1
|
Dorfman KD. Computational Phase Discovery in Block Polymers. ACS Macro Lett 2024; 13:1612-1619. [PMID: 39531003 DOI: 10.1021/acsmacrolett.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Self-consistent field theory (SCFT), the mean-field theory of polymer thermodynamics, is a powerful tool for understanding ordered state selection in block copolymer melts and blends. However, the nonlinear governing equations pose a significant challenge when SCFT is used for phase discovery because converging an SCFT solution typically requires an initial guess close to the self-consistent solution. This Viewpoint provides a concise overview of recent efforts where machine learning methods (particle swarm optimization, Bayesian optimization, and generative adversarial networks) have been used to make the first strides toward converting SCFT from a primarily explanatory tool into one that can be readily deployed for phase discovery.
Collapse
Affiliation(s)
- Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Liu D, He S, Luo L, Yang W, Liu Y, Yang S, Shen Z, Chen S, Fan XH. Double gyroid-structured electrolyte based on an azobenzene-containing monomer and its polymer. SOFT MATTER 2024; 20:6424-6430. [PMID: 39087847 DOI: 10.1039/d4sm00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The self-assembled structure has a significant impact on the performance of ion conductors. We prepared a new type of electrolyte with self-assembled structures from an azobenzene-based liquid crystalline (LC) monomer and its corresponding polymer. By doping different amounts of monomers and lithium salt LiTFSI, the self-assembled nanostructure of the electrolyte was changed from lamellae to double gyroid. The ionic conductivity of the azobenzene-based electrolytes with the double gyroid structure was 1.64 × 10-4 S cm-1, higher than most PEO-based polymer electrolytes. The azobenzene-based system provides a new strategy to design solid electrolytes with self-assembled structures that may be potentially used in solid-state lithium-ion batteries.
Collapse
Affiliation(s)
- Dong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shangming He
- College of Materials Science & Engineering, Nanjing Tech University, Nanjing, 210009, China.
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Weilu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shichu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shuangjun Chen
- College of Materials Science & Engineering, Nanjing Tech University, Nanjing, 210009, China.
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Ju J, Hayward RC. Interconnected Nanoporous Polysulfone by the Self-Assembly of Randomly Linked Copolymer Networks and Linear Multiblocks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34079-34088. [PMID: 38889392 DOI: 10.1021/acsami.4c05207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Porous materials have attracted considerable attention due to their versatile applications, especially in water purification. Interconnected nanoporous structures are distinguished by their high degree of porosity and resistance to clogging, as well as their insensitivity to nanostructural orientation. Previous works on randomly linked copolymer systems have shown that they can effectively produce disordered cocontinuous nanostructures, which upon removal of one component yield interconnected nanoporous materials. However, the cocontinuous nanomaterials previously developed using polystyrene (PS) and poly(d,l-lactic acid) (PLA) strands, and the resulting interconnected nanoporous PS monoliths, were far too brittle to enable practical use as membranes. Here, we study the self-assembly of randomly linked copolymer networks prepared using blocks of the engineering polymer polysulfone (PSU). A wide cocontinuous regime (spanning 40 wt %) was found for randomly end-linked copolymer networks (RECNs) constructed from PSU and PLA strands, via a combination of mechanical testing, gravimetry, small-angle X-ray scattering, and scanning electron microscopy. The PSU/PLA cocontinuous nanomaterial with symmetric composition showed 2.4 times higher Young's modulus and ∼100 times greater toughness than the corresponding PS/PLA sample. The interconnected nanoporous PSU fabricated after etching of PLA even exhibited 1.6 times greater toughness than PS/PLA prior to PLA removal. To facilitate the production of thin films of cocontinuous nanomaterials, we applied solution-processable randomly linked linear PSU/PLA multiblock polymers onto ultrafiltration membranes. The interconnected nanoporous PSU thin film generated by etching PLA was found to effectively reject 50 nm diameter particles without significantly compromising permeability. This discovery presents a valuable addition to the existing techniques used to fabricate PSU membranes. In contrast to traditional methods, which are sensitive to processing conditions, produce a wide range of pore sizes, and offer limited adjustability of pore size, the current technique is anticipated to enable interconnected PSU membranes with more uniform and tailorable porosity.
Collapse
Affiliation(s)
- Jaechul Ju
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Ryan C Hayward
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
4
|
Hoehn BD, Kellstedt EA, Hillmyer MA. Tough polycyclooctene nanoporous membranes from etchable block copolymers. SOFT MATTER 2024; 20:437-448. [PMID: 38112234 DOI: 10.1039/d3sm01498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Porous materials with pore dimensions of the nanometer length scale are useful as nanoporous membranes. ABA triblock copolymers are convenient precursors to such nanoporous materials if the end blocks are easily degradable (e.g., polylactide or PLA), leaving nanoporous polymeric membranes (NPMs) if in thin film form. The membrane properties are dependent on midblock monomer structure, triblock copolymer composition, overall molar mass, and polymer processing conditions. Polycyclooctene (PCOE) NPMs were prepared using this method, with tunable pore sizes on the order of tens of nanometers. Solvent casting was shown to eliminate film defects and allowed achievement of superior mechanical properties over melt processing techniques, and PCOE NPMs were found to be very tough, a major advance over previously reported NPMs. Oxygen plasma etching was used to remove the surface skin layer to obtain membranes with higher surface porosity, membrane hydrophilicity, and flux of both air and water. This is a straightforward method to reliably produce highly tough NPMs with high levels of porosity and hydrophilic surface properties.
Collapse
Affiliation(s)
- Brenden D Hoehn
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0431, USA
| | | | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA.
| |
Collapse
|
5
|
Lee K, Corrigan N, Boyer C. Polymerization Induced Microphase Separation for the Fabrication of Nanostructured Materials. Angew Chem Int Ed Engl 2023; 62:e202307329. [PMID: 37429822 DOI: 10.1002/anie.202307329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Polymerization induced microphase separation (PIMS) is a strategy used to develop unique nanostructures with highly useful morphologies through the microphase separation of emergent block copolymers during polymerization. In this process, nanostructures are formed with at least two chemically independent domains, where at least one domain is composed of a robust crosslinked polymer. Crucially, this synthetically simple method is readily used to develop nanostructured materials with the highly coveted co-continuous morphology, which can also be converted into mesoporous materials by selective etching of one domain. As PIMS exploits a block copolymer microphase separation mechanism, the size of each domain can be tightly controlled by modifying the size of block copolymer precursors, thus providing unparalleled control over nanostructure and resultant mesopore sizes. Since its inception 11 years ago, PIMS has been used to develop a vast inventory of advanced materials for an extensive range of applications including biomedical devices, ion exchange membranes, lithium-ion batteries, catalysis, 3D printing, and fluorescence-based sensors, among many others. In this review, we provide a comprehensive overview of the PIMS process, summarize latest developments in PIMS chemistry, and discuss its utility in a wide variety of relevant applications.
Collapse
Affiliation(s)
- Kenny Lee
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Dorfman KD, Wang ZG. Liquid-Like States in Micelle-Forming Diblock Copolymer Melts. ACS Macro Lett 2023:980-985. [PMID: 37399493 DOI: 10.1021/acsmacrolett.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Large cell self-consistent field theory (SCFT) solutions for a neat, micelle-forming diblock copolymer melt, initialized using the structure of a Lennard-Jones fluid, reveal the existence of a vast number of liquid-like states, with free energies of order 10-3 kBT per chain higher than the body-centered cubic (bcc) state near the order-disorder transition (ODT). Computation of the structure factor for these liquids at temperatures below the ODT indicates that their intermicellar distance is slightly swollen compared to bcc. In addition to providing a mean-field picture of the disordered micellar state, the number of liquid-like states and their near-degeneracy with the equilibrium bcc morphology suggest that self-assembly of micelle-forming diblock copolymers navigates a rugged free energy landscape with many local minima. This picture provides a basis for the anomalously slow ordering kinetics of particle-forming diblock copolymer melts observed in experiments.
Collapse
Affiliation(s)
- Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin-Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Le ML, Grzetic DJ, Delaney KT, Yang KC, Xie S, Fredrickson GH, Chabinyc ML, Segalman RA. Electrostatic Interactions Control the Nanostructure of Conjugated Polyelectrolyte–Polymeric Ionic Liquid Blends. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- My Linh Le
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Douglas J. Grzetic
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
| | - Kris T. Delaney
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
| | - Kai-Chieh Yang
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
| | - Shuyi Xie
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
| | - Michael L. Chabinyc
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Wang G, Zippelius A, Müller M. Phase Separation of Randomly Cross-Linked Diblock Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gaoyuan Wang
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| | - Annette Zippelius
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Sims MB, Zhang B, Gdowski ZM, Lodge TP, Bates FS. Nondestructive Photo-Cross-Linking of Microphase-Separated Diblock Polymers through Coumarin Dimerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael B. Sims
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bo Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zachary M. Gdowski
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Marin San Roman P, Nijmeijer K, Sijbesma RP. Sulfonated polymerized liquid crystal nanoporous membranes for water purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Lang C, Kumar M, Hickey RJ. Current status and future directions of self-assembled block copolymer membranes for molecular separations. SOFT MATTER 2021; 17:10405-10415. [PMID: 34768280 DOI: 10.1039/d1sm01368h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the most efficient and promising separation alternatives to thermal methods such as distillation is the use of polymeric membranes that separate mixtures based on molecular size or chemical affinity. Self-assembled block copolymer membranes have gained considerable attention within the membrane field due to precise control over nanoscale structure, pore size, and chemical versatility. Despite the rapid progress and excitement, a significant hurdle in using block copolymer membranes for nanometer and sub-nanometer separations such as nanofiltration and reverse osmosis is the lower limit on domain size features. Strategies such as polymer post-functionalization, self-assembly of oligomers, liquid crystals, and random copolymers, or incorporation of artificial/natural channels within block copolymer materials are future directions with the potential to overcome current limitations with respect to separation size.
Collapse
Affiliation(s)
- Chao Lang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16801, USA.
| | - Manish Kumar
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Robert J Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16801, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, 16801, USA
| |
Collapse
|
12
|
Xu H, Xiao H, Ellison CJ, Mahanthappa MK. Flexible Nanoporous Materials by Matrix Removal from Cylinder-Forming Diblock Copolymers. NANO LETTERS 2021; 21:7587-7594. [PMID: 34460249 DOI: 10.1021/acs.nanolett.1c02097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We describe a straightforward self-assembly route to nanoporous materials derived from a hexagonally-packed cylinder (HEX) morphology of a polyisoprene-block-polylactide (PI-b-PLA) diblock copolymer, by thermal cross-linking of the minority PI domains followed by selective chemical etching of the PLA matrix. The resulting mechanically stable and porous samples defy the expectation that the remaining cylinders cannot yield a robust, integrated material upon matrix removal. Scanning electron microscopy imaging reveals that this unexpected structural integrity stems from the interconnected nanofibrils therein, reflecting topological defects at the grain boundaries of the parent polydomain HEX nanostructure. Hydrodynamic radius-dependent poly(ethylene oxide) (Mn = 0.4-35 kg/mol) permeation behavior through these monoliths directly demonstrated the continuity and size selectivity of the nanoporous material. The ready accessibility of block copolymer HEX morphologies of varied chemistries suggests that this matrix etching strategy will enable the future design of functional, size-selective nanofiltration membrane materials.
Collapse
Affiliation(s)
- Hongyun Xu
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Han Xiao
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J Ellison
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Guo L, Wang Y, Steinhart M. Porous block copolymer separation membranes for 21st century sanitation and hygiene. Chem Soc Rev 2021; 50:6333-6348. [PMID: 33890584 DOI: 10.1039/d0cs00500b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Removing hazardous particulate and macromolecular contaminants as well as viruses with sizes from a few nm up to the 100 nm-range from water and air is crucial for ensuring sufficient sanitation and hygiene for a growing world population. To this end, high-performance separation membranes are needed that combine high permeance, high selectivity and sufficient mechanical stability under operating conditions. However, design features of separation membranes enhancing permeance reduce selectivity and vice versa. Membrane configurations combining high permeance and high selectivity suffer in turn from a lack of mechanical robustness. These problems may be tackled by using block copolymers (BCPs) as a material platform for the design of separation membranes. BCPs are macromolecules that consist of two or more chemically distinct block segments, which undergo microphase separation yielding a wealth of ordered nanoscopic domain structures. Various methods allow the transformation of these nanoscopic domain structures into customized nanopore systems with pore sizes in the sub-100 nm range and with narrow pore size distributions. This tutorial review summarizes design strategies for nanoporous state-of-the-art BCP separation membranes, their preparation, their device integration and their use for water purification.
Collapse
Affiliation(s)
- Leiming Guo
- Institut für Chemie neuer Materialien and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49076 Osnabrück, Germany.
| | | | | |
Collapse
|
14
|
Ishibashi JSA, Pierce IC, Chang AB, Zografos A, El-Zaatari BM, Fang Y, Weigand SJ, Bates FS, Kalow JA. Mechanical and Structural Consequences of Associative Dynamic Cross-Linking in Acrylic Diblock Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02744] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jacob S. A. Ishibashi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ian C. Pierce
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alice B. Chang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aristotelis Zografos
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bassil M. El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Fang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven J. Weigand
- Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Julia A. Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Hewitt DRO, Grubbs RB. Amine-Catalyzed Chain Polymerization of Ethyl Glyoxylate from Alcohol and Thiol Initiators. ACS Macro Lett 2021; 10:370-374. [PMID: 35549067 DOI: 10.1021/acsmacrolett.0c00865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyacetals have significant potential as degradable polymers, but aldehyde polymerizations are generally difficult to control. Here we show that polymerization of ethyl glyoxylate can be initiated from alcohols or thiols by activation with triethylamine to afford poly(ethyl glyoxylate) with controllable molecular weights and relatively low dispersities (Đ = 1.3-1.4), as evidenced by MALDI-TOF mass spectrometry. Stabilization against depolymerization by chain-capping with benzyl chloroformate was found to proceed without side reactions observed from chain-capping with tolyl isocyanate. The use of the stronger base DBU leads to competing side reactions that limit polymer molecular weight.
Collapse
Affiliation(s)
- David R. O. Hewitt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Robert B. Grubbs
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
16
|
Hampu N, Werber JR, Chan WY, Feinberg EC, Hillmyer MA. Next-Generation Ultrafiltration Membranes Enabled by Block Polymers. ACS NANO 2020; 14:16446-16471. [PMID: 33315381 DOI: 10.1021/acsnano.0c07883] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reliable and equitable access to safe drinking water is a major and growing challenge worldwide. Membrane separations represent one of the most promising strategies for the energy-efficient purification of potential water sources. In particular, porous membranes are used for the ultrafiltration (UF) of water to remove contaminants with nanometric sizes. However, despite exhibiting excellent water permeability and solution processability, existing UF membranes contain a broad distribution of pore sizes that limit their size selectivity. To maximize the potential utility of UF membranes and allow for precise separations, improvements in the size selectivity of these systems must be achieved. Block polymers represent a potentially transformative solution, as these materials self-assemble into well-defined domains of uniform size. Several different strategies have been reported for integrating block polymers into UF membranes, and each strategy has its own set of materials and processing considerations to ensure that uniform and continuous pores are generated. This Review aims to summarize and critically analyze the chemistries, processing techniques, and properties required for the most common methods for producing porous membranes from block polymers, with a particular focus on the fundamental mechanisms underlying block polymer self-assembly and pore formation. Critical structure-property-performance metrics will be analyzed for block polymer UF membranes to understand how these membranes compare to commercial UF membranes and to identify key research areas for continued improvements. This Review is intended to inform readers of the capabilities and current challenges of block polymer UF membranes, while stimulating critical thought on strategies to advance these technologies.
Collapse
Affiliation(s)
- Nicholas Hampu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jay R Werber
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wui Yarn Chan
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth C Feinberg
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Hampu N, Werber JR, Hillmyer MA. Co-Casting Highly Selective Dual-Layer Membranes with Disordered Block Polymer Selective Layers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45351-45362. [PMID: 32986409 DOI: 10.1021/acsami.0c13726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Highly selective and water permeable dual-layer ultrafiltration (UF) membranes comprising a disordered poly(methyl methacrylate-stat-styrene)-block-poly(lactide) selective layer and a polysulfone (PSF) support layer were fabricated using a co-casting technique. A dilute solution of diblock polymer was spin coated onto a solvent-swollen PSF layer, rapidly heated to dry and disorder the block polymer layer, and subsequently immersed into an ice water coagulation bath to kinetically trap the disordered state in the block polymer selective layer and precipitate the support layer by nonsolvent-induced phase separation. Subsequent removal of the polylactide block generated porous membranes suitable for UF. The permeability of these dual-layer membranes was modulated by tuning the concentration of the PSF casting solution, while the size-selectivity was maintained because of the narrow pore size distribution of the self-assembled block polymer selective layer. Elimination of the thermal annealing step resulted in a dramatic increase in the water permeability without adversely impacting the size-selectivity, as the disordered nanostructure present in the concentrated casting solution was kinetically trapped upon rapid drying. The co-casting strategy outlined in this work may enable the scalable fabrication of block polymer membranes with both high permeability and high selectivity.
Collapse
Affiliation(s)
- Nicholas Hampu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jay R Werber
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Hampu N, Hillmyer MA. Nanostructural Rearrangement of Lamellar Block Polymers Cured in the Vicinity of the Order–Disorder Transition. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholas Hampu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Bandegi A, Bañuelos JL, Foudazi R. Formation of ion gels by polymerization of block copolymer/ionic liquid/oil mesophases. SOFT MATTER 2020; 16:6102-6114. [PMID: 32638811 DOI: 10.1039/d0sm00850h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we introduce a new method of developing ion gels through polymerization of lyotropic liquid crystal (LLC) templates of monomer (styrene), cross-linker (divinylbenzene), ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate), and amphiphilic block copolymers (Pluronic F127). The polymerization of the oil phase boosts the mechanical properties of the ion-conducting electrolytes. We discuss the effect of tortuosity induced by crystalline domains and LLC structure on the conductivity of ion gels. The ion transport in polymerized LLCs (polyLLCs) can be controlled by changing the composition of the mesophases. Increasing the block copolymer concentration enhances the crystallinity of PEO blocks in the conductive domains, which slows down the dynamics of PEO chain and ion transport. We show that by adjusting the composition of LLC mesophases, the mechanical strength of ion gels can be increased one order of magnitude without compromising the ionic conductivity. The polyLLCs with 45/25/30 wt% (block copolymer/IL/oil) composition has storage modulus and ionic conductivity higher than 1 MPa and 3 mS cm-1 at 70 °C, respectively. The results suggest that LLC templating is a promising method to develop highly conductive ion gels, which provides advantages in terms of variety and processing.
Collapse
Affiliation(s)
- Alireza Bandegi
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Jose L Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Reza Foudazi
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
20
|
Shen Z, Chen JL, Vernadskaia V, Ertem SP, Mahanthappa MK, Hillmyer MA, Reineke TM, Lodge TP, Siepmann JI. From Order to Disorder: Computational Design of Triblock Amphiphiles with 1 nm Domains. J Am Chem Soc 2020; 142:9352-9362. [PMID: 32392052 DOI: 10.1021/jacs.0c01829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using molecular dynamics simulations and transferable force fields, we designed a series of symmetric triblock amphiphiles (or high-χ block oligomers) comprising incompatible sugar-based (A) and hydrocarbon (B) blocks that can self-assemble into ordered nanostructures with sub-1 nm domains and full domain pitches as small as 1.2 nm. Depending on the chain length and block sequence, the ordered morphologies include lamellae, perforated lamellae, and hexagonally perforated lamellae. The self-assembly of these amphiphiles bears some similarities, but also some differences, to those formed by symmetric triblock polymers. In lamellae formed by ABA amphiphiles, the fraction of B blocks "bridging" adjacent polar domains is nearly unity, much higher than that found for symmetric triblock polymers, and the bridging molecules adopt elongated conformations. In contrast, "looping" conformations are prevalent for A blocks of BAB amphiphiles. Above the order-disorder transition temperature, the disordered states are locally well-segregated yet the B blocks of ABA amphiphiles are significantly less stretched than in the lamellar phases. Analysis of both hydrogen-bonded and nonpolar clusters reveals the bicontinuous nature of these network phases. This simulation study furnishes detailed insights into structure-property relationships for mesophase formation on the 1 nm length scale that will aid further miniaturization for numerous applications.
Collapse
Affiliation(s)
- Zhengyuan Shen
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States.,Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Jingyi L Chen
- Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States.,Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Viktoriia Vernadskaia
- Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - S Piril Ertem
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Timothy P Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States.,Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - J Ilja Siepmann
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States.,Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States.,Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
21
|
Hampu N, Hillmyer MA. Molecular Engineering of Nanostructures in Disordered Block Polymers. ACS Macro Lett 2020; 9:382-388. [PMID: 35648549 DOI: 10.1021/acsmacrolett.0c00036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of symmetric poly(methyl methacrylate-stat-styrene)-block-polylactide (P(MMA-s-S)-b-PLA) diblock terpolymers with nearly constant molar masses yet varying block interaction parameters were synthesized as a model system to probe the extent and utility of composition fluctuations in the disordered state. A combination of differential scanning calorimetry, dynamic mechanical analysis, and small-angle X-ray scattering revealed that a broad range of segregation strengths ranging from what we ascribe to essentially a mean-field disordered to a fluctuating disordered to an ordered system could be readily obtained by tuning the molar fraction of styrene in these diblocks. The P(MMA-s-S)-b-PLA diblocks were annealed above their order-disorder transition temperatures (TODT) and rapidly quenched to low temperatures to trap the disordered state via vitrification, as confirmed by scanning electron microscopy. Small-angle X-ray scattering and N2 sorption analysis post-removal of PLA demonstrated that a transition from a very weakly structured, mean-field-like melt to a bicontinuous fluctuating disordered state occurred with increasing segregation strength. This work demonstrates that the extent of microphase segregation as well as the domain continuity of the disordered block polymer melt can be tuned using both synthetic design and thermal stimuli, guiding the design of disordered block polymers with targeted nanostructures that have potential technological utility.
Collapse
Affiliation(s)
- Nicholas Hampu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Portela CM, Vidyasagar A, Krödel S, Weissenbach T, Yee DW, Greer JR, Kochmann DM. Extreme mechanical resilience of self-assembled nanolabyrinthine materials. Proc Natl Acad Sci U S A 2020; 117:5686-5693. [PMID: 32132212 PMCID: PMC7084143 DOI: 10.1073/pnas.1916817117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low-density materials with tailorable properties have attracted attention for decades, yet stiff materials that can resiliently tolerate extreme forces and deformation while being manufactured at large scales have remained a rare find. Designs inspired by nature, such as hierarchical composites and atomic lattice-mimicking architectures, have achieved optimal combinations of mechanical properties but suffer from limited mechanical tunability, limited long-term stability, and low-throughput volumes that stem from limitations in additive manufacturing techniques. Based on natural self-assembly of polymeric emulsions via spinodal decomposition, here we demonstrate a concept for the scalable fabrication of nonperiodic, shell-based ceramic materials with ultralow densities, possessing features on the order of tens of nanometers and sample volumes on the order of cubic centimeters. Guided by simulations of separation processes, we numerically show that the curvature of self-assembled shells can produce close to optimal stiffness scaling with density, and we experimentally demonstrate that a carefully chosen combination of topology, geometry, and base material results in superior mechanical resilience in the architected product. Our approach provides a pathway to harnessing self-assembly methods in the design and scalable fabrication of beyond-periodic and nonbeam-based nano-architected materials with simultaneous directional tunability, high stiffness, and unsurpassed recoverability with marginal deterioration.
Collapse
Affiliation(s)
- Carlos M Portela
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| | - A Vidyasagar
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| | - Sebastian Krödel
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Tamara Weissenbach
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Daryl W Yee
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| | - Julia R Greer
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125
| | - Dennis M Kochmann
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125;
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
23
|
Shao J, Jiang N, Zhang H, Yang Y, Tang P. Target-Directed Design of Phase Transition Path for Complex Structures of Rod-Coil Block Copolymers. ACS OMEGA 2019; 4:20367-20380. [PMID: 31815241 PMCID: PMC6894153 DOI: 10.1021/acsomega.9b02984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
We apply the string method to the self-consistent mean-field theory framework of the rod-coil block copolymer system to calculate the minimum energy pathways in the rearrangement transitions of lamellae and cylinders with different orientations under certain epitaxial growth relationship. Metastable phases appearing in the reordering transition pathway tend to form the structure at low χN side of the order-order transition boundary compared with the initial phase. In particular, for complex network, metastable phases, such as single gyroid and perforated lamellae, need to select a rearrangement transition between lamellae or cylinders near the order-disorder transition boundary with the same epitaxial growth relationship but different orientations. It is confirmed that this strategy for obtaining complex metastable phases by rational design of rearrangement transition between specific phases in the phase diagram can be applied to a wide range of χN as well as the coil-coil block copolymer system. We further investigate the rearrangement transition behavior combining with the analysis of contribution from the free energy, entropy, degree of mixing between different blocks, and the average orientation degree of rods during the phase transitions. Based on this mechanism, we have developed a target-directed design strategy for constructing self-assembled metastable structures of rod-coil block copolymers.
Collapse
Affiliation(s)
- Jingyu Shao
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Nuofei Jiang
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Hongdong Zhang
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuliang Yang
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ping Tang
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
24
|
Kim DH, Kim SY. Self-Assembled Copolymer Adsorption Layer-Induced Block Copolymer Nanostructures in Thin Films. ACS CENTRAL SCIENCE 2019; 5:1562-1571. [PMID: 31572783 PMCID: PMC6764160 DOI: 10.1021/acscentsci.9b00560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 06/10/2023]
Abstract
In polymer thin films, the bottom polymer chains are irreversibly adsorbed onto the substrates creating an ultrathin layer. Although this thin layer (only a few nanometers thick) governs all film properties, an understanding of this adsorbed layer remains elusive, and thus, its effective control has yet to be achieved, particularly in block copolymer (BCP) thin films. Herein, we employ self-assembled copolymer adsorption layers (SCALs), transferred from the air/water interfacial self-assembly of BCPs, as an effective control of the adsorbed layer in BCP thin films. SCALs replace the natural adsorbed layer, irreversibly adsorbing onto the substrates when other BCP is additionally coated on the SCALs. We further show that SCALs guide the thin film nanostructures because they provide topological restrictions and enthalpic/entropic preferences for a BCP self-assembly. The SCAL-induced self-assembly enables unprecedented control of nanostructures, creating novel nanopatterns such as spacing-controlled hole/dot patterns, dotted-line patterns, dash-line patterns, and anisotropic cluster patterns with exceptional controllability.
Collapse
Affiliation(s)
- Dong Hyup Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology
(UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - So Youn Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology
(UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
25
|
Zeng D, Hayward RC. Effects of Randomly End-Linked Copolymer Network Parameters on the Formation of Disordered Cocontinuous Phases. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Di Zeng
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003-9263, United States
| | - Ryan C. Hayward
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003-9263, United States
| |
Collapse
|
26
|
Utroša P, Žagar E, Kovačič S, Pahovnik D. Porous Polystyrene Monoliths Prepared from in Situ Simultaneous Interpenetrating Polymer Networks: Modulation of Morphology by Polymerization Kinetics. Macromolecules 2019; 52:819-826. [PMID: 31496541 PMCID: PMC6727602 DOI: 10.1021/acs.macromol.8b01923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/30/2018] [Indexed: 01/28/2023]
Abstract
Semi-interpenetrating polymer networks (semi-IPNs) were prepared by in situ simultaneous orthogonal polymerizations, where the linear poly(ε-caprolactone) (PCL) was synthesized by ring-opening polymerization of ε-caprolactone and the poly(styrene-co-divinylbenzene) (PS) network was formed by free-radical polymerization of styrene/divinylbenzene. Semi-IPNs were used as the precursors for the preparation of porous PS monoliths. To this end, the PCL domains were selectively removed by hydrolysis under basic conditions. By changing the amount of organocatalyst used for the ring-opening polymerization of ε-caprolactone, the relative polymerization kinetics of both monomers was varied, which has a pronounced effect on the morphology of thus-obtained PS frameworks.
Collapse
Affiliation(s)
- Petra Utroša
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Sebastijan Kovačič
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Engineering, Laboratory for Organic and
Polymer Chemistry and Technology, University
of Maribor, Smetanova
17, 2000 Maribor, Slovenia
| | - David Pahovnik
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
|
28
|
Yadav M, Bates FS, Morse DC. Network Model of the Disordered Phase in Symmetric Diblock Copolymer Melts. PHYSICAL REVIEW LETTERS 2018; 121:127802. [PMID: 30296162 DOI: 10.1103/physrevlett.121.127802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/31/2018] [Indexed: 06/08/2023]
Abstract
We present a model for the order-disorder transition of symmetric A-B diblock copolymer melts in which the disordered phase is treated as a bicontinuous network, and in which self-consistent field predictions of properties of an analogous ordered network are used to estimate some properties. Such a model is shown to accurately predict the latent heat of this transition. The dependence of the location of the transition upon the invariant degree of polymerization N[over ¯] is shown to be consistent with a simple hypothesis that the disordered bicontinuous structure is stabilized relative to an analogous ordered network by a nearly constant entropy per network junction.
Collapse
Affiliation(s)
- Mridul Yadav
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455, USA
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455, USA
| | - David C Morse
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue S.E., Minneapolis, Minnesota 55455, USA
| |
Collapse
|
29
|
Vidil T, Cloître M, Tournilhac F. Control of Gelation and Network Properties of Cationically Copolymerized Mono- and Diglycidyl Ethers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Vidil
- Matière Molle et Chimie, UMR 7167 CNRS ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| | - Michel Cloître
- Matière Molle et Chimie, UMR 7167 CNRS ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| | - Francois Tournilhac
- Matière Molle et Chimie, UMR 7167 CNRS ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|