1
|
Lechner S, Sha S, Sethiya JP, Szczupak P, Dolot R, Lomada S, Sakhteman A, Tushaus J, Prokofeva P, Krauss M, Breu F, Vögerl K, Morgenstern M, Hrabě de Angelis M, Haucke V, Wieland T, Wagner C, Médard G, Bracher F, Kuster B. Serendipitous and Systematic Chemoproteomic Discovery of MBLAC2, HINT1, and NME1-4 Inhibitors from Histone Deacetylase-Targeting Pharmacophores. ACS Chem Biol 2025. [PMID: 40340313 DOI: 10.1021/acschembio.5c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Metalloenzyme inhibitors often incorporate a hydroxamic acid moiety to bind the bivalent metal ion cofactor within the enzyme's active site. Recently, inhibitors of Zn2+-dependent histone deacetylases (HDACs), including clinically advanced drugs, have been identified as potent inhibitors of the metalloenzyme MBLAC2. However, selective chemical probes for MBLAC2, which are essential for studying its inhibitory effects, have not yet been reported. To discover highly selective MBLAC2 inhibitors, we conducted chemoproteomic target deconvolution and selectivity profiling of a library of hydroxamic acid-type molecules and other metal-chelating compounds. This screen revealed MBLAC2 as a frequent off-target of supposedly selective HDAC inhibitors, including the HDAC6 inhibitor SW-100. Profiling a focused library of SW-100-related phenylhydroxamic acids led to identifying two compounds, KV-65 and KV-79, which exhibit nanomolar binding affinity for MBLAC2 and over 60-fold selectivity compared to HDACs. Interestingly, some phenylhydroxamic acids were found to bind additional off-targets. We identified KV-30 as the first drug-like inhibitor of the histidine triad nucleotide-binding protein HINT1 and confirmed its mode of inhibition through a cocrystal structure analysis. Furthermore, we report the discovery of the first inhibitors for the undrugged nucleoside diphosphate kinases NME1, NME2, NME3, and NME4. Overall, this study maps the target and off-target landscape of 53 metalloenzyme inhibitors, providing the first selective MBLAC2 inhibitors. Additionally, the discovery of pharmacophores for NME1-4 and HINT1 establishes a foundation for the future design of potent and selective inhibitors for these targets.
Collapse
Affiliation(s)
- Severin Lechner
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Shuyao Sha
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Jigar Paras Sethiya
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55414, United States
| | - Patrycja Szczupak
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź 90-363, Poland
| | - Rafal Dolot
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź 90-363, Poland
| | - Santosh Lomada
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, Mannheim 68167, Germany
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Johanna Tushaus
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Polina Prokofeva
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Michael Krauss
- Department of Biology, Chemistry, Pharmacy, Leibniz Institute fur Molecular Pharmacologie, Robert-Roessle-Strasse 10, Berlin 13125, Germany
| | - Ferdinand Breu
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich 81377, Germany
| | - Katharina Vögerl
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich 81377, Germany
| | - Martin Morgenstern
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich 81377, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg 85764, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising 85354, Germany
- German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Volker Haucke
- Department of Biology, Chemistry, Pharmacy, Leibniz Institute fur Molecular Pharmacologie, Robert-Roessle-Strasse 10, Berlin 13125, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, Mannheim 68167, Germany
| | - Carston Wagner
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55414, United States
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, Munich 81377, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
2
|
Goulart Stollmaier J, Herbst-Gervasoni CJ, Christianson DW. Expression, purification, and crystallization of "humanized" Danio rerio histone deacetylase 10 "HDAC10", the eukaryotic polyamine deacetylase. Methods Enzymol 2025; 715:19-40. [PMID: 40382137 DOI: 10.1016/bs.mie.2025.01.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The class IIb histone deacetylase HDAC10 is responsible for the deacetylation of intracellular polyamines, in particular N8-acetylspermidine. HDAC10 is emerging as an attractive target for drug design owing to its role as an inducer of autophagy, and high-resolution crystal structures enable structure-based drug design efforts. The only crystal structure available to date is that of HDAC10 from Danio rerio (zebrafish), but a construct containing the A24E and D94A substitutions yields an active site contour that more closely resembles that of human HDAC10. The use of this "humanized" construct has advanced our understanding of HDAC10-inhibitor structure-activity relationships. Here, we outline the preparation, purification, assay, and crystallization of humanized zebrafish HDAC10-inhibitor complexes. The plasmid containing the humanized zebrafish HDAC10 construct for heterologous expression in Escherichia coli is available through Addgene (#225542).
Collapse
Affiliation(s)
- Juana Goulart Stollmaier
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey J Herbst-Gervasoni
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Luo H, Huang Z, Mo X, Long C, Wang K, Deng R, Zhu X, Zeng Z. Synthesis of fluorinated tubastatin A derivatives with bi-, tri-, and tetracyclic cap groups: molecular docking with HDAC6 and evaluation of in vitro antitumor activity. RSC Med Chem 2025:d4md00898g. [PMID: 40027347 PMCID: PMC11865918 DOI: 10.1039/d4md00898g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Herein, we report the synthesis of 16 tubastatin A derivatives with fluorinated bi-, tri-, and tetracyclic cap groups. Most derivatives show strong in vitro antitumor activity, achieving micromolar or sub-micromolar efficacy. The most promising compound, 4-(6-bromo-3,3-difluoro-1,2,3,4-tetrahydro-9H-carbozol-9-yl)methyl)-N-hydroxybenzamide (14f), demonstrated potent anti-proliferative effects against human nasopharyngeal carcinoma cells (SUNE1) and human breast cancer cells (MDA-MB-231), with IC50 values of 0.51 μM and 0.52 μM, respectively. Notably, compound 4-((8-fluoroindeno[2,1-b]indol-5(6H)-yl)-N-hydroxybenzamide (13c) exhibited significant anti-proliferative activity against pancreatic cancer cells (SW1990), with an IC50 of 2.06 μM and low cytotoxicity to normal cells. Overall, variations in the cap group from bi- to tri-, then to tetracyclic, and the introduction of fluorinated groups enhance the antitumor activity of these derivatives. Among them, difluoromethyl-modified tricyclic derivatives show a broad spectrum in vitro antitumor effect. Molecular docking studies indicate that these derivatives bind to Histone Deacetylase 6 (HDAC6) at low binding energies, ranging from -6.54 to -9.84 kcal mol-1, through metal complexation, hydrogen bonding, π-π stacking, and π-cation interactions, which correlates with their good antitumor activity. Compound 4-((2-fluoro-5,6-dihydro-7H-benzo[c]carbazol-7-yl)methyl)-N-hydroxybenzamide (13a) with the lowest binding energy of -9.84 kcal mol-1 exhibited the best in vitro antitumor activity against MCF-7, with IC50 of 1.98 μM.
Collapse
Affiliation(s)
- Huaxin Luo
- School of Chemistry, South China Normal University Guangzhou 510006 People's Republic of China
| | - Zheng Huang
- School of Chemistry, South China Normal University Guangzhou 510006 People's Republic of China
| | - Xiangdong Mo
- School of Chemistry, South China Normal University Guangzhou 510006 People's Republic of China
| | - Chunmei Long
- School of Chemistry, South China Normal University Guangzhou 510006 People's Republic of China
| | - Kaiyuan Wang
- School of Chemistry, South China Normal University Guangzhou 510006 People's Republic of China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center Guangzhou 510060 China
| | - Xiaofeng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center Guangzhou 510060 China
| | - Zhuo Zeng
- School of Chemistry, South China Normal University Guangzhou 510006 People's Republic of China
| |
Collapse
|
4
|
Zhang Z, Su R, Liu J, Chen K, Wu C, Sun P, Sun T. Tubulin/HDAC dual-target inhibitors: Insights from design strategies, SARs, and therapeutic potential. Eur J Med Chem 2025; 281:117022. [PMID: 39500063 DOI: 10.1016/j.ejmech.2024.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 12/02/2024]
Abstract
Microtubules, one of the cytoskeletons in eukaryotic cells, maintain the proper operation of several cellular functions. Additionally, they are regulated by the acetylation of HDAC6 and SIRT2 which affects microtubule dynamics. Given the fact that tubulin and HDAC inhibitors play a synergistic effect in the treatment of many cancers, the development of tubulin/HDAC dual-target inhibitors is conducive to addressing multiple limitations including drug resistance, dose toxicity, and unpredictable pharmacokinetic properties. At present, tubulin/HDAC dual-target inhibitors have been obtained in three main ways: uncleavable linked pharmacophores, cleavable linked pharmacophores, and modification of single-target drugs. Their therapeutic efficacy has been verified in vivo and in vitro assays. In this article, we reviewed the research progress of tubulin/HDAC dual inhibitors from design strategies, SARs, and biological activities, which may provide help for the discovery of novel tubulin/HDAC dual inhibitors.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Rui Su
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Junao Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Keyu Chen
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China
| | - Chengjun Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China.
| | - Pinghua Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, PR China.
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China.
| |
Collapse
|
5
|
Raouf YS, Moreno-Yruela C. Slow-Binding and Covalent HDAC Inhibition: A New Paradigm? JACS AU 2024; 4:4148-4161. [PMID: 39610753 PMCID: PMC11600154 DOI: 10.1021/jacsau.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
The dysregulated post-translational modification of proteins is an established hallmark of human disease. Through Zn2+-dependent hydrolysis of acyl-lysine modifications, histone deacetylases (HDACs) are key regulators of disease-implicated signaling pathways and tractable drug targets in the clinic. Early targeting of this family of 11 enzymes (HDAC1-11) afforded a first generation of broadly acting inhibitors with medicinal applications in oncology, specifically in cutaneous and peripheral T-cell lymphomas and in multiple myeloma. However, first-generation HDAC inhibitors are often associated with weak-to-modest patient benefits, dose-limited efficacies, pharmacokinetic liabilities, and recurring clinical toxicities. Alternative inhibitor design to target single enzymes and avoid toxic Zn2+-binding moieties have not overcome these limitations. Instead, recent literature has seen a shift toward noncanonical mechanistic approaches focused on slow-binding and covalent inhibition. Such compounds hold the potential of improving the pharmacokinetic and pharmacodynamic profiles of HDAC inhibitors through the extension of the drug-target residence time. This perspective aims to capture this emerging paradigm and discuss its potential to improve the preclinical/clinical outlook of HDAC inhibitors in the coming years.
Collapse
Affiliation(s)
- Yasir S. Raouf
- Department
of Chemistry, United Arab Emirates University, P.O. Box No. 15551 Al Ain, UAE
| | - Carlos Moreno-Yruela
- Laboratory
of Chemistry and Biophysics of Macromolecules (LCBM), Institute of
Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Graf LG, Moreno-Yruela C, Qin C, Schulze S, Palm GJ, Schmöker O, Wang N, Hocking DM, Jebeli L, Girbardt B, Berndt L, Dörre B, Weis DM, Janetzky M, Albrecht D, Zühlke D, Sievers S, Strugnell RA, Olsen CA, Hofmann K, Lammers M. Distribution and diversity of classical deacylases in bacteria. Nat Commun 2024; 15:9496. [PMID: 39489725 PMCID: PMC11532494 DOI: 10.1038/s41467-024-53903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Classical Zn2+-dependent deac(et)ylases play fundamental regulatory roles in life and are well characterized in eukaryotes regarding their structures, substrates and physiological roles. In bacteria, however, classical deacylases are less well understood. We construct a Generalized Profile (GP) and identify thousands of uncharacterized classical deacylases in bacteria, which are grouped into five clusters. Systematic structural and functional characterization of representative enzymes from each cluster reveal high functional diversity, including polyamine deacylases and protein deacylases with various acyl-chain type preferences. These data are supported by multiple crystal structures of enzymes from different clusters. Through this extensive analysis, we define the structural requirements of substrate selectivity, and discovered bacterial de-D-/L-lactylases and long-chain deacylases. Importantly, bacterial deacylases are inhibited by archetypal HDAC inhibitors, as supported by co-crystal structures with the inhibitors SAHA and TSA, and setting the ground for drug repurposing strategies to fight bacterial infections. Thus, we provide a systematic structure-function analysis of classical deacylases in bacteria and reveal the basis of substrate specificity, acyl-chain preference and inhibition.
Collapse
Affiliation(s)
- Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), EPFL, Lausanne, Switzerland
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Gottfried J Palm
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ole Schmöker
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nancy Wang
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dianna M Hocking
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Leila Jebeli
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Britta Girbardt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Leona Berndt
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Babett Dörre
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Daniel M Weis
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Markus Janetzky
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dirk Albrecht
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Richard A Strugnell
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
7
|
Goulart Stollmaier J, Watson PR, Christianson DW. Design, Synthesis, and Structural Evaluation of Acetylated Phenylthioketone Inhibitors of HDAC10. ACS Med Chem Lett 2024; 15:1715-1723. [PMID: 39411528 PMCID: PMC11472544 DOI: 10.1021/acsmedchemlett.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Histone deacetylase 10 (HDAC10) is unique among the greater HDAC family due to its unusually narrow substrate specificity as a polyamine deacetylase, specifically as an N 8-acetylspermidine hydrolase. Polyamines are essential for cell growth and proliferation; consequently, inhibition of polyamine deacetylation represents a possible strategy for cancer chemotherapy. In this work, we have designed six acetylated phenylthioketone inhibitors of HDAC10 containing positively charged para- and meta-substituted amino groups designed to target interactions with E274, the gatekeeper that recognizes the positively charged ammonium group of the substrate N 8-acetylspermidine. We prepared each of these inhibitors through a short synthetic route of six steps. By adapting a low-cost colorimetric activity assay, we measured low-micromolar IC50 values for these compounds against a humanized construct of zebrafish HDAC10 (A24E-D94A HDAC10). Selected inhibitors were cocrystallized with A24E-D94A zebrafish HDAC10 and zebrafish HDAC6 to provide insight into class IIb isozyme affinity and selectivity.
Collapse
Affiliation(s)
- Juana Goulart Stollmaier
- Roy and Diana
Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Paris R. Watson
- Roy and Diana
Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - David W. Christianson
- Roy and Diana
Vagelos Laboratories,
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
8
|
Raouf YS. Targeting histone deacetylases: Emerging applications beyond cancer. Drug Discov Today 2024; 29:104094. [PMID: 38997001 DOI: 10.1016/j.drudis.2024.104094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Histone deacetylases (HDACs) are a special class of hydrolase enzymes, which through epigenetic control of cellular acetylation, play regulatory roles in various processes including chromatin packing, cytokine signaling, and gene expression. Widespread influence on cell function has implicated dysregulated HDAC activity in human disease. While traditionally an oncology target, in the past decade, there has been a notable rise in inhibition strategies within several therapeutic areas beyond cancer. This review highlights advances in four of these indications, neurodegenerative disease, metabolic disorders, cardiovascular disease, and viral infections, focusing on the role of deacetylases in disease, small molecule drug discovery, and clinical progress.
Collapse
Affiliation(s)
- Yasir S Raouf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates.
| |
Collapse
|
9
|
Raj AK, Lokhande KB, Khunteta K, Sarode SC, Sharma NK. Elevated N1-Acetylspermidine Levels in Doxorubicin-treated MCF-7 Cancer Cells: Histone Deacetylase 10 Inhibition with an N1-Acetylspermidine Mimetic. J Cancer Prev 2024; 29:32-44. [PMID: 38957589 PMCID: PMC11215339 DOI: 10.15430/jcp.24.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/04/2024] [Accepted: 05/18/2024] [Indexed: 07/04/2024] Open
Abstract
Cancer drug resistance is associated with metabolic adaptation. Cancer cells have been shown to implicate acetylated polyamines in adaptations during cell death. However, exploring the mimetic of acetylated polyamines as a potential anticancer drug is lacking. We performed intracellular metabolite profiling of human breast cancer MCF-7 cells treated with doxorubicin (DOX), a well known anticancer drug. A novel and in-house vertical tube gel electrophoresis assisted procedure followed by LC-HRMS analysis was employed to detect acetylated polyamines such as N1-acetylspermidine. We designed a mimetic N1-acetylspermidine (MINAS) which is a known substrate of histone deacetylase 10 (HDAC10). Molecular docking and molecular dynamics (MDs) simulations were used to evaluate the inhibitory potential of MINAS against HDAC10. The inhibitory potential and the ADMET profile of MINAS were compared to a known HDAC10 inhibitor Tubastatin A. N1-acetylspermidine, an acetylated form of polyamine, was detected intracellularly in MCF-7 cells treated with DOX over DMSO-treated MCF-7 cells. We designed and curated MINAS (PubChem CID 162679241). Molecular docking and MD simulations suggested the strong and comparable inhibitory potential of MINAS (-8.2 kcal/mol) to Tubastatin A (-8.4 kcal/mol). MINAS and Tubastatin A share similar binding sites on HDAC10, including Ser138, Ser140, Tyr183, and Cys184. Additionally, MINAS has a better ADMET profile compared to Tubastatin A, with a high MRTD value and lower toxicity. In conclusion, the data show that N1-acetylspermidine levels rise during DOX-induced breast cancer cell death. Additionally, MINAS, an N1-acetylspermidine mimetic compound, could be investigated as a potential anticancer drug when combined with chemotherapy like DOX.
Collapse
Affiliation(s)
- Ajay Kumar Raj
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, India
| | - Kratika Khunteta
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, India
| | - Sachin Chakradhar Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, India
| |
Collapse
|
10
|
Christianson DW. Chemical Versatility in Catalysis and Inhibition of the Class IIb Histone Deacetylases. Acc Chem Res 2024; 57:1135-1148. [PMID: 38530703 PMCID: PMC11021156 DOI: 10.1021/acs.accounts.3c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The zinc-dependent histone deacetylases (HDACs 1-11) belong to the arginase-deacetylase superfamily of proteins, members of which share a common α/β fold and catalytic metal binding site. While several HDACs play a role in epigenetic regulation by catalyzing acetyllysine hydrolysis in histone proteins, the biological activities of HDACs extend far beyond histones. HDACs also deacetylate nonhistone proteins in the nucleus as well as the cytosol to regulate myriad cellular processes. The substrate pool is even more diverse in that certain HDACs can hydrolyze other covalent modifications. For example, HDAC6 is also a lysine decrotonylase, and HDAC11 is a lysine-fatty acid deacylase. Surprisingly, HDAC10 is not a lysine deacetylase but instead is a polyamine deacetylase. Thus, the HDACs are biologically and chemically versatile catalysts as they regulate the function of diverse protein and nonprotein substrates throughout the cell.Owing to their critical regulatory functions, HDACs serve as prominent targets for drug design. At present, four HDAC inhibitors are FDA-approved for cancer chemotherapy. However, these inhibitors are active against multiple HDAC isozymes, and a lack of selectivity is thought to contribute to undesirable side effects. Current medicinal chemistry campaigns focus on the development of isozyme-selective inhibitors, and many such studies largely focus on HDAC6 and HDAC10. HDAC6 is a target for therapeutic intervention due to its cellular role as a tubulin deacetylase and tau deacetylase, and selective inhibitors are being studied in cancer chemotherapy and the treatment of peripheral neuropathy. Crystal structures of enzyme-inhibitor complexes reveal how various features of inhibitor design, such as zinc-coordinating groups, bifurcated capping groups, and aromatic fluorination patterns, contribute to affinity and isozyme selectivity. The polyamine deacetylase HDAC10 is also an emerging target for cancer chemotherapy. Crystal structures of intact substrates trapped in the HDAC10 active site reveal the molecular basis of strikingly narrow substrate specificity for N8-acetylspermidine hydrolysis. Active site features responsible for substrate specificity have been successfully exploited in the design of potent and selective inhibitors.In this Account, I review the structural chemistry and inhibition of HDACs, highlighting recent X-ray crystallographic and functional studies of HDAC6 and HDAC10 in my laboratory. These studies have yielded fascinating snapshots of catalysis as well as novel chemical transformations involving bound inhibitors. The zinc-bound water molecule in the HDAC active site is the catalytic nucleophile in the deacetylation reaction, but this activated water molecule can also react with inhibitor C═O or C═N groups to yield unanticipated reaction products that bind exceptionally tightly. Versatile active site chemistry unleashes the full inhibitory potential of such compounds, and X-ray crystallography allows us to view this chemistry in action.
Collapse
Affiliation(s)
- David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| |
Collapse
|
11
|
Lambona C, Zwergel C, Fioravanti R, Valente S, Mai A. Histone deacetylase 10: A polyamine deacetylase from the crystal structure to the first inhibitors. Curr Opin Struct Biol 2023; 82:102668. [PMID: 37542907 DOI: 10.1016/j.sbi.2023.102668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Polyamine deacetylase activity was discovered more than 40 years ago, but the responsible histone deacetylase 10 (HDAC10) was described only recently. HDAC10 is a class IIb HDAC, as is its closest relative, the α-tubulin deacetylase HDAC6. HDAC10 has attracted attention over the last 2 years due to its role in diseases, especially cancer. This review summarises chemical and structural biology approaches to the study of HDAC10. Light will be shed on recent advances in understanding the complex structural biology of HDAC10 and the discovery of the first highly selective HDAC10 inhibitors.
Collapse
Affiliation(s)
- Chiara Lambona
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Pasteur Institute, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Ptacek J, Snajdr I, Schimer J, Kutil Z, Mikesova J, Baranova P, Havlinova B, Tueckmantel W, Majer P, Kozikowski A, Barinka C. Selectivity of Hydroxamate- and Difluoromethyloxadiazole-Based Inhibitors of Histone Deacetylase 6 In Vitro and in Cells. Int J Mol Sci 2023; 24:4720. [PMID: 36902164 PMCID: PMC10003107 DOI: 10.3390/ijms24054720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.
Collapse
Affiliation(s)
- Jakub Ptacek
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Ivan Snajdr
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jiri Schimer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Zsofia Kutil
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jana Mikesova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Petra Baranova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Barbora Havlinova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Werner Tueckmantel
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Alan Kozikowski
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cyril Barinka
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
13
|
Steimbach RR, Herbst-Gervasoni CJ, Lechner S, Murray Stewart T, Klinke G, Ridinger J, Géraldy MNE, Tihanyi G, Foley JR, Uhrig U, Kuster B, Poschet G, Casero RA, Médard G, Oehme I, Christianson DW, Gunkel N, Miller AK. Aza-SAHA Derivatives Are Selective Histone Deacetylase 10 Chemical Probes That Inhibit Polyamine Deacetylation and Phenocopy HDAC10 Knockout. J Am Chem Soc 2022; 144:18861-18875. [PMID: 36200994 PMCID: PMC9588710 DOI: 10.1021/jacs.2c05030] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the first well-characterized selective chemical probe for histone deacetylase 10 (HDAC10) with unprecedented selectivity over other HDAC isozymes. HDAC10 deacetylates polyamines and has a distinct substrate specificity, making it unique among the 11 zinc-dependent HDAC hydrolases. Taking inspiration from HDAC10 polyamine substrates, we systematically inserted an amino group ("aza-scan") into the hexyl linker moiety of the approved drug Vorinostat (SAHA). This one-atom replacement (C→N) transformed SAHA from an unselective pan-HDAC inhibitor into a specific HDAC10 inhibitor. Optimization of the aza-SAHA structure yielded the HDAC10 chemical probe DKFZ-748, with potency and selectivity demonstrated by cellular and biochemical target engagement, as well as thermal shift assays. Cocrystal structures of our aza-SAHA derivatives with HDAC10 provide a structural rationale for potency, and chemoproteomic profiling confirmed exquisite cellular HDAC10-selectivity of DKFZ-748 across the target landscape of HDAC drugs. Treatment of cells with DKFZ-748, followed by quantification of selected polyamines, validated for the first time the suspected cellular function of HDAC10 as a polyamine deacetylase. Finally, in a polyamine-limiting in vitro tumor model, DKFZ-748 showed dose-dependent growth inhibition of HeLa cells. We expect DKFZ-748 and related probes to enable further studies on the enigmatic biology of HDAC10 and acetylated polyamines in both physiological and pathological settings.
Collapse
Affiliation(s)
- Raphael R. Steimbach
- Cancer Drug Development, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Biosciences Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Corey J. Herbst-Gervasoni
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| | - Severin Lechner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354, Freising, Germany
| | - Tracy Murray Stewart
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | - Glynis Klinke
- Center for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Johannes Ridinger
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany
| | - Magalie N. E. Géraldy
- Cancer Drug Development, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Gergely Tihanyi
- Cancer Drug Development, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jackson R. Foley
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | - Ulrike Uhrig
- Chemical Biology Core Facility, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354, Freising, Germany
| | - Gernot Poschet
- Center for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Robert A. Casero
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231, USA
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354, Freising, Germany
| | - Ina Oehme
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| | - Nikolas Gunkel
- Cancer Drug Development, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Aubry K. Miller
- Cancer Drug Development, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| |
Collapse
|
14
|
Herp D, Ridinger J, Robaa D, Shinsky SA, Schmidtkunz K, Yesiloglu TZ, Bayer T, Steimbach RR, Herbst‐Gervasoni CJ, Merz A, Romier C, Sehr P, Gunkel N, Miller AK, Christianson DW, Oehme I, Sippl W, Jung M. First Fluorescent Acetylspermidine Deacetylation Assay for HDAC10 Identifies Selective Inhibitors with Cellular Target Engagement. Chembiochem 2022; 23:e202200180. [PMID: 35608330 PMCID: PMC9308754 DOI: 10.1002/cbic.202200180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Histone deacetylases (HDACs) are important epigenetic regulators involved in many diseases, especially cancer. Five HDAC inhibitors have been approved for anticancer therapy and many are in clinical trials. Among the 11 zinc-dependent HDACs, HDAC10 has received relatively little attention by drug discovery campaigns, despite its involvement, e. g., in the pathogenesis of neuroblastoma. This is due in part to a lack of robust enzymatic conversion assays. In contrast to the protein lysine deacetylase and deacylase activity of most other HDAC subtypes, it has recently been shown that HDAC10 has strong preferences for deacetylation of oligoamine substrates like acetyl-putrescine or -spermidine. Hence, it is also termed a polyamine deacetylase (PDAC). Here, we present the first fluorescent enzymatic conversion assay for HDAC10 using an aminocoumarin-labelled acetyl-spermidine derivative to measure its PDAC activity, which is suitable for high-throughput screening. Using this assay, we identified potent inhibitors of HDAC10-mediated spermidine deacetylation in vitro. Based on the oligoamine preference of HDAC10, we also designed inhibitors with a basic moiety in appropriate distance to the zinc binding hydroxamate that showed potent inhibition of HDAC10 with high selectivity, and we solved a HDAC10-inhibitor structure using X-ray crystallography. We could demonstrate selective cellular target engagement for HDAC10 but a lysosomal phenotype in neuroblastoma cells that was previously associated with HDAC10 inhibition was not observed. Thus, we have developed new chemical probes for HDAC10 that allow further clarification of the biological role of this enzyme.
Collapse
Affiliation(s)
- Daniel Herp
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstraße 2579104FreiburgGermany
| | - Johannes Ridinger
- Hopp Children's Cancer Center Heidelberg (KiTZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Dina Robaa
- Institute of PharmacyMartin-Luther University of Halle-Wittenberg06120Halle (Saale)Halle/SaaleGermany
| | - Stephen A. Shinsky
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of Pennsylvania231 South 34th StreetPhiladelphiaPennsylvania19104-6323USA
| | - Karin Schmidtkunz
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstraße 2579104FreiburgGermany
| | - Talha Z. Yesiloglu
- Institute of PharmacyMartin-Luther University of Halle-Wittenberg06120Halle (Saale)Halle/SaaleGermany
| | - Theresa Bayer
- Institute of PharmacyMartin-Luther University of Halle-Wittenberg06120Halle (Saale)Halle/SaaleGermany
| | | | - Corey J. Herbst‐Gervasoni
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of Pennsylvania231 South 34th StreetPhiladelphiaPennsylvania19104-6323USA
| | - Annika Merz
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstraße 2579104FreiburgGermany
| | - Christophe Romier
- Université de StrasbourgCNRSINSERMInstitut de Génétique et de Biologie Moléculaire et CellulaireUMR 7104, U 125867404IllkirchFrance
- IGBMCDepartment of Integrated Structural Biology1 rue Laurent Fries, B.P. 1014267404Illkirch CedexFrance
| | - Peter Sehr
- Chemical Biology Core FacilityEuropean Molecular Biology Laboratory69117HeidelbergGermany
| | - Nikolas Gunkel
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 28069120HeidelbergGermany
- Cancer Drug Development GroupIm Neuenheimer Feld 28069120HeidelbergGermany
| | - Aubry K. Miller
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 28069120HeidelbergGermany
- Cancer Drug Development GroupIm Neuenheimer Feld 28069120HeidelbergGermany
| | - David W. Christianson
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of Pennsylvania231 South 34th StreetPhiladelphiaPennsylvania19104-6323USA
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Wolfgang Sippl
- Institute of PharmacyMartin-Luther University of Halle-Wittenberg06120Halle (Saale)Halle/SaaleGermany
| | - Manfred Jung
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstraße 2579104FreiburgGermany
- German Cancer Consortium (DKTK), Partner site FreiburgHugstetter Str. 5579106FreiburgGermany
- CIBSS - Centre for Integrative Biological Signalling StudiesUniversity of Freiburg (Germany)
| |
Collapse
|
15
|
Potential Metabolite Markers for Pancreatic Cancer Identified by Metabolomic Analysis of Induced Cancer-Associated Fibroblasts. Cancers (Basel) 2022; 14:cancers14061375. [PMID: 35326527 PMCID: PMC8945883 DOI: 10.3390/cancers14061375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Fibroblasts in normal tissues conduct energy metabolism via oxidative phosphorylation (OXPHOS). However, cancer-associated fibroblasts (CAFs) produce energy (i.e., ATP) via glycolysis. Nonetheless, whether intracellular metabolism transitions from OXPHOS to glycolysis when normal tissue fibroblasts differentiate into CAFs remains to be determined. Here, we established an experimental system and induced the in vitro differentiation of mesenchymal stem cells to CAFs and performed detailed metabolomic and RNA sequencing analyses. We found that the intracellular metabolic pathway was reprogrammed to the glycolytic pathway when mesenchymal stem cells were co-cultured with pancreatic cancer cells. Furthermore, we identified CAF-specific metabolites that were expressed post reprogramming. These metabolites have also been observed in pancreatic cancer mouse models, suggesting their potential as cancer biomarkers. Abstract Cancer-associated fibroblasts (CAFs) in the tumor microenvironment perform glycolysis to produce energy, i.e., ATP. Since the origin of CAFs is unidentified, it is not determined whether the intracellular metabolism transitions from oxidative phosphorylation (OXPHOS) to glycolysis when normal tissue fibroblasts differentiate into CAFs. In this study, we established an experimental system and induced the in vitro differentiation of mesenchymal stem cells (MSCs) to CAFs. Additionally, we performed metabolomic and RNA-sequencing analyses before and after differentiation to investigate changes in the intracellular metabolism. Consequently, we discovered that OXPHOS, which was the primary intracellular metabolism in MSCs, was reprogrammed to glycolysis. Furthermore, we analyzed the metabolites in pancreatic tumor tissues in a mice model. The metabolites extracted as candidates in the in vitro experiments were also detected in the in vivo experiments. Thus, we conclude that normal tissue fibroblasts that differentiate into CAFs undergo a metabolic reprogramming from OXPHOS to glycolysis. Moreover, we identified the CAF-specific metabolites expressed during metabolic reprogramming as potential future biomarkers for pancreatic cancer.
Collapse
|
16
|
Zeyen P, Zeyn Y, Herp D, Mahmoudi F, Yesiloglu TZ, Erdmann F, Schmidt M, Robaa D, Romier C, Ridinger J, Herbst-Gervasoni CJ, Christianson DW, Oehme I, Jung M, Krämer OH, Sippl W. Identification of histone deacetylase 10 (HDAC10) inhibitors that modulate autophagy in transformed cells. Eur J Med Chem 2022; 234:114272. [PMID: 35306288 PMCID: PMC9007901 DOI: 10.1016/j.ejmech.2022.114272] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023]
Abstract
Histone deacetylases (HDACs) are a family of 18 epigenetic modifiers that fall into 4 classes. Histone deacetylase inhibitors (HDACi) are valid tools to assess HDAC functions. HDAC6 and HDAC10 belong to the class IIb subgroup of the HDAC family. The targets and biological functions of HDAC10 are ill-defined. This lack of knowledge is due to a lack of specific and potent HDAC10 inhibitors with cellular activity. Here, we have synthesized and characterized piperidine-4-acrylhydroxamates as potent and highly selective inhibitors of HDAC10. This was achieved by targeting the acidic gatekeeper residue Glu274 of HDAC10 with a basic piperidine moiety that mimics the interaction of the polyamine substrate of HDAC10. We have confirmed the binding modes of selected inhibitors using X-ray crystallography. Promising candidates were selected based on their specificity by in vitro profiling using recombinant HDACs. The most promising HDAC10 inhibitors 10c and 13b were tested for specificity in acute myeloid leukemia (AML) cells with the FLT3-ITD oncogene. By immunoblot experiments we assessed the hyperacetylation of histones and tubulin-α, which are class I and HDAC6 substrates, respectively. As validated test for HDAC10 inhibition we used flow cytometry assessing autolysosome formation in neuroblastoma and AML cells. We demonstrate that 10c and 13b inhibit HDAC10 with high specificity over HDAC6 and with no significant impact on class I HDACs. The accumulation of autolysosomes is not a consequence of apoptosis and 10c and 13b are not toxic for normal human kidney cells. These data show that 10c and 13b are nanomolar inhibitors of HDAC10 with high specificity. Thus, our new HDAC10 inhibitors are tools to identify the downstream targets and functions of HDAC10 in cells.
Collapse
|
17
|
Jiang W, Block ME, Boosani CS. Short communication: TNF-α and IGF-1 regulates epigenetic mechanisms of HDAC2 and HDAC10. PLoS One 2022; 17:e0263190. [PMID: 35143520 PMCID: PMC8830685 DOI: 10.1371/journal.pone.0263190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Vascular restenosis often presents as a consequence of injury to the vessel wall, resulting from stenting and other interventional procedures. Such injury to the arteries induces proliferation of Vascular Smooth Muscle Cells (VSMCs), resulting in cellular hyperplasia and restenosis. We and others have previously reported de-novo production of different cytokines and growth factors such as Tumor Necrosis Factor Alpha (TNF-α) and Insulin like Growth Factor 1 (IGF-1), after vascular injury. As complex as it is, the profuse proliferation of VSMCs appears to be occurring due to several induced factors which initiate molecular mechanisms and exacerbate disease conditions. In many pathological events, the deleterious effects of TNF-α and IGF-1 in initiating disease mechanisms was reported. In the present work, we explored whether TNF-α and IGF-1 can regulate epigenetic mechanisms that promote proliferation of VSMCs. We investigated the mechanistic roles of proteins which can structurally interact with DNMT1 and initiate cellular pathways that promote proliferation of VSMCs. Our findings here, identify a novel molecular mechanism that is initiated by TNF-α and IGF-1. It was previously reported that DNMT1 expression is directly induced by TNF-α and IGF-1 treatment and increased/induced expression of DNMT1 causes silencing of genes that are essential to maintaining cellular homeostasis such as the tumor suppressor genes. We have earlier reported that TNF-α and IGF-1 treatment elevates DNMT1 expression in VSMCs and causes increased VSMC proliferation. However, the molecular mechanisms involved were not fully deciphered. Interestingly, in the present study we found that TNF-α and IGF-1 treatment failed to elevate DNMT1 expression levels in absence of HDAC2 and HDAC10. Also, while HDAC2 expression was not affected by HDAC10 knockdown, HDAC2 is essentially required for HDAC10 expression. Further, in TNF-α and IGF-1 induced epigenetic signaling mechanism, the expression of two important proteins EZH2 and PCNA seem to be regulated in an HDAC2-HDAC10 dependent manner. Our results show an inter-dependence of epigenetic mediators in inducing proliferation in VSMCs. To our knowledge, this is the first report that shows HDAC2 dependent expression of HDAC10, and suggests a novel mechanistic link between DNMT1, HDAC10 and HDAC2 that regulates EZH2 and PCNA to enhance cell proliferation of VSMCs which is the underlying cause for neointimal hyperplasia and restenosis.
Collapse
Affiliation(s)
- Wanlin Jiang
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Megan E. Block
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Chandra S. Boosani
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| |
Collapse
|
18
|
Pojani E, Barlocco D. Selective Inhibitors of Histone Deacetylase 10 (HDAC-10). Curr Med Chem 2021; 29:2306-2321. [PMID: 34468295 DOI: 10.2174/0929867328666210901144658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
Histone acetylation balance is one epigenetic mechanism controlling gene expression associated with disease progression. It has been observed that histone deacetylase 10 (HDAC-10) isozyme contributes to the chemotherapy resistance; in addition, the poor clinical outcome observed in patients with aggressive solid tumors, such as neuroblastoma, has been associated with its overexpression. Moreover, HDAC-10 selective inhibition suppresses the autophagic response, thus providing an improved risk-benefit profile compared to cytotoxic cancer chemotherapy drugs. On these bases, HDAC-10 is becoming an emerging target for drug design. Due to the rapid progress in the development of next-generation HDAC inhibitors, this review article aims to provide an overview on novel selective or dual HDAC-8/10 inhibitors, as new leads for cancer chemotherapy, able to avoid the severe side-effects of several actual approved "pan" HDAC inhibitors. A literature search was conducted in MedLine, PubMed, Caplus, SciFinder Scholar databases from 2015 to the present. Since the disclosure that the HDAC-6 inhibitor Tubastatin A was able to bind HDAC-10 efficiently, several related analogues were synthesized and tested. Both tricyclic (25-30) and bicyclic (31-42) derivatives were considered. The best pharmacological profile was shown by 36 (HDAC-10 pIC50 = 8.4 and pIC50 towards Class I HDACs from 5.2-6.4). In parallel, based on the evidence that high levels of HDAC-8 are a marker of poor prognosis in neuroblastoma treatment, dual HDAC-8/10 inhibitors were designed. The hydroxamic acid TH34 (HDAC-8 and 10 IC50 = 1.9 µM and 7.7 µM, respectively) and the hybrid derivatives 46d, 46e and 46g were the most promising both in terms of potency and selectivity. Literature surveys indicate several structural requirements for inhibitory potency and selectivity towards HDAC-10, e.g., electrostatic and/or hydrogen bond interactions with E274 and complementarity to the P(E,A) CE motif helix.
Collapse
Affiliation(s)
- Eftiola Pojani
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Tirana, Albania
| | - Daniela Barlocco
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Milan, L. Mangiagalli 25 - 20133 Milan, Italy
| |
Collapse
|
19
|
Histone deacetylase 10, a potential epigenetic target for therapy. Biosci Rep 2021; 41:228655. [PMID: 33997894 PMCID: PMC8182986 DOI: 10.1042/bsr20210462] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Histone deacetylase (HDAC) 10, a class II family, has been implicated in various tumors and non-tumor diseases, which makes the discovery of biological functions and novel inhibitors a fundamental endeavor. In cancers, HDAC10 plays crucial roles in regulating various cellular processes through its epigenetic functions or targeting some decisive molecular or signaling pathways. It also has potential clinical utility for targeting tumors and non-tumor diseases, such as renal cell carcinoma, prostate cancer, immunoglobulin A nephropathy (IgAN), intracerebral hemorrhage, human immunodeficiency virus (HIV) infection and schizophrenia. To date, relatively few studies have investigated HDAC10-specific inhibitors. Therefore, it is important to study the biological functions of HDAC10 for the future development of specific HDAC10 inhibitors. In this review, we analyzed the biological functions, mechanisms and inhibitors of HDAC10, which makes HDAC10 an appealing therapeutic target.
Collapse
|
20
|
Melesina J, Simoben CV, Praetorius L, Bülbül EF, Robaa D, Sippl W. Strategies To Design Selective Histone Deacetylase Inhibitors. ChemMedChem 2021; 16:1336-1359. [PMID: 33428327 DOI: 10.1002/cmdc.202000934] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/15/2022]
Abstract
This review classifies drug-design strategies successfully implemented in the development of histone deacetylase (HDAC) inhibitors, which have many applications including cancer treatment. Our focus is on especially demanded selective HDAC inhibitors and their structure-activity relationships in relation to corresponding protein structures. The main part of the paper is divided into six subsections each narrating how optimization of one of six structural features can influence inhibitor selectivity. It starts with the impact of the zinc binding group on selectivity, continues with the optimization of the linker placed in the substrate binding tunnel as well as the adjustment of the cap group interacting with the surface of the protein, and ends with the addition of groups targeting class-specific sub-pockets: the side-pocket-, lower-pocket- and foot-pocket-targeting groups. The review is rounded off with a conclusion and an outlook on the future of HDAC inhibitor design.
Collapse
Affiliation(s)
- Jelena Melesina
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Conrad V Simoben
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Lucas Praetorius
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Emre F Bülbül
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Dina Robaa
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University of Halle - Wittenberg, Kurt Mothes Straße 3, 06120, Halle (Saale), Germany
| |
Collapse
|
21
|
Su M, Gong X, Liu F. An update on the emerging approaches for histone deacetylase (HDAC) inhibitor drug discovery and future perspectives. Expert Opin Drug Discov 2021; 16:745-761. [PMID: 33530771 DOI: 10.1080/17460441.2021.1877656] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION HDACs catalyze the removal of acetyl groups from the ε-N-acetylated lysine residues of various protein substrates including both histone and nonhistone proteins. Different HDACs have distinct biological functions and are recruited to specific regions of the genome. HDAC inhibitors have attracted much attention in recent decades; indeed, there have been more than thirty HDAC inhibitors investigated in clinic trials with five approvals being achieved. AREAS COVERED This review covers the emerging approaches for HDAC inhibitor drug discovery from the past five years and includes discussion of structure-based rational design, isoform selectivity, and dual mechanism/multi-targeting. Chemical structures in addition to the in vitro and in vivo inhibiting activity of these compounds have also been discussed. EXPERT OPINION The exact role and biological functions of HDACs is still under investigation with a variety of HDAC inhibitors having been designed and evaluated. HDAC inhibitors have shown promise in treating cancer, AD, metabolic disease, viral infection, and multiple sclerosis, but there is still a lot of room for clinical improvement. In the future, more efforts should be put into (i) HDAC isoform identification (ii) the optimization of selectivity, activity, and pharmacokinetics; and (iii) unconventional approaches for discovering different effective scaffolds and pharmacophores.
Collapse
Affiliation(s)
- Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Xingyu Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| |
Collapse
|
22
|
Herbst-Gervasoni CJ, Christianson DW. X-ray Crystallographic Snapshots of Substrate Binding in the Active Site of Histone Deacetylase 10. Biochemistry 2021; 60:303-313. [PMID: 33449614 PMCID: PMC8053227 DOI: 10.1021/acs.biochem.0c00936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histone deacetylase 10 (HDAC10) is a zinc-dependent polyamine deacetylase enriched in the cytosol of eukaryotic cells. The active site of HDAC10 contains catalytic residues conserved in other HDAC isozymes that function as lysine deacetylases: Y307 assists the zinc ion in polarizing the substrate carbonyl for nucleophilic attack, and the H136-H137 dyad serves general base-general acid functions. As an inducer of autophagy, HDAC10 is an attractive target for the design of selective inhibitors that may be useful in cancer chemotherapy. Because detailed structural information regarding the catalytic mechanism of HDAC10 may inform new approaches to inhibitor design, we now report X-ray crystal structures of HDAC10 in which reaction intermediates with substrates N8-acetylspermidine and N-acetylputrescine are trapped in the active site. The Y307F substitution prevents activation of the substrate carbonyl for nucleophilic attack by the zinc-bound water molecule, thereby enabling crystallographic isolation of intact enzyme-substrate complexes. The H137A substitution removes the catalytically obligatory general acid, thereby enabling crystallographic isolation of oxyanionic tetrahedral intermediates. Finally, the acetate complex with the wild-type enzyme represents a product complex after dissociation of the polyamine coproduct. Taken together, these structures provide snapshots of the reaction coordinate of acetylpolyamine hydrolysis and are consistent with a mechanism in which tandem histidine residues H136 and H137 serve as general base and general acid catalysts, respectively. The function of the histidine dyad in the HDAC10 mechanism appears to be similar to that in HDAC6, but not HDAC8 in which both functions are served by the second histidine of the tandem pair.
Collapse
Affiliation(s)
- Corey J. Herbst-Gervasoni
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
23
|
Saraswati AP, Relitti N, Brindisi M, Osko JD, Chemi G, Federico S, Grillo A, Brogi S, McCabe NH, Turkington RC, Ibrahim O, O’Sullivan J, Lamponi S, Ghanim M, Kelly VP, Zisterer D, Amet R, Hannon Barroeta P, Vanni F, Ulivieri C, Herp D, Sarno F, Di Costanzo A, Saccoccia F, Ruberti G, Jung M, Altucci L, Gemma S, Butini S, Christianson DW, Campiani G. Spiroindoline-Capped Selective HDAC6 Inhibitors: Design, Synthesis, Structural Analysis, and Biological Evaluation. ACS Med Chem Lett 2020; 11:2268-2276. [PMID: 33214839 DOI: 10.1021/acsmedchemlett.0c00395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) have emerged as promising therapeutics for the treatment of neurodegeneration, cancer, and rare disorders. Herein, we report the development of a series of spiroindoline-based HDAC6 isoform-selective inhibitors based on the X-ray crystal studies of the hit 6a. We identified compound 6j as the most potent and selective hHDAC6 inhibitor of the series. Biological investigation of compounds 6b, 6h, and 6j demonstrated their antiproliferative activity against several cancer cell lines. Western blotting studies indicated that they were able to increase tubulin acetylation, without significant variation in histone acetylation state, and induced PARP cleavage indicating their apoptotic potential at the molecular level. 6j induced HDAC6-dependent pSTAT3 inhibition.
Collapse
Affiliation(s)
- A. Prasanth Saraswati
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Margherita Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Jeremy D. Osko
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Giulia Chemi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Alessandro Grillo
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Niamh H. McCabe
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, U.K
| | - Richard C. Turkington
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, U.K
| | - Ola Ibrahim
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Jeffrey O’Sullivan
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Magda Ghanim
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, 152-160, Pearse Street, Dublin 2, Ireland
| | - Vincent P. Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, 152-160, Pearse Street, Dublin 2, Ireland
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, 152-160, Pearse Street, Dublin 2, Ireland
| | - Rebecca Amet
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, 152-160, Pearse Street, Dublin 2, Ireland
| | - Patricia Hannon Barroeta
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College, 152-160, Pearse Street, Dublin 2, Ireland
| | - Francesca Vanni
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Daniel Herp
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Federica Sarno
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli″, 80138 Naples, Italy
| | - Antonella Di Costanzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli″, 80138 Naples, Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), via E. Ramarini 32, 00015 Monterotondo, Rome, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), via E. Ramarini 32, 00015 Monterotondo, Rome, Italy
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli″, 80138 Naples, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|