1
|
Shen Y, Sun A, Guo Y, Chang WC. Discovery of Noncanonical Iron and 2-Oxoglutarate Dependent Enzymes Involved in C-C and C-N Bond Formation in Biosynthetic Pathways. ACS BIO & MED CHEM AU 2025; 5:238-261. [PMID: 40255287 PMCID: PMC12006828 DOI: 10.1021/acsbiomedchemau.5c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/22/2025]
Abstract
Iron and 2-oxoglutarate dependent (Fe/2OG) enzymes utilize an FeIV=O species to catalyze the functionalization of otherwise chemically inert C-H bonds. In addition to the more familiar canonical reactions of hydroxylation and chlorination, they also catalyze several other types of reactions that contribute to the diversity and complexity of natural products. In the past decade, several new Fe/2OG enzymes that catalyze C-C and C-N bond formation have been reported in the biosynthesis of structurally complex natural products. Compared with hydroxylation and chlorination, the catalytic cycles of these Fe/2OG enzymes involve distinct mechanistic features to enable noncanonical reaction outcomes. This Review summarizes recent discoveries of Fe/2OG enzymes involved in C-C and C-N bond formation with a focus on reaction mechanisms and their roles in natural product biosynthesis.
Collapse
Affiliation(s)
- Yaoyao Shen
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Anyi Sun
- School
of Life Science and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Yisong Guo
- Department
of Chemistry, The Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-chen Chang
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Cao J, Lu J, Cao Y, de Visser SP. What Factors Determine the Brevione B Desaturation Mechanism in the Nonheme Iron Dioxygenase BrvJ? Chemistry 2025; 31:e202404250. [PMID: 39807948 DOI: 10.1002/chem.202404250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
The natural product synthesis of brevione J undergoes a cascade of reactions including an oxidative desaturation and a ring-expansion. The C1-C2 desaturation of brevione B is catalyzed by the nonheme iron dioxygenase BrvJ using one molecule of O2 and α-ketoglutarate (αKG). However, whether the subsequent oxidative ring expansion reaction is also catalyzed by the same enzyme is unknown and remains controversial. To gain insight into the mechanism of brevione J biosynthesis a computational study is reported here using molecular dynamics and density functional theory approaches. The work predicts that both cycles can proceed in the same protein structure on an iron center with O2 and αKG for each cycle. The rate-determining step is a hydrogen atom abstraction step in both reaction cycles. Interestingly, the OH rebound barriers are high in energy in cycle 1 due to stereochemical interactions and substrate positioning that enable an efficient desaturation reaction.
Collapse
Affiliation(s)
- Jingyu Cao
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Jingyuan Lu
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Yuanxin Cao
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
3
|
Wang H, Yang Y, Abe I. Modifications of Prenyl Side Chains in Natural Product Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202415279. [PMID: 39363683 DOI: 10.1002/anie.202415279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In recent years, there has been a growing interest in understanding the enzymatic machinery responsible for the modifications of prenyl side chains and elucidating their roles in natural product biosynthesis. This interest stems from the pivotal role such modifications play in shaping the structural and functional diversity of natural products, as well as from their potential applications to synthetic biology and drug discovery. In addition to contributing to the diversity and complexity of natural products, unique modifications of prenyl side chains are represented by several novel biosynthetic mechanisms. Representative unique examples of epoxidation, dehydrogenation, oxidation of methyl groups to carboxyl groups, unusual C-C bond cleavage and oxidative cyclization are summarized and discussed. By revealing the intriguing chemistry and enzymology behind these transformations, this comprehensive and comparative review will guide future efforts in the discovery, characterization and application of modifications of prenyl side chains in natural product biosynthesis.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yi Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
4
|
Su Y, Lai W. Unraveling the Mechanism of the Oxidative C-C Bond Coupling Reaction Catalyzed by Deoxypodophyllotoxin Synthase. Inorg Chem 2024; 63:13948-13958. [PMID: 39008659 DOI: 10.1021/acs.inorgchem.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Deoxypodophyllotoxin synthase (DPS), a nonheme Fe(II)/2-oxoglutarate (2OG)-dependent oxygenase, is a key enzyme that is involved in the construction of the fused-ring system in (-)-podophyllotoxin biosynthesis by catalyzing the C-C coupling reaction. However, the mechanistic details of DPS-catalyzed ring formation remain unclear. Herein, our quantum mechanics/molecular mechanics (QM/MM) calculations reveal a novel mechanism that involves the recycling of CO2 (a product of decarboxylation of 2OG) to prevent the formation of hydroxylated byproducts. Our results show that CO2 can react with the FeIII-OH species to generate an unusual FeIII-bicarbonate species. In this way, hydroxylation is avoided by consuming the OH group. Then, the C-C coupling followed by desaturation yields the final product, deoxypodophyllotoxin. This work highlights the crucial role of the CO2 molecule, generated in the crevice between the iron active site and the substrate, in controlling the reaction selectivity.
Collapse
Affiliation(s)
- Yanzhuang Su
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Wenzhen Lai
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
5
|
Hopiavuori AR, Huffman RT, McKinnie SMK. Expression, purification, and biochemical characterization of micro- and macroalgal kainoid synthases. Methods Enzymol 2024; 704:233-258. [PMID: 39300649 DOI: 10.1016/bs.mie.2024.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Kainoid natural products are a series of potent ionotropic glutamate receptor agonists produced by a variety of divergent marine micro- and macro-algae. The key biosynthetic step in the construction of the pyrrolidine ring pharmacophore involves a unique branch of non-heme iron α-ketoglutarate dependent dioxygenases (Fe/αKGs) termed the kainoid synthases. These Fe/αKG homologs catalyze a stereoselective C-H abstraction followed by a radical carbon-carbon bond reaction to form the bioactive core on N-prenylated L-glutamic acid substrates. In this article, we describe the expression, purification, and biochemical characterization of four divergent kainoid synthases (DabC, RadC1, DsKabC, GfKabC). Furthermore, we compare and contrast their substrate preferences and product distributions, and provide some preliminary insight into how to repurpose these enzymes for whole cell biocatalysis.
Collapse
Affiliation(s)
- Austin R Hopiavuori
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, United States
| | - Radcliff T Huffman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, United States
| | - Shaun M K McKinnie
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, United States.
| |
Collapse
|
6
|
Hardy FG, Wong HPH, de Visser SP. Computational Study Into the Oxidative Ring-Closure Mechanism During the Biosynthesis of Deoxypodophyllotoxin. Chemistry 2024; 30:e202400019. [PMID: 38323740 DOI: 10.1002/chem.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024]
Abstract
The nonheme iron dioxygenase deoxypodophyllotoxin synthase performs an oxidative ring-closure reaction as part of natural product synthesis in plants. How the enzyme enables the oxidative ring-closure reaction of (-)-yatein and avoids substrate hydroxylation remains unknown. To gain insight into the reaction mechanism and understand the details of the pathways leading to products and by-products we performed a comprehensive computational study. The work shows that substrate is bound tightly into the substrate binding pocket with the C7'-H bond closest to the iron(IV)-oxo species. The reaction proceeds through a radical mechanism starting with hydrogen atom abstraction from the C7'-H position followed by ring-closure and a final hydrogen transfer to form iron(II)-water and deoxypodophyllotoxin. Alternative mechanisms including substrate hydroxylation and an electron transfer pathway were explored but found to be higher in energy. The mechanism is guided by electrostatic perturbations of charged residues in the second-coordination sphere that prevent alternative pathways.
Collapse
Affiliation(s)
- Fintan G Hardy
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|