1
|
Wu F, Li H, Li W, Zhang L, An Q, Sun J, Zhang Q, Sun Y, Xu L, Yu J, Diao X, Li J, Meng L, Xu S. Design, Synthesis, and biological evaluation of 7H-Pyrrolo[2,3-d]pyrimidines as potent HPK1 kinase inhibitors. Bioorg Med Chem 2025; 119:118079. [PMID: 39874881 DOI: 10.1016/j.bmc.2025.118079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) has emerged as a promising target for cancer immunotherapy due to its critical role as a negative regulator of T cell receptor (TCR) signaling. Despite this potential, no HPK1 inhibitors have been approved for cancer treatment, underscoring the need for structurally novel inhibitors. Herein, we describe the design, synthesis and biological evaluation of a series of potent HPK1 inhibitors based on our previously identified hit 9. Among them, compound 24 demonstrated strong HPK1 inhibition (IC50 of 10.1 nM) and effectively suppressed phosphorylation of the downstream protein SLP76. Notably, compound 24 exhibited enhanced potency in promoting IL-2 secretion in Jurkat T cells, reduced cellular toxicity, and improved liver microsomal stability compared to hit 9. Overall, this study provides a promising lead compound for further optimization as a candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Feifei Wu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiyu Li
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqiang Li
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laishun Zhang
- Zunyi Medical University-Zhuhai Campus, Zhuhai, China
| | - Qi An
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023 China
| | - Jiaqi Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023 China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai 201203 China
| | - Lei Xu
- Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan 528400 China
| | - Jinghua Yu
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China
| | - Xingxing Diao
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Li
- Zunyi Medical University-Zhuhai Campus, Zhuhai, China; Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan 528400 China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linghua Meng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai 201203 China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023 China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Jing H, Richardson PL, Potts GK, Senaweera S, Marin VL, McClure RA, Banlasan A, Tang H, Kath JE, Patel S, Torrent M, Ma R, Williams JD. Automated High-Throughput Affinity Capture-Mass Spectrometry Platform with Data-Independent Acquisition. J Proteome Res 2025; 24:537-549. [PMID: 39869306 DOI: 10.1021/acs.jproteome.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Affinity capture (AC) combined with mass spectrometry (MS)-based proteomics is highly utilized throughout the drug discovery pipeline to determine small-molecule target selectivity and engagement. However, the tedious sample preparation steps and time-consuming MS acquisition process have limited its use in a high-throughput format. Here, we report an automated workflow employing biotinylated probes and streptavidin magnetic beads for small-molecule target enrichment in the 96-well plate format, ending with direct sampling from EvoSep Solid Phase Extraction tips for liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis. The streamlined process significantly reduced both the overall and hands-on time needed for sample preparation. Additionally, we developed a data-independent acquisition-mass spectrometry (DIA-MS) method to establish an efficient label-free quantitative chemical proteomic kinome profiling workflow. DIA-MS yielded a coverage of ∼380 kinases, a > 60% increase compared to using a data-dependent acquisition (DDA)-MS method, and provided reproducible target profiling of the kinase inhibitor dasatinib. We further showcased the applicability of this AC-MS workflow for assessing the selectivity of two clinical-stage CDK9 inhibitors against ∼250 probe-enriched kinases. Our study here provides a roadmap for efficient target engagement and selectivity profiling in native cell or tissue lysates using AC-MS.
Collapse
Affiliation(s)
- Hui Jing
- Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Paul L Richardson
- Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Gregory K Potts
- Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Sameera Senaweera
- Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Violeta L Marin
- Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ryan A McClure
- Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Adam Banlasan
- Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Hua Tang
- Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - James E Kath
- Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Shitalben Patel
- Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Maricel Torrent
- Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Renze Ma
- Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Jon D Williams
- Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| |
Collapse
|
3
|
Gallego RA, Cho-Schultz S, Del Bel M, Dechert-Schmitt AM, Donaldson JS, He M, Jalaie M, Kania R, Matthews J, McTigue M, Tuttle JB, Risley H, Zhou D, Zhou R, Ahmad OK, Bernier L, Berritt S, Braganza J, Chen Z, Cianfrogna JA, Collins M, Costa Jones C, Cronin CN, Davis C, Dress K, Edwards M, Farrell W, France SP, Grable N, Johnson E, Johnson TW, Jones R, Knauber T, Lafontaine J, Loach RP, Maestre M, Miller N, Moen M, Monfette S, Morse P, Nager AR, Niosi M, Richardson P, Rohner AK, Sach NW, Timofeevski S, Tucker JW, Vetelino B, Zhang L, Nair SK. Discovery of PF-07265028, A Selective Small Molecule Inhibitor of Hematopoietic Progenitor Kinase 1 (HPK1) for the Treatment of Cancer. J Med Chem 2024; 67:22002-22038. [PMID: 39651809 DOI: 10.1021/acs.jmedchem.4c01930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1/MAP4K1) represents a high interest target for the treatment of cancer through an immune-mediated mechanism. Herein we present highlights of the drug discovery campaign within the lactam/azalactam series of inhibitors that yielded a small molecule (21, PF-07265028), which was advanced to a phase 1 clinical trial (NCT05233436). Key components of the discovery effort included optimization of potency through mitigation of ligand strain as guided by the use of cocrystal structures, mitigation of ADME liabilities (plasma instability and fraction metabolism by CYP2D6), and optimization of kinase selectivity, particularly over immune-modulating kinases with high homology to HPK1. Structure-based drug design via leveraging cocrystal structures and lipophilic efficiency analysis proved to be valuable tools that ultimately enabled the delivery of a clinical-quality small molecule inhibitor of HPK1.
Collapse
Affiliation(s)
- Rebecca A Gallego
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Sujin Cho-Schultz
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Matthew Del Bel
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | | | - Joyann S Donaldson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mingying He
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mehran Jalaie
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Rob Kania
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jean Matthews
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Michele McTigue
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jamison B Tuttle
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Hud Risley
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Dahui Zhou
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Ru Zhou
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Omar K Ahmad
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Louise Bernier
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Simon Berritt
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - John Braganza
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Zecheng Chen
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Julie A Cianfrogna
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Michael Collins
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Cinthia Costa Jones
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ciaran N Cronin
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Carl Davis
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Klaus Dress
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Martin Edwards
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - William Farrell
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Scott P France
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Nicole Grable
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Eric Johnson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ted W Johnson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Rhys Jones
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Thomas Knauber
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Jennifer Lafontaine
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Richard P Loach
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Michael Maestre
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Nichol Miller
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mark Moen
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Peter Morse
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Andrew Ross Nager
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mark Niosi
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Paul Richardson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Allison K Rohner
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Neal W Sach
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Sergei Timofeevski
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Joseph W Tucker
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Beth Vetelino
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lei Zhang
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Sajiv K Nair
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| |
Collapse
|
4
|
Peng J, Ding X, Chen CX, Zhao P, Ding X, Zhang M, Aliper A, Ren F, Lu H, Zhavoronkov A. Discovery of Pyridine-2-Carboxamides Derivatives as Potent and Selective HPK1 Inhibitors for the Treatment of Cancer. J Med Chem 2024; 67:21520-21544. [PMID: 39585942 DOI: 10.1021/acs.jmedchem.4c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) has emerged as an attractive target for immunotherapy due to its critical role in T cell activation and proliferation. The major challenge in developing HPK1 inhibitors lies in balancing kinase selectivity, pharmacokinetic (PK) properties, and therapeutic efficacy. In this study, we report a series of pyridine-2-carboxamide analogues demonstrating strong HPK1 inhibitory activity in enzymatic and cellular assays, along with good kinase selectivity. Among these analogues, compound 19 showed good in vitro HPK1 inhibitory activity, excellent kinase selectivity (>637-fold vs GCK-like kinase and >1022-fold vs LCK), and robust in vivo efficacy in the CT26 (tumor growth inhibition (TGI) = 94.3%, 2/6 CRs) and MC38 murine colorectal cancer models (TGI = 83.3%, 1/6 complete response) when administered in combination with anti-PD-1. Compound 19 also demonstrated adequate in vitro ADME and in vivo PK properties, displaying good oral bioavailability across multiple species (F % = 35-63). These findings summarize our compound's favorable safety and efficacy profiles, justifying its testing in future translational studies.
Collapse
Affiliation(s)
- Jingjing Peng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiaoyu Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Celia Xiaojing Chen
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Pei Zhao
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| |
Collapse
|
5
|
Peng J, Ding X, Shih PY, Meng Q, Ding X, Zhang M, Aliper A, Ren F, Lu H, Zhavoronkov A. Discovery of 1(2H)-phthalazinone and 1(2H)-isoquinolinone derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem 2024; 279:116877. [PMID: 39303515 DOI: 10.1016/j.ejmech.2024.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Although immune checkpoint inhibitors (ICIs) have been a revelation for treating several cancers, an unmet need remains to broaden ICI therapeutic scope and increase their response rates in clinical trials. Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T cell activation and has previously been identified as a promising target for immunotherapy. Herein, we report the discovery of a series of HPK1 inhibitors with novel 1(2H)-phthalazinone and 1(2H)-isoquinolinone scaffolds. Among them, compound 24 demonstrated potent in vitro activity (HPK1 IC50 value of 10.4 nM) and cellular activity (pSLP76 EC50 = 41 nM & IL-2 EC50 = 108 nM). Compound 24 exhibited favorable mouse and rat pharmacokinetic profiles with reasonable oral exposure. Compound 24 showed potent in vivo anti-tumor activity in a CT26 syngeneic tumor model with 95 % tumor growth inhibition in combination with anti-PD-1.
Collapse
Affiliation(s)
- Jingjing Peng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Xiaoyu Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Pei-Yu Shih
- Insilico Medicine Taiwan Ltd, Suite 1303, No. 333, Sec. 1, Keelung Rd, Xinyi District, Taipei, 110, Taiwan
| | - Qingyuan Meng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, United Arab Emirates
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China.
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China; Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, United Arab Emirates.
| |
Collapse
|
6
|
Duan Y, Guo Z, Zhong W, Chen J, Xu S, Liu J, Xu J. An updated review of small-molecule HPK1 kinase inhibitors (2016-present). Future Med Chem 2024; 16:2431-2450. [PMID: 39582317 PMCID: PMC11622775 DOI: 10.1080/17568919.2024.2420630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a serine-threonine kinase specific to hematopoiesis and a member of the MAP4K family of Ste20-related protein kinases. Targeting HPK1 to ameliorate T cell exhaustion and enhance T cell functions is a promising strategy for clinical immunotherapies. Numerous studies have reported the progress in developing effective HPK1 inhibitors and elucidating their mechanisms of action. However, most inhibitors affect multiple signaling pathways, resulting in unintended side effects that limit their clinical development and application. Herein, we reviewed HPK1-related signaling pathways, clinical candidates and recent advances in small-molecule inhibitors targeting HPK1. Additionally, we present our perspectives on current challenges and potential future research field, hoping to provide inspiration for the development of novel HPK1 inhibitors.
Collapse
Affiliation(s)
- Yiping Duan
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Zhichao Guo
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Wenyi Zhong
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jichao Chen
- Nanjing University Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, Peoples Republic China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jie Liu
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| |
Collapse
|
7
|
Peng J, Ding X, Chen CXJ, Shih PY, Meng Q, Ding X, Zhang M, Aliper A, Ren F, Lu H, Zhavoronkov A. Design, Synthesis, and Biological Evaluation of a Series of Spiro Analogues as Novel HPK1 Inhibitors. ACS Med Chem Lett 2024; 15:2032-2041. [PMID: 39563821 PMCID: PMC11571053 DOI: 10.1021/acsmedchemlett.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) negatively affects T cell activation and proliferation and is a promising target for immunotherapy. Although HPK1 inhibitors have shown promising efficacy in preclinical models, none have been approved for clinical use. One significant challenge in developing an HPK1 inhibitor is the difficulty in designing a potent inhibitor with good kinase selectivity and pharmacokinetic properties. Here, we report a series of spiro HPK1 inhibitors with good potency and selectivity. Specifically, compound 16 exhibited potent HPK1 inhibition (IC50 = 2.67 nM), adequate selectivity toward the MAP4K family (>100-fold), and good selectivity against selected kinases (>300-fold). Compound 16 demonstrated moderate in vivo clearance and reasonable oral exposure in mice and rats. Notably, compound 16 possessed good antitumor efficacy in the CT26 murine colon cancer and a synergistic effect when combined with anti-PD-1. These exciting preclinical results support the continued development of this class of HPK1 inhibitors.
Collapse
Affiliation(s)
- Jingjing Peng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiaoyu Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Celia X J Chen
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Pei-Yu Shih
- Insilico Medicine Taiwan Ltd, Taipei 110, Taiwan
| | - Qingyuan Meng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| |
Collapse
|
8
|
Xu J, Li Y, Chen X, Yang J, Xia H, Huang W, Zeng S. Opportunities and challenges for targeting HPK1 in cancer immunotherapy. Bioorg Chem 2024; 153:107866. [PMID: 39369461 DOI: 10.1016/j.bioorg.2024.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Hematopoietic Progenitor Kinase 1 (HPK1, also known as MAP4K1) is a hematopoiesis-specific serine/threonine kinase that belongs to the MAP4K family of Ste20-related protein kinases. HPK1 has been identified as a negative regulator of T-cell receptor signaling. Recent studies have indicated that the inhibition or knockout of HPK1 kinase function can effectively alleviate T cell exhaustion, enhance T cell functionality, and improve the therapeutic efficacy of tumor immunotherapy. In recent years, small molecule chemical drugs targeting HPK1 have made significant progress and have become a hot topic in the research and development of tumor immunotherapy drugs. However, the advancement of small molecule drugs that target HPK1 is hindered by various challenges, including the limited selectivity, insufficient immune stimulation, and the ambiguity surrounding role of non-kinase scaffold functions of HPK1 in tumor immune responses. This review briefly describes the biological structure of HPK1 and its related signaling pathways in tumor immunity, systematically discusses the latest research progress in small molecule chemical drugs targeting HPK1. Finally, we summarize and prospect the opportunities and challenges in the drug development of small molecule chemical drugs targeting HPK1 in tumor immunity.
Collapse
Affiliation(s)
- Jiamei Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yingzhou Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xinyi Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Junyi Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Heye Xia
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Wenhai Huang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| | - Shenxin Zeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
9
|
Chen L, Zhang B, Zhou P, Duan Y, He C, Zhong W, Wang T, Xu S, Chen J, Yao H, Xu J. Design, synthesis, and biological evaluation of novel HPK1 inhibitors possessing 3-cyano-quinoline moiety. Bioorg Chem 2024; 153:107814. [PMID: 39299176 DOI: 10.1016/j.bioorg.2024.107814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a negative regulator of T cell receptor signaling, plays a crucial role in multiple cellular immune responses. Emerging researches have demonstrated that inhibiting HPK1 kinase function enhances T cells' ability to recognize tumor antigens and boosts anti-tumor immune responses. As a result, HPK1 has become a promising target for tumor immunotherapy. Herein, we report the design, synthesis, and biological evaluation of a series of novel HPK1 inhibitors featuring a 3-cyano-quinoline scaffold. Among these, compound 3a was identified as the most potent HPK1 inhibitor (HPK1 IC50 = 48 nM). It effectively inhibited SLP76 phosphorylation, enhanced IL-2 cytokine secretion, and reversed PGE2-induced immunosuppression in Jurkat cells. In addition, compound 3a exhibited favorable metabolic stability in mouse liver microsomes and plasma. Overall, this work provides a structurally novel lead compound for the development of HPK1 inhibitors.
Collapse
Affiliation(s)
- Long Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Baixue Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Pijun Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yiping Duan
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chen He
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenyi Zhong
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tianyi Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Hong Yao
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
10
|
Alsfouk A. Pyrazine-based small molecule kinase inhibitors: clinical applications and patent review (2019-2023). Future Med Chem 2024; 16:1899-1921. [PMID: 39189138 PMCID: PMC11485930 DOI: 10.1080/17568919.2024.2385293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Protein kinases play a key role in cellular signaling pathways including proliferation, apoptosis, inflammation and immune regulation. Therefore, targeting kinases with small molecules has emerged as a therapeutic potential in cancers and other diseases including inflammatory and autoimmune disorders. The main chemical motifs of the available small molecule kinase inhibitors are heterocyclic, nitrogen-containing and six-membered rings including pyrazine. Several potent and selective pyrazine-based kinase inhibitors have been developed and progressed into clinical trials. The data of clinical application of kinase inhibitors demonstrate good clinical activity with manageable toxicity in several relapse-resistant malignancies and severe to moderate immunological disorders. All pyrazine-based kinase inhibitors are orally active. This paper reviews the most recent kinase literature (2019-2023) related to pyrazine-based small molecule inhibitors. This review includes the FDA (Food and Drug Administration)-approved and patent agents along with their targeted kinase, scaffold, potency, selectivity profile, assignee and biological results in clinical and preclinical studies.
Collapse
Affiliation(s)
- Aisha Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| |
Collapse
|
11
|
Plotnik JP, Richardson AE, Yang H, Rojas E, Bontcheva V, Dowell C, Parsons S, Wilson A, Ravanmehr V, Will C, Jung P, Zhu H, Partha SK, Panchal SC, Mali RS, Kohlhapp FJ, McClure RA, Ramathal CY, George MD, Jhala M, Elsen NL, Qiu W, Judge RA, Pan C, Mastracchio A, Henderson J, Meulbroek JA, Green MR, Pappano WN. Inhibition of MALT1 and BCL2 Induces Synergistic Antitumor Activity in Models of B-Cell Lymphoma. Mol Cancer Ther 2024; 23:949-960. [PMID: 38507740 PMCID: PMC11217731 DOI: 10.1158/1535-7163.mct-23-0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/21/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
The activated B cell (ABC) subset of diffuse large B-cell lymphoma (DLBCL) is characterized by chronic B-cell receptor signaling and associated with poor outcomes when treated with standard therapy. In ABC-DLBCL, MALT1 is a core enzyme that is constitutively activated by stimulation of the B-cell receptor or gain-of-function mutations in upstream components of the signaling pathway, making it an attractive therapeutic target. We discovered a novel small-molecule inhibitor, ABBV-MALT1, that potently shuts down B-cell signaling selectively in ABC-DLBCL preclinical models leading to potent cell growth and xenograft inhibition. We also identified a rational combination partner for ABBV-MALT1 in the BCL2 inhibitor, venetoclax, which when combined significantly synergizes to elicit deep and durable responses in preclinical models. This work highlights the potential of ABBV-MALT1 monotherapy and combination with venetoclax as effective treatment options for patients with ABC-DLBCL.
Collapse
MESH Headings
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism
- Humans
- Animals
- Mice
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Drug Synergism
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Cell Proliferation/drug effects
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Disease Models, Animal
Collapse
Affiliation(s)
| | | | - Haopeng Yang
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Estela Rojas
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | | | | | - Sydney Parsons
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ashley Wilson
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Vida Ravanmehr
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | | | - Paul Jung
- AbbVie Inc., North Chicago, Illinois.
| | | | | | | | | | | | | | | | | | | | | | - Wei Qiu
- AbbVie Inc., North Chicago, Illinois.
| | | | - Chin Pan
- AbbVie Bay Area, South San Francisco, California.
| | | | - Jared Henderson
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | | | - Michael R. Green
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | | |
Collapse
|
12
|
Fu S, Wei J, Li C, Zhang N, Yue H, Yang A, Xu J, Dong K, Xing Y, Tong M, Shi X, Xi Z, Wang H, Hou Y, Zhao Y. Design, synthesis, and biological evaluation of 2,4-diaminopyrimidine derivatives as potent Hematopoietic Progenitor Kinase 1 (HPK1) inhibitors. Bioorg Chem 2024; 148:107454. [PMID: 38795581 DOI: 10.1016/j.bioorg.2024.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024]
Abstract
HPK1 also referred to as MAP4K1, belongs to the category of mammalian STE20-like protein serine/threonine kinases. Its physiological function involves the down-regulation of T cell signals, and it is regarded as a new immune checkpoint of tumor immunology. In this study, we commenced our investigation with the hit compounds, focusing the efforts on structural optimization and SAR exploration to identify a novel class of 2,4-diaminopyrimidine HPK1 inhibitors. Notably, compound 14g exhibited a remarkable inhibitory effect on HPK1 kinase (IC50 = 0.15 nM), significantly suppressed the phosphorylation of the downstream adaptor protein SLP76 (pSLP76 IC50 = 27.92 nM), and effectively stimulated the secretion of the T cell activation marker IL-2 (EC50 = 46.64 nM). In vitro microsomal stability assay, compound 14g showed moderate stability in HLMs with T1/2 = 38.2 min and CLint = 36.4 µL·min-1·mg-1 proteins. In vivo pharmacokinetic studies, compound 14g demonstrated heightened plasma exposure (AUC0-inf = 644 ng·h·mL-1), extended half-life (T1/2 = 9.98 h), and reduced plasma clearance (CL = 52.3 mL·min-1·kg-1) compared to the reference compound after a single intravenous dose of 2 mg/kg in rats. These results indicated that compound 14g emerged as a promising inhibitor of HPK1.
Collapse
Affiliation(s)
- Siyu Fu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Jiakuan Wei
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Chunting Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Na Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Hao Yue
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Ao Yang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Jichang Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Kuan Dong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Yongpeng Xing
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Minghui Tong
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou 215104, China
| | - Xuan Shi
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou 215104, China
| | - Zhiguo Xi
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou 215104, China
| | - Han Wang
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou 215104, China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| |
Collapse
|
13
|
Chitre AS, Wu P, Walters BT, Wang X, Bouyssou A, Du X, Lehoux I, Fong R, Arata A, Chan J, Wang D, Franke Y, Grogan JL, Mellman I, Comps-Agrar L, Wang W. HPK1 citron homology domain regulates phosphorylation of SLP76 and modulates kinase domain interaction dynamics. Nat Commun 2024; 15:3725. [PMID: 38697971 PMCID: PMC11066036 DOI: 10.1038/s41467-024-48014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell receptor signaling and as such is an attractive target for cancer immunotherapy. Although the role of the HPK1 kinase domain (KD) has been extensively characterized, the function of its citron homology domain (CHD) remains elusive. Through a combination of structural, biochemical, and mechanistic studies, we characterize the structure-function of CHD in relationship to KD. Crystallography and hydrogen-deuterium exchange mass spectrometry reveal that CHD adopts a seven-bladed β-propellor fold that binds to KD. Mutagenesis associated with binding and functional studies show a direct correlation between domain-domain interaction and negative regulation of kinase activity. We further demonstrate that the CHD provides stability to HPK1 protein in cells as well as contributes to the docking of its substrate SLP76. Altogether, this study highlights the importance of the CHD in the direct and indirect regulation of HPK1 function.
Collapse
Affiliation(s)
| | - Ping Wu
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Xiangdan Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Xiangnan Du
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Isabelle Lehoux
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Rina Fong
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Alisa Arata
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joyce Chan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Die Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yvonne Franke
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jane L Grogan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
- GraphiteBio, Incl., 1400 Sierra Point Parkway, Brisbane, CA, 94005, USA
| | - Ira Mellman
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | | | - Weiru Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
- Frontier Medicines, 151 Oyster Point Boulevard, South San Francisco, CA, 94080, USA.
| |
Collapse
|
14
|
Qiu X, Liu R, Ling H, Zhou Y, Ren X, Zhou F, Zhang J, Huang W, Wang Z, Ding K. Discovery of 5-aminopyrido[2,3-d]pyrimidin-7(8H)-one derivatives as new hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem 2024; 269:116310. [PMID: 38479166 DOI: 10.1016/j.ejmech.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell receptor signaling. While HPK1 is considered as a promising target for cancer immunotherapy, no small-molecule HPK1 inhibitors have been approved for cancer treatment. Herein, we report the discovery of a series of new HPK1 inhibitors with a 5-aminopyrido[2,3-d]pyrimidin-7(8H)-one scaffold. The most potent compound 9f inhibited HPK1 kinase activity with an IC50 of 0.32 nM in the time-resolved fluorescence resonance energy transfer (TR-FRET) assays, while displayed reasonable selectivity in a panel of 416 kinases. Cellular engagement of HPK1 by compound 9f was confirmed through the nano-bioluminescence resonance energy transfer (Nano-BRET) experiments. Compound 9f effectively reduced the phosphorylation of the downstream protein SLP-76 in primary peripheral blood mononuclear cells (PBMCs) and human T lymphocytic leukemia Jurkat cells. Compound 9f also enhanced the IL-2 and IFN-γ secretion in PBMCs. Furthermore, the binding mode of compound 9f with HPK1 was confirmed by the resolved cocrystal structure. Taken together, this study provides HPK1 inhibitors with a novel scaffold and clear binding mode for further development of HPK1-targeted therapeutic agents.
Collapse
Affiliation(s)
- Xiaorong Qiu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310013, China
| | - Rong Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China
| | - Huan Ling
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China.
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China.
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
15
|
Chen H, Guan X, He C, Lu T, Lin X, Liao X. Current strategies for targeting HPK1 in cancer and the barriers to preclinical progress. Expert Opin Ther Targets 2024; 28:237-250. [PMID: 38650383 DOI: 10.1080/14728222.2024.2344697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Hematopoietic progenitor kinase 1 (HPK1), a 97-kDa serine/threonine Ste20-related protein kinase, functions as an intracellular negative regulator, primarily in hematopoietic lineage cells, where it regulates T cells, B cells, dendritic cells, and other immune cells. Loss of HPK1 kinase activity results in exacerbated cytokine secretion, enhanced T cell signaling, improved viral clearance, and thus increased restraint of tumor growth. These findings highlight HPK1 as a promising target for immuno-oncology treatments, culminating in the advancement of candidate compounds targeting HPK1 to clinical trials by several biotech enterprises. AREAS COVERED Through searching PubMed, Espacenet-patent search, and clinicaltrials.gov, this review provides a comprehensive analysis of HPK1, encompassing its structure and roles in various downstream signaling pathways, the consequences of constitutive activation of HPK1, and potential therapeutic strategies to treat HPK1-driven malignancies. Moreover, the review outlines the patents issued for small molecule inhibitors and clinical investigations of HPK1. EXPERT OPINION To enhance the success of tumor immunotherapy in clinical trials, it is important to develop protein degraders, allosteric inhibitors, and antibody-drug conjugates based on the crystal structure of HPK1, and to explore combination therapy approaches. Although several challenges remain, the development of HPK1 inhibitors display promising in preclinical and clinical studies.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Xiangna Guan
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Chi He
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Tingting Lu
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xingyu Lin
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xuebin Liao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Zhang J, Ren Z, Hu Y, Shang S, Wang R, Ma J, Zhang Z, Wu M, Wang F, Yu J, Chen D. High HPK1 +PD-1 +TIM-3 +CD8 + T cells infiltration predicts poor prognosis to immunotherapy in NSCLC patients. Int Immunopharmacol 2024; 127:111363. [PMID: 38101218 DOI: 10.1016/j.intimp.2023.111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
At present the efficacy of immune checkpoint inhibitors (ICIs) remains limited. The lack of responsiveness in certain patients may be attributed to CD8+ T cell exhaustion within the tumor microenvironment (TME). Hematopoietic progenitor kinase 1 (HPK1) has been identified as a mediator of T cell dysfunction, leading to our hypothesis that HPK1 positive exhausted CD8+ T cells could serve as a predictor for ICIs' efficacy in NSCLC patients, and potentially indicate key cellular subset causing ICIs resistance. Here, we retrospectively collected tumor tissue samples from 36 NSCLC patients who underwent first-line immunotherapy. Using multiplex immunohistochemistry, we visualized various PD-1+CD8+ T cell subsets and explore biomarkers for response. The analysis endpoints included overall response rate (ORR), progression free survival (PFS), and overall survival (OS), correlating them with levels of cell infiltration or effective density. We found that the proportion of PD-1+CD8+ T cell subsets did not align with predictions for ORR, PFS, and OS. Conversely, a high infiltration of HPK1+PD-1+TIM-3+CD8+ T cells was identified as an independent risk factor for both PFS (P = 0.019) and OS (P = 0.03). These cells were found to express the highest levels of Granzyme B, and the secretion of Granzyme B in CD8+ T cell subsets was related to TCF-1. In conclusion, these data suggest that a high infiltration of HPK1+PD-1+TIM-3+CD8+ T cells correlates with poor clinical outcomes in NSCLC patients receiving immunotherapy. These cells may represent terminally exhausted T cells that fail to respond to ICIs, thereby laying the groundwork for the potential integration of HPK1 inhibitors with immunotherapy to enhance treatment strategy.
Collapse
Affiliation(s)
- Jingxin Zhang
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziyuan Ren
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shijie Shang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruiyang Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiachun Ma
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zengfu Zhang
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fei Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
17
|
Xie C, Liu B, Song Z, Yang Y, Dai M, Gao Y, Yao Y, Ding C, Ai J, Zhang A. Design, Synthesis, and Pharmacological Evaluation of Isoindoline Analogues as New HPK1 Inhibitors. J Med Chem 2023; 66:16201-16221. [PMID: 37990878 DOI: 10.1021/acs.jmedchem.3c01571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is an important negative regulator in T-cell receptor signaling and as a promising key target for immunotherapy. Herein, based on the reported HPK1 inhibitor 2 featuring an isofuranone component, a structural optimization approach was conducted leading to several series of derivatives characterized by containing an isoindoline structural motif. Compound 49 was identified as a new potent HPK1 inhibitor with an IC50 value of 0.9 nM, more potent than compound 2 (5.5 nM). It also has an improved IV profile in rats and enhanced aqueous solubility. It effectively inhibited pSLP76 and reinvigorated T-cell receptor (TCR) signaling, promoting T-cell function and cytokine production both in naïve and antigen-specific T cells. Furthermore, compound 49 reversed the inhibition on T-cell activity mediated by classic immunosuppressive factors in the tumor microenvironment (TME). In the murine CT-26 tumor model, this compound reinvigorated the T cell and synergistically enhanced the antitumor efficacy of anti-PD1 at a well-tolerant dosage.
Collapse
Affiliation(s)
- Chenghu Xie
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Bo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zilan Song
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Ye Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengdi Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinglei Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujia Yao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| | - Chunyong Ding
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Lingang Laboratory, Shanghai 200210, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
18
|
Li H, Zhang R, Min Y, Ma D, Zhao D, Zeng J. A knowledge-guided pre-training framework for improving molecular representation learning. Nat Commun 2023; 14:7568. [PMID: 37989998 PMCID: PMC10663446 DOI: 10.1038/s41467-023-43214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
Learning effective molecular feature representation to facilitate molecular property prediction is of great significance for drug discovery. Recently, there has been a surge of interest in pre-training graph neural networks (GNNs) via self-supervised learning techniques to overcome the challenge of data scarcity in molecular property prediction. However, current self-supervised learning-based methods suffer from two main obstacles: the lack of a well-defined self-supervised learning strategy and the limited capacity of GNNs. Here, we propose Knowledge-guided Pre-training of Graph Transformer (KPGT), a self-supervised learning framework to alleviate the aforementioned issues and provide generalizable and robust molecular representations. The KPGT framework integrates a graph transformer specifically designed for molecular graphs and a knowledge-guided pre-training strategy, to fully capture both structural and semantic knowledge of molecules. Through extensive computational tests on 63 datasets, KPGT exhibits superior performance in predicting molecular properties across various domains. Moreover, the practical applicability of KPGT in drug discovery has been validated by identifying potential inhibitors of two antitumor targets: hematopoietic progenitor kinase 1 (HPK1) and fibroblast growth factor receptor 1 (FGFR1). Overall, KPGT can provide a powerful and useful tool for advancing the artificial intelligence (AI)-aided drug discovery process.
Collapse
Affiliation(s)
- Han Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Ruotian Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Yaosen Min
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China
| | - Dacheng Ma
- Research Center for Biological Computation, Zhejiang Province, Zhejiang Laboratory, 311100, Hangzhou, China
| | - Dan Zhao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China.
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, 100084, Beijing, China.
- School of Engineering, Westlake University, Zhejiang Province, 310030, Hangzhou, China.
| |
Collapse
|
19
|
Toure M, Johnson T, Li B, Schmidt R, Ma H, Neagu C, Lopez AU, Wang Y, Guler S, Xiao Y, Henkes R, Ho K, Zhang S, Chu CL, Gundra UM, Porichis F, Li L, Maurer CK, Fang Z, Musil D, DiPoto M, Friis E, Jones R, Jones C, Cummings J, Chekler E, Tanzer EM, Huck B, Sherer B. Discovery of quinazoline HPK1 inhibitors with high cellular potency. Bioorg Med Chem 2023; 92:117423. [PMID: 37531921 DOI: 10.1016/j.bmc.2023.117423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is regarded as a highly validated target in pre-clinical immune oncology. HPK1 has been described as regulating multiple critical signaling pathway in both adaptive and innate cells. In support of this role, HPK1 KO T cells show enhanced sensitivity to TCR activation and HPK1 KO mice display enhanced anti-tumor activity. Taken together, inhibition of HPK1 has the potential to induce enhanced anti-tumor immune response. Herein, we described the discovery of highly potent HPK1 inhibitors starting form a weak HTS hit. Using a structure-based drug design, HPK1 inhibitors exhibiting excellent cellular single-digit nanomolar potency in both proximal (pSLP76) and distal (IL-2) biomarkers along with sustained elevation of IL-2 cytokine secretion were discovered.
Collapse
Affiliation(s)
- Momar Toure
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States.
| | - Theresa Johnson
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Bin Li
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Ralf Schmidt
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Hong Ma
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Constantin Neagu
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Andrea Unzue Lopez
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Yanping Wang
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Satenig Guler
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - YuFang Xiao
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Renate Henkes
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Kevin Ho
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Susan Zhang
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Chia Lin Chu
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Uma Mahesh Gundra
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Filippos Porichis
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Long Li
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Christine Katharina Maurer
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Zhizhou Fang
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Djordje Musil
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Maria DiPoto
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Emily Friis
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Reinaldo Jones
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Christopher Jones
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - James Cummings
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Eugene Chekler
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Eva Maria Tanzer
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Bayard Huck
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Brian Sherer
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| |
Collapse
|
20
|
Zhou L, Ye X, Wang K, Shen H, Wang T, Zhang X, Jiang S, Xiao Y, Zhang K. Discovery of diaminotriazine carboxamides as potent inhibitors of hematopoetic progenitor kinase 1. Bioorg Chem 2023; 138:106682. [PMID: 37339563 DOI: 10.1016/j.bioorg.2023.106682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a member of mitogen-activated protein kinase kinase kinase kinase (MAP4K) family of Ste20 serine/threonine kinases, is a negative regulator of T-cell receptor (TCR) signaling. Inactivating HPK1 kinase has been reported to be sufficient to elicit antitumor immune response. Therefore, HPK1 has attracted much attention as a promising target for tumor immunotherapy. A few of HPK1 inhibitors have been reported, and none of them have been approved for clinical applications. Hence, more effective HPK1 inhibitors are needed. Herein, a series of structurally novel diaminotriazine carboxamides were rationally designed, synthesized and evaluated for their inhibitory activity against HPK1 kinase. Most of them exhibited potent inhibitory potency against HPK1 kinase. In particular, compound 15b showed more robust HPK1 inhibitory activity than that of 11d developed by Merck in kinase activity assay (IC50 = 3.1 and 8.2 nM, respectively). The significant inhibitory potency against SLP76 phosphorylation in Jurkat T cells further confirmed the efficacy of compound 15b. In human peripheral blood mononuclear cell (PBMC) functional assays, compound 15b more significantly induced the production of interleukin 2 (IL-2) and interferon γ (IFN-γ) relative to 11d. Furthermore, 15b alone or in combination with anti-PD-1 antibodies showed potent in vivo antitumor efficacy in MC38 tumor-bearing mice. Compound 15b represents a promising lead for the development of effective HPK1 small-molecule inhibitors.
Collapse
Affiliation(s)
- Lixin Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuquan Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaizhen Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hongtao Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yibei Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
21
|
Yang Y, Hsieh CY, Kang Y, Hou T, Liu H, Yao X. Deep Generation Model Guided by the Docking Score for Active Molecular Design. J Chem Inf Model 2023; 63:2983-2991. [PMID: 37163364 DOI: 10.1021/acs.jcim.3c00572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A deep generation model, as a novel drug design and discovery tool, shows obvious advantages in generating compounds with novel backbones and has been applied successfully in the field of drug discovery. However, it is still a challenge to generate molecules with expected properties, especially high activity. Here, to obtain compounds both with novelty and high activity to a target, we proposed a conditional molecular generation model COMG by considering the docking score and 3D pharmacophore matching during molecular generation. The proposed model was based on the conditional variational autoencoder architecture constrained by the pharmacophore matching score. During Bayesian optimization, the docking score was applied to enhance the target relevance of generated compounds. Furthermore, to overcome the problem of high structural similarity caused by Bayesian optimization, the idea of the scaffold memory unit was also introduced. The evaluation results of COMG show that our model not only can improve the structural diversity of generated molecules but also can effectively improve the proportion of target-related drug-active molecules. The obtained results indicate that our proposed model COMG is a useful drug design tool.
Collapse
Affiliation(s)
- Yuwei Yang
- Faculty of Applied Sciences, Macao Polytechnic University, Macao (SAR) 999078, P. R. China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao (SAR) 999078, P. R. China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078 Macau (SAR), P. R. China
| |
Collapse
|
22
|
Wu F, Li H, An Q, Sun Y, Yu J, Cao W, Sun P, Diao X, Meng L, Xu S. Discovery of 7H-Pyrrolo[2,3-d]pyrimidine Derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem 2023; 254:115355. [PMID: 37062169 DOI: 10.1016/j.ejmech.2023.115355] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in hematopoietic cells and is a negative regulator of T cell receptor (TCR) signaling. Recent studies have demonstrated that HPK1 is a promising therapeutic target for cancer immunotherapy. However, despite significant progress in the development of HPK1 inhibitors, none of them has been approved for cancer therapy. Development of HPK1 inhibitors with a structurally distinct scaffold is still needed. Herein, we describe the design and synthesis of a series of HPK1 inhibitors with a 7H-pyrrolo[2,3-d]pyrimidine scaffold, exemplified by 31. Compound 31 showed potent inhibitory activity against HPK1 with an IC50 value of 3.5 nM and favorable selectivity within a panel of kinases. It also potently inhibited the phosphorylation level of SLP76, a substrate of HPK1, and enhanced the IL-2 secretion in Jurkat cells (human T cell leukemia). Our findings provide new clues for further optimization and development to generate HPK1 inhibitors for cancer immunotherapy.
Collapse
Affiliation(s)
- Feifei Wu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
| | - Huiyu Li
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
| | - Qi An
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Jinghua Yu
- Shanghai Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Wenting Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Pu Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xingxing Diao
- Shanghai Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Linghua Meng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China.
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
23
|
Shi H, Tang H, Li Y, Chen D, Liu T, Chen Y, Wang X, Chen L, Wang Y, Xie H, Xiong B. Development of a series of quinazoline-2,5-diamine derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem 2023; 248:115064. [PMID: 36621137 DOI: 10.1016/j.ejmech.2022.115064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a serine/threonine kinase that serves as the negative regulator of multiple immune signaling pathways. Genetic studies using HPK1 knockout and kinase-dead mice suggested that inhibiting HPK1 either alone or in combination with immune checkpoint blockade could be a promising strategy in cancer immunotherapy. Herein, we report the design, synthesis and structure-activity relationship (SAR) study of a series of potent HPK1 inhibitors bearing quinazoline-2,5-diamine scaffold. Three rounds of SAR exploration led to the identification of 9h, the most potent compound in this series which harbors a 2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl substituent. Further biological assessments using human immune cells demonstrated that 9h could strongly inhibit downstream phosphorylation, augment interleukin-2 (IL-2) production and reverse prostaglandin E2 (PGE2)-induced immune suppression. Overall, our study on these quinazoline-2,5-diamine derivatives provided not only a tool compound for the community to help with elucidating the HPK1 pharmacology, but also a reliable reference for subsequent development of HPK1 inhibitors.
Collapse
Affiliation(s)
- Huanyu Shi
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Haotian Tang
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yan Li
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yuting Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xin Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ying Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hua Xie
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
24
|
Sokolsky A, Vechorkin O, Hummel JR, Styduhar ED, Wang A, Nguyen MH, Ye HF, Liu K, Zhang K, Pan J, Ye Q, Atasoylu O, Behshad E, He X, Conlen P, Stump K, Ye M, Diamond S, Covington M, Yeleswaram S, Yao W. Potent and Selective Biaryl Amide Inhibitors of Hematopoietic Progenitor Kinase 1 (HPK1). ACS Med Chem Lett 2023; 14:116-122. [PMID: 36655134 PMCID: PMC9841582 DOI: 10.1021/acsmedchemlett.2c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Herein we report the discovery of a novel biaryl amide series as selective inhibitors of hematopoietic protein kinase 1 (HPK1). Structure-activity relationship development, aided by molecular modeling, identified indazole 5b as a core for further exploration because of its outstanding enzymatic and cellular potency coupled with encouraging kinome selectivity. Late-stage manipulation of the right-hand aryl and amine moieties surmounted issues of selectivity over TRKA, MAP4K2, and STK4 as well as generating compounds with balanced in vitro ADME profiles and promising pharmacokinetics.
Collapse
Affiliation(s)
- Alexander Sokolsky
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Oleg Vechorkin
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Joshua R. Hummel
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Evan D. Styduhar
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Anlai Wang
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Minh H. Nguyen
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Hai Fen Ye
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Kai Liu
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Ke Zhang
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Jun Pan
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Qinda Ye
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Onur Atasoylu
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Elham Behshad
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Xin He
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Patricia Conlen
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Kristine Stump
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Min Ye
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Sharon Diamond
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Maryanne Covington
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Swamy Yeleswaram
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Wenqing Yao
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| |
Collapse
|
25
|
Zhou L, Wang T, Zhang K, Zhang X, Jiang S. The development of small-molecule inhibitors targeting HPK1. Eur J Med Chem 2022; 244:114819. [DOI: 10.1016/j.ejmech.2022.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
|
26
|
Zhu Q, Chen N, Tian X, Zhou Y, You Q, Xu X. Hematopoietic Progenitor Kinase 1 in Tumor Immunology: A Medicinal Chemistry Perspective. J Med Chem 2022; 65:8065-8090. [PMID: 35696642 DOI: 10.1021/acs.jmedchem.2c00172] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-restricted member of the serine/threonine Ste20-related protein kinases, is a negative regulator of the T cell receptor, B cell receptor, and dendritic cells. Loss of HPK1 kinase function increases cytokine secretion and enhances T cell signaling, virus clearance, and tumor growth inhibition. Therefore, HPK1 is considered a promising target for tumor immunotherapy. Several HPK1 inhibitors have been reported to regulate T cell function. In addition, HPK1-targeting PROTACs, which can induce the degradation of HPK1, have also been developed. Here, we provide an overview of research concerning HPK1 protein structure, function, and inhibitors and propose perspectives and insights for the future development of agents targeting HPK1.
Collapse
Affiliation(s)
- Qiangsheng Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nannan Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjian Tian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yeling Zhou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - QiDong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|