary organic aerosol (SOA) products: cis-pinic acid, cis-pinonic acid, cis-norpinic acid, and cis-norpinonic acid. These encompass their thermal properties, solid-liquid phase equilibria, and dissociation constant (pKa). Thermal properties, including the melting temperature, enthalpy of fusion, temperature, and enthalpy of the phase transitions, were measured with the differential scanning calorimetry technique. These SOA components exhibit relatively high melting temperatures from 364.32 K for cis-pinic acid to 440.68 K for cis-norpinic acid. The enthalpies of fusion vary from 14.75 kJ·mol-1 for cis-norpinic acid to 30.35 kJ·mol-1 for cis-pinonic acid. The solubility in water was determined with the dynamic method (solid-liquid phase equilibria method), and then experimental results were interpreted and correlated using three different mathematical models: Wilson, non-random two-liquid model, and universal quasichemical equations. The results of the correlation indicate that the Wilson equation appears to work the best for all investigated compounds, giving rise to the lowest value of a standard deviation. cis-Norpinic acid and cis-pinic acid (dicarboxylic acids) show better solubility in the aqueous solution than cis-norpinonic acid and cis-pinonic acid (monocarboxylic acids), which affect the multiphase chemistry of α-pinene SOA processes. For cis-pinonic acid and cis-norpinonic acid, also pH-profile solubility was determined. The intrinsic solubility (S0) for cis-norpinonic acid was measured to be 0.05 mmol·dm-3, while for cis-pinonic acid, it was found to be 0.043 mmol·dm-3. The acidity constants (pKa) at 298 and 310 K using the Bates-Schwarzenbach spectrophotometric method were determined. The pKa values at 298.15 K for cis-norpinonic acid and cis-pinonic acid were found to be 4.56 and 5.19, respectively, whereas at 310.15 K, pKa values were found to be -4.76 and 5.25, respectively.
Collapse
Affiliation(s)
- Agata Kołodziejczyk
- Institute of Physical Chemistry , Polish Academy of Sciences , ul. Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Patryk Pyrcz
- Institute of Physical Chemistry , Polish Academy of Sciences , ul. Kasprzaka 44/52 , 01-224 Warsaw , Poland.,Department of Physical Chemistry, Faculty of Chemistry , Warsaw University of Technology , ul. Noakowskiego 3 , 00-664 Warsaw , Poland
| | - Aneta Pobudkowska
- Department of Physical Chemistry, Faculty of Chemistry , Warsaw University of Technology , ul. Noakowskiego 3 , 00-664 Warsaw , Poland
| | - Kacper Błaziak
- Faculty of Chemistry , University of Warsaw , ul. Pasteura 1 , 02-093 Warsaw , Poland
| | - Rafał Szmigielski
- Institute of Physical Chemistry , Polish Academy of Sciences , ul. Kasprzaka 44/52 , 01-224 Warsaw , Poland
| |
Collapse
|
19
|
Witkowski B, Al-Sharafi M, Gierczak T. Ozonolysis of β-Caryophyllonic and Limononic Acids in the Aqueous Phase: Kinetics, Product Yield, and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8823-8832. [PMID: 31296007 DOI: 10.1021/acs.est.9b02471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ozonolysis of β-caryophyllonic (BCA) and limononic (LA) acids in the aqueous-phase was investigated. The rate coefficients (kozone) measured for the BCA + ozone (O3) reaction at 295 ± 2 K were 4.8 ± 0.6 × 105 M-1 s-1 at pH = 2 and 6.0 ± 0.3 × 105 M-1 s-1 at pH = 8. The UV-vis absorption cross sections (σ, cm2 molecule-1) for BCA and LA in water were also measured. Atmospheric lifetimes of BCA and LA due to reactions with O3, hydroxyl radicals (OH), and due to photolysis were calculated. Lifetime estimates indicate that the aqueous-phase processing of both terpenoic acids studied in this work would be relevant in the atmosphere. In cloudwater, BCA is more likely to react with O3 with some possible contribution from the oxidation by OH, whereas the opposite is true for LA. Products of BCA and LA ozonolysis were quantified with LC-MS as well as with the UV-vis assays for quantification of formaldehyde and hydroperoxides. Oxygenated derivatives of BCA and LA that were produced following aqueous ozonolysis were identified as keto-BCA and keto-LA, respectively. Additionally, large quantities of intramolecular secondary ozonides and α-acyloxyhydroperoxy aldehydes were tentatively identified as products of aqueous ozonolysis of the two unsaturated terpenoic acids investigated.
Collapse
Affiliation(s)
- Bartłomiej Witkowski
- Faculty of Chemistry , University of Warsaw , Al. Żwirki i Wigury 101 , Warsaw , 02-089 , Poland
| | - Mohammed Al-Sharafi
- Faculty of Chemistry , University of Warsaw , Al. Żwirki i Wigury 101 , Warsaw , 02-089 , Poland
| | - Tomasz Gierczak
- Faculty of Chemistry , University of Warsaw , Al. Żwirki i Wigury 101 , Warsaw , 02-089 , Poland
| |
Collapse
|
20
|
Upshur MA, Vega MM, Bé AG, Chase HM, Zhang Y, Tuladhar A, Chase ZA, Fu L, Ebben CJ, Wang Z, Martin ST, Geiger FM, Thomson RJ. Synthesis and surface spectroscopy of α-pinene isotopologues and their corresponding secondary organic material. Chem Sci 2019; 10:8390-8398. [PMID: 31803417 PMCID: PMC6844218 DOI: 10.1039/c9sc02399b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/21/2019] [Indexed: 12/02/2022] Open
Abstract
The synthesis and surface-specific spectroscopic analysis of α-pinene isotopologues and their corresponding secondary organic material is reported.
Atmospheric aerosol–cloud interactions remain among the least understood processes within the climate system, leaving large uncertainties in the prediction of future climates. In particular, the nature of the surfaces of aerosol particles formed from biogenic terpenes, such as α-pinene, is poorly understood despite the importance of surface phenomena in their formation, growth, radiative properties, and ultimate fate. Herein we report the coupling of a site-specific deuterium labeling strategy with vibrational sum frequency generation (SFG) spectroscopy to probe the surface C–H oscillators in α-pinene-derived secondary organic aerosol material (SOM) generated in an atmospheric flow tube reactor. Three α-pinene isotopologues with methylene bridge, bridgehead methine, allylic, and vinyl deuteration were synthesized and their vapor phase SFG spectra were compared to that of unlabeled α-pinene. Subsequent analysis of the SFG spectra of their corresponding SOM revealed that deuteration of the bridge methylene C–H oscillators present on the cyclobutane ring in α-pinene leads to a considerable signal intensity decrease (ca. 30–40%), meriting speculation that the cyclobutane moiety remains largely intact within the surface bound species present in the SOM formed upon α-pinene oxidation. These insights provide further clues as to the complexity of aerosol particle surfaces, and establish a framework for future investigations of the heterogeneous interactions between precursor terpenes and particle surfaces that lead to aerosol particle growth under dynamically changing conditions in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Marvin M Vega
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Ariana Gray Bé
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Hilary M Chase
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Yue Zhang
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA
| | - Aashish Tuladhar
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Zizwe A Chase
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Carlena J Ebben
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Zheming Wang
- William R. Wiley Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Scot T Martin
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , MA 02138 , USA.,Department of Earth and Planetary Sciences , Harvard University , Cambridge , MA 02138 , USA
| | - Franz M Geiger
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Regan J Thomson
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| |
Collapse
|
21
|
Jacobs MI, Xu B, Kostko O, Wiegel AA, Houle FA, Ahmed M, Wilson KR. Using Nanoparticle X-ray Spectroscopy to Probe the Formation of Reactive Chemical Gradients in Diffusion-Limited Aerosols. J Phys Chem A 2019; 123:6034-6044. [DOI: 10.1021/acs.jpca.9b04507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Michael I. Jacobs
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bo Xu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aaron A. Wiegel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Frances A. Houle
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R. Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Fan H, Wenyika Masaya T, Goulay F. Effect of surface-bulk partitioning on the heterogeneous oxidation of aqueous saccharide aerosols. Phys Chem Chem Phys 2019; 21:2992-3001. [PMID: 30672531 DOI: 10.1039/c8cp06785f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The OH-initiated heterogeneous oxidation of mixed saccharide aqueous aerosols is investigated using an atmospheric-pressure flow tube coupled to off-line analysis of the particle composition. For equimolar monosaccharide/disaccharide aqueous aerosol mixtures, the decay of the disaccharide is found to be significantly slower than that of the monosaccharide. Molecular dynamics simulations of the mixed aqueous solutions reveal the formation of a ∼10 Å disaccharide exclusion layer below the water surface. A simple chemical model is developed to discuss the possible effect of the disaccharide surface partitioning on the heterogeneous kinetics. The observed decays are consistent with a poor spatial overlap of the OH radical at the interface with the disaccharide in the particle bulk. The effect of partitioning on the heterogeneous oxidation of atmospheric organic aerosols is discussed.
Collapse
Affiliation(s)
- Hanyu Fan
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, USA.
| | | | | |
Collapse
|
23
|
Wingen LM, Finlayson-Pitts BJ. Probing surfaces of atmospherically relevant organic particles by easy ambient sonic-spray ionization mass spectrometry (EASI-MS). Chem Sci 2018; 10:884-897. [PMID: 30774883 PMCID: PMC6346289 DOI: 10.1039/c8sc03851a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
EASI-MS is a promising technique for probing the chemical structures of inhomogeneous airborne organic particles.
Both ambient and laboratory-generated particles can have a surface composition different from the bulk, but there are currently few analytical techniques available to probe these differences. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) was applied to solid, laboratory-generated particles with core–shell morphologies formed from a variety of dicarboxylic acids. The soft ionization facilitated parent peak detection for the two compounds, from which the depth probed could be determined from the relative signal intensities. Two different configurations of a custom-made nebulizer are reported that yield different probe depths. In the “orthogonal mode,” with the nebulizer ∼10 centimeters away from the particle stream and at a 90° angle to the MS inlet, evaporation of the nebulizer droplets forms ions before interaction with the particles. The probe depth for orthogonal mode EASI-MS is shown to be 2–4 nm in these particle systems. In the “droplet mode”, the nebulizer and particle streams are in close proximity to each other and the MS inlet so that the particles interact with charged liquid droplets. This configuration resulted in full dissolution of the particles and gives particle composition similar to that from collection on filters and extraction of the particles (bulk). These studies establish that EASI-MS is a promising technique for probing the chemical structures of inhomogeneous airborne organic particles.
Collapse
Affiliation(s)
- L M Wingen
- Department of Chemistry , University of California Irvine , Irvine , CA 92697-2025 , USA . ; Tel: +1-949-824-7670
| | - B J Finlayson-Pitts
- Department of Chemistry , University of California Irvine , Irvine , CA 92697-2025 , USA . ; Tel: +1-949-824-7670
| |
Collapse
|
24
|
Resolving the mechanisms of hygroscopic growth and cloud condensation nuclei activity for organic particulate matter. Nat Commun 2018; 9:4076. [PMID: 30287821 PMCID: PMC6172236 DOI: 10.1038/s41467-018-06622-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/14/2018] [Indexed: 12/02/2022] Open
Abstract
Hygroscopic growth and cloud condensation nuclei activation are key processes for accurately modeling the climate impacts of organic particulate matter. Nevertheless, the microphysical mechanisms of these processes remain unresolved. Here we report complex thermodynamic behaviors, including humidity-dependent hygroscopicity, diameter-dependent cloud condensation nuclei activity, and liquid–liquid phase separation in the laboratory for biogenically derived secondary organic material representative of similar atmospheric organic particulate matter. These behaviors can be explained by the non-ideal mixing of water with hydrophobic and hydrophilic organic components. The non-ideality-driven liquid–liquid phase separation further enhances water uptake and induces lowered surface tension at high relative humidity, which result in a lower barrier to cloud condensation nuclei activation. By comparison, secondary organic material representing anthropogenic sources does not exhibit complex thermodynamic behavior. The combined results highlight the importance of detailed thermodynamic representations of the hygroscopicity and cloud condensation nuclei activity in models of the Earth’s climate system. The interactions between organic particulate matter and water vapour affect climate predictions, yet the mechanisms of these interactions remain unresolved. Here, the authors propose a phase separation mechanism that reconciles the observed hygroscopicity and cloud condensation nuclei activity.
Collapse
|
25
|
Yee LD, Isaacman-VanWertz G, Wernis RA, Meng M, Rivera V, Kreisberg NM, Hering SV, Bering MS, Glasius M, Upshur MA, Bé AG, Thomson RJ, Geiger FM, Offenberg JH, Lewandowski M, Kourtchev I, Kalberer M, de Sá S, Martin ST, Alexander ML, Palm BB, Hu W, Campuzano-Jost P, Day DA, Jimenez JL, Liu Y, McKinney KA, Artaxo P, Viegas J, Manzi A, Oliveira MB, de Souza R, Machado LAT, Longo K, Goldstein AH. Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:10433-10457. [PMID: 33354203 PMCID: PMC7751628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biogenic volatile organic compounds (BVOCs) from the Amazon forest region represent the largest source of organic carbon emissions to the atmosphere globally. These BVOC emissions dominantly consist of volatile and intermediate-volatility terpenoid compounds that undergo chemical transformations in the atmosphere to form oxygenated condensable gases and secondary organic aerosol (SOA). We collected quartz filter samples with 12 h time resolution and performed hourly in situ measurements with a semi-volatile thermal desorption aerosol gas chromatograph (SV-TAG) at a rural site ("T3") located to the west of the urban center of Manaus, Brazil as part of the Green Ocean Amazon (GoAmazon2014/5) field campaign to measure intermediate-volatility and semi-volatile BVOCs and their oxidation products during the wet and dry seasons. We speciated and quantified 30 sesquiterpenes and 4 diterpenes with mean concentrations in the range 0.01-6.04 ngm-3 (1-670ppqv). We estimate that sesquiterpenes contribute approximately 14 and 12% to the total reactive loss of O3 via reaction with isoprene or terpenes during the wet and dry seasons, respectively. This is reduced from ~ 50-70 % for within-canopy reactive O3 loss attributed to the ozonolysis of highly reactive sesquiterpenes (e.g., β-caryophyllene) that are reacted away before reaching our measurement site. We further identify a suite of their oxidation products in the gas and particle phases and explore their role in biogenic SOA formation in the central Amazon region. Synthesized authentic standards were also used to quantify gas- and particle-phase oxidation products derived from β-caryophyllene. Using tracer-based scaling methods for these products, we roughly estimate that sesquiterpene oxidation contributes at least 0.4-5 % (median 1 %) of total submicron OA mass. However, this is likely a low-end estimate, as evidence for additional unaccounted sesquiterpenes and their oxidation products clearly exists. By comparing our field data to laboratory-based sesquiterpene oxidation experiments we confirm that more than 40 additional observed compounds produced through sesquiterpene oxidation are present in Amazonian SOA, warranting further efforts towards more complete quantification.
Collapse
Affiliation(s)
- Lindsay D. Yee
- Department of Environmental Science, Policy, and
Management, University of California, Berkeley, Berkeley, California 94720,
USA
| | - Gabriel Isaacman-VanWertz
- Department of Environmental Science, Policy, and
Management, University of California, Berkeley, Berkeley, California 94720,
USA
- now at: Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Rebecca A. Wernis
- Department of Civil and Environmental Engineering,
University of California, Berkeley, Berkeley, California 94720, USA
| | - Meng Meng
- Department of Chemical Engineering, University of
California, Berkeley, Berkeley, California 94720, USA
- now at: Department of Chemical Engineering and Applied
Chemistry, University of Toronto, Toronto, CA, USA
| | - Ventura Rivera
- Department of Chemical Engineering, University of
California, Berkeley, Berkeley, California 94720, USA
| | | | | | - Mads S. Bering
- Department of Chemistry, Aarhus University, 8000 Aarhus C,
Denmark
| | - Marianne Glasius
- Department of Chemistry, Aarhus University, 8000 Aarhus C,
Denmark
| | - Mary Alice Upshur
- Department of Chemistry, Northwestern University, Evanston,
Illinois 60208, USA
| | - Ariana Gray Bé
- Department of Chemistry, Northwestern University, Evanston,
Illinois 60208, USA
| | - Regan J. Thomson
- Department of Chemistry, Northwestern University, Evanston,
Illinois 60208, USA
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, Evanston,
Illinois 60208, USA
| | - John H. Offenberg
- National Exposure Research Laboratory, Exposure Methods and
Measurements Division, United States Environmental Protection Agency, Research
Triangle Park, North Carolina 27711, USA
| | - Michael Lewandowski
- National Exposure Research Laboratory, Exposure Methods and
Measurements Division, United States Environmental Protection Agency, Research
Triangle Park, North Carolina 27711, USA
| | - Ivan Kourtchev
- Department of Chemistry, University of Cambridge,
Cambridge, CB2 1EW, UK
| | - Markus Kalberer
- Department of Chemistry, University of Cambridge,
Cambridge, CB2 1EW, UK
| | - Suzane de Sá
- School of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, USA
| | - Scot T. Martin
- School of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, USA
- Department of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, USA
| | - M. Lizabeth Alexander
- Environmental Molecular Sciences Laboratory, Pacific
Northwest National Laboratory, Richland, Washington 99352, USA
| | - Brett B. Palm
- Dept. of Chemistry and Cooperative Institute for Research
in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309,
USA
| | - Weiwei Hu
- Dept. of Chemistry and Cooperative Institute for Research
in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309,
USA
| | - Pedro Campuzano-Jost
- Dept. of Chemistry and Cooperative Institute for Research
in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309,
USA
| | - Douglas A. Day
- Dept. of Chemistry and Cooperative Institute for Research
in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309,
USA
| | - Jose L. Jimenez
- Dept. of Chemistry and Cooperative Institute for Research
in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309,
USA
| | - Yingjun Liu
- School of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, USA
- now at: Department of Environmental Science, Policy, and
Management, University of California, Berkeley, Berkeley, California 94720,
USA
| | - Karena A. McKinney
- School of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, USA
- now at: Department of Chemistry, Colby College,
Waterville, Maine 04901, USA
| | - Paulo Artaxo
- Department of Applied Physics, University of São
Paulo, SP, Brazil
| | - Juarez Viegas
- Instituto Nacional de Pesquisas da Amazonia, Manaus, AM,
Brazil
| | - Antonio Manzi
- Instituto Nacional de Pesquisas da Amazonia, Manaus, AM,
Brazil
| | | | | | - Luiz A. T. Machado
- Instituto Nacional de Pesquisas Espiacais, São
José dos Campos, SP, Brazil
| | - Karla Longo
- Instituto Nacional de Pesquisas Espiacais, Cachoeira
Paulista, SP, Brazil
| | - Allen H. Goldstein
- Department of Environmental Science, Policy, and
Management, University of California, Berkeley, Berkeley, California 94720,
USA
| |
Collapse
|