1
|
Bridget AF, Budhathoki R, Huo C, Joshi S, Parajuli N, Sohng JK, Kim KH. Activation of cryptic biosynthetic pathways in Saccharopolyspora spinosa through deletion of the spinosyn gene cluster: induction of cryptic and bioactive natural products. Arch Pharm Res 2025:10.1007/s12272-025-01553-1. [PMID: 40528115 DOI: 10.1007/s12272-025-01553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Accepted: 06/04/2025] [Indexed: 06/20/2025]
Abstract
Saccharopolyspora spinosa, a member of the Pseudonocardiaceae family, was originally isolated from soil in the Virgin Islands and is renowned for producing spinosad, a broad-spectrum insecticidal secondary metabolite. While research on S. spinosa has historically focused on spinosad production, little is known about the broader spectrum of secondary metabolites encoded by its genome. Like Streptomyces, S. spinosa harbors numerous biosynthetic gene clusters (BGCs), many of which remain cryptic under standard laboratory conditions. In this study, the spinosyn gene cluster was deleted using the heat-sensitive vector pKC1139, generating the mutant strain S. spinosaΔSPN. The fermentation products of both the wild-type S. spinosa (B1) and S. spinosaΔSPN (B2) were analyzed through HPLC coupled with high-resolution tandem mass spectrometry (HRMS/MS). Data analysis was conducted using GNPS-based molecular networking and MestReNova. A total of seven metabolites were putatively annotated in the wild-type strain (B1), with spinosyns being the predominant compounds. In contrast, the mutant strain (B2) produced putatively linear and cyclic lipopeptides, including gageostatins and gageopeptins as the major metabolites. Additionally, the crude extract from S. spinosaΔSPN (B2) exhibited antibacterial activity, likely due to the production of lipopeptides, which are known for their antimicrobial properties. These findings indicate that deletion of the spinosyn gene cluster can activate cryptic biosynthetic pathways, leading to the discovery of novel bioactive compounds with potential applications in medicine.
Collapse
Affiliation(s)
- Adzemye Fovennso Bridget
- Department of Life Science and Biochemical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, Asan, 31460, Republic of Korea
| | - Rabin Budhathoki
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, 44618, Nepal
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Soniya Joshi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, 44618, Nepal
| | - Niranjan Parajuli
- Department of Life Science and Biochemical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, Asan, 31460, Republic of Korea
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, 44618, Nepal
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, Asan, 31460, Republic of Korea.
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Holbrook-Smith D, Trouillon J, Sauer U. Metabolomics and Microbial Metabolism: Toward a Systematic Understanding. Annu Rev Biophys 2024; 53:41-64. [PMID: 38109374 DOI: 10.1146/annurev-biophys-030722-021957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Over the past decades, our understanding of microbial metabolism has increased dramatically. Metabolomics, a family of techniques that are used to measure the quantities of small molecules in biological samples, has been central to these efforts. Advances in analytical chemistry have made it possible to measure the relative and absolute concentrations of more and more compounds with increasing levels of certainty. In this review, we highlight how metabolomics has contributed to understanding microbial metabolism and in what ways it can still be deployed to expand our systematic understanding of metabolism. To that end, we explain how metabolomics was used to (a) characterize network topologies of metabolism and its regulation networks, (b) elucidate the control of metabolic function, and (c) understand the molecular basis of higher-order phenomena. We also discuss areas of inquiry where technological advances should continue to increase the impact of metabolomics, as well as areas where our understanding is bottlenecked by other factors such as the availability of statistical and modeling frameworks that can extract biological meaning from metabolomics data.
Collapse
Affiliation(s)
| | - Julian Trouillon
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland;
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland;
| |
Collapse
|
3
|
Pšeničnik A, Slemc L, Avbelj M, Tome M, Šala M, Herron P, Shmatkov M, Petek M, Baebler Š, Mrak P, Hranueli D, Starčević A, Hunter IS, Petković H. Oxytetracycline hyper-production through targeted genome reduction of Streptomyces rimosus. mSystems 2024; 9:e0025024. [PMID: 38564716 PMCID: PMC11097637 DOI: 10.1128/msystems.00250-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20-60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.
Collapse
Affiliation(s)
- Alen Pšeničnik
- Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
| | - Lucija Slemc
- Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
| | - Martina Avbelj
- Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
| | - Miha Tome
- Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
| | - Martin Šala
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Paul Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Maksym Shmatkov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Peter Mrak
- Antiinfectives, Sandoz, Mengeš, Slovenia
| | - Daslav Hranueli
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Antonio Starčević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Iain S. Hunter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Hrvoje Petković
- Chair of Biotechnology, Microbiology and Food Safety, University of Ljubljana Biotechnical Faculty, Ljubljana, Slovenia
| |
Collapse
|
4
|
Mullowney MW, Duncan KR, Elsayed SS, Garg N, van der Hooft JJJ, Martin NI, Meijer D, Terlouw BR, Biermann F, Blin K, Durairaj J, Gorostiola González M, Helfrich EJN, Huber F, Leopold-Messer S, Rajan K, de Rond T, van Santen JA, Sorokina M, Balunas MJ, Beniddir MA, van Bergeijk DA, Carroll LM, Clark CM, Clevert DA, Dejong CA, Du C, Ferrinho S, Grisoni F, Hofstetter A, Jespers W, Kalinina OV, Kautsar SA, Kim H, Leao TF, Masschelein J, Rees ER, Reher R, Reker D, Schwaller P, Segler M, Skinnider MA, Walker AS, Willighagen EL, Zdrazil B, Ziemert N, Goss RJM, Guyomard P, Volkamer A, Gerwick WH, Kim HU, Müller R, van Wezel GP, van Westen GJP, Hirsch AKH, Linington RG, Robinson SL, Medema MH. Artificial intelligence for natural product drug discovery. Nat Rev Drug Discov 2023; 22:895-916. [PMID: 37697042 DOI: 10.1038/s41573-023-00774-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/13/2023]
Abstract
Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation.
Collapse
Affiliation(s)
| | - Katherine R Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Somayah S Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Neha Garg
- School of Chemistry and Biochemistry, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - David Meijer
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Barbara R Terlouw
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Friederike Biermann
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Institute of Molecular Bio Science, Goethe-University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Marina Gorostiola González
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
- ONCODE institute, Leiden, The Netherlands
| | - Eric J N Helfrich
- Institute of Molecular Bio Science, Goethe-University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Florian Huber
- Center for Digitalization and Digitality, Hochschule Düsseldorf, Düsseldorf, Germany
| | - Stefan Leopold-Messer
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Kohulan Rajan
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Jena, Germany
| | - Tristan de Rond
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jeffrey A van Santen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Jena, Germany
- Pharmaceuticals R&D, Bayer AG, Berlin, Germany
| | - Marcy J Balunas
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Mehdi A Beniddir
- Équipe "Chimie des Substances Naturelles", Université Paris-Saclay, CNRS, BioCIS, Orsay, France
| | - Doris A van Bergeijk
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Laura M Carroll
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Chase M Clark
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Chao Du
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Francesca Grisoni
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | | | - Willem Jespers
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Drug Bioinformatics, Medical Faculty, Saarland University, Homburg, Germany
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | | | - Hyunwoo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University Seoul, Goyang-si, Republic of Korea
| | - Tiago F Leao
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Joleen Masschelein
- Center for Microbiology, VIB-KU Leuven, Heverlee, Belgium
- Department of Biology, KU Leuven, Heverlee, Belgium
| | - Evan R Rees
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Raphael Reher
- Institute of Pharmaceutical Biology and Biotechnology, University of Marburg, Marburg, Germany
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel Reker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Duke Microbiome Center, Duke University, Durham, NC, USA
| | - Philippe Schwaller
- Laboratory of Artificial Chemical Intelligence, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Michael A Skinnider
- Adapsyn Bioscience, Hamilton, Ontario, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Egon L Willighagen
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Barbara Zdrazil
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, UK
| | - Nadine Ziemert
- Interfaculty Institute for Microbiology and Infection Medicine Tuebingen (IMIT), Institute for Bioinformatics and Medical Informatics (IBMI), University of Tuebingen, Tuebingen, Germany
| | | | - Pierre Guyomard
- Bonsai team, CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Université de Lille, Villeneuve d'Ascq Cedex, France
| | - Andrea Volkamer
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
- In silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Center for infection research (DZIF), Braunschweig, Germany
- Helmholtz International Lab for Anti-Infectives, Saarbrücken, Germany
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, The Netherlands
| | - Gerard J P van Westen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands.
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Saarbrücken, Germany.
- German Center for infection research (DZIF), Braunschweig, Germany.
- Helmholtz International Lab for Anti-Infectives, Saarbrücken, Germany.
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute for Aquatic Science and Technology, Dübendorf, Switzerland.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
5
|
Gattoni G, Di Costanzo F, de la Haba RR, Fernández AB, Guerrero-Flores S, Selem-Mojica N, Ventosa A, Corral P. Biosynthetic gene profiling and genomic potential of the novel photosynthetic marine bacterium Roseibaca domitiana. Front Microbiol 2023; 14:1238779. [PMID: 37860137 PMCID: PMC10584327 DOI: 10.3389/fmicb.2023.1238779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023] Open
Abstract
Shifting the bioprospecting targets toward underexplored bacterial groups combined with genome mining studies contributes to avoiding the rediscovery of known compounds by revealing novel, promising biosynthetic gene clusters (BGCs). With the aim of determining the biosynthetic potential of a novel marine bacterium, strain V10T, isolated from the Domitian littoral in Italy, a comparative phylogenomic mining study was performed across related photosynthetic bacterial groups from an evolutionary perspective. Studies on polyphasic and taxogenomics showed that this bacterium constitutes a new species, designated Roseibaca domitiana sp. nov. To date, this genus has only one other validly described species, which was isolated from a hypersaline Antarctic lake. The genomic evolutionary study linked to BGC diversity revealed that there is a close relationship between the phylogenetic distance of the members of the photosynthetic genera Roseibaca, Roseinatronobacter, and Rhodobaca and their BGC profiles, whose conservation pattern allows discriminating between these genera. On the contrary, the rest of the species related to Roseibaca domitiana exhibited an individual species pattern unrelated to genome size or source of isolation. This study showed that photosynthetic strains possess a streamlined content of BGCs, of which 94.34% of the clusters with biotechnological interest (NRPS, PKS, RRE, and RiPP) are completely new. Among these stand out T1PKS, exclusive of R. domitiana V10T, and RRE, highly conserved only in R. domitiana V10T and R. ekhonensis, both categories of BGCs involved in the synthesis of plant growth-promoting compounds and antitumoral compounds, respectively. In all cases, with very low homology with already patented molecules. Our findings reveal the high biosynthetic potential of infrequently cultured bacterial groups, suggesting the need to redirect attention to microbial minorities as a novel and vast source of bioactive compounds still to be exploited.
Collapse
Affiliation(s)
- Giuliano Gattoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Ana B. Fernández
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, Pamplona, Spain
- Research & Development Department, Bioinsectis SL, Navarre, Spain
| | - Shaday Guerrero-Flores
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México UNAM, Morelia, Mexico
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México UNAM, Morelia, Mexico
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Li X, Zhang P, Liu J, Wang H, Liu J, Li H, Xie H, Wang Q, Li L, Zhang S, Huang L, Liu C, Qin P. Integrated Metabolomic and Transcriptomic Analysis of the Quinoa Seedling Response to High Relative Humidity Stress. Biomolecules 2023; 13:1352. [PMID: 37759752 PMCID: PMC10527060 DOI: 10.3390/biom13091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Quinoa is of great interest because it is cold- and drought-resistant; however, little research has been performed on quinoa under high relative humidity (RH) stress. In this study, quinoa seedlings of a highly HR-resistant variety ("Dianli-439") and a sensitive variety ("Dianli-969") were subjected to morphological and physiological measurements and metabolome and transcriptome analyses to investigate their response to high RH stress. In total, 1060 metabolites were detected, and lipids and flavonoids were the most abundant, with 173 and 167 metabolites, respectively. In total, 13,095 differentially expressed genes were identified, and the results showed that abscisic acid, auxin, and jasmonic-acid-related genes involved in plant hormone signaling may be involved in the response of quinoa seedlings to high RH stress. The analysis of the transcription factors revealed that the AP2/ERF family may also play an important role in the response to high RH stress. We identified the possible regulatory mechanisms of the hormone signaling pathways under high RH stress. Our findings can provide a basis for the selection and identification of highly resistant quinoa varieties and the screening of the metabolite-synthesis- and gene-regulation-related mechanisms in quinoa in response to RH stress.
Collapse
Affiliation(s)
- Xinyi Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Jia Liu
- Yuxi Academy of Agricultural Science, Yuxi 653100, China;
| | - Hongxin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Heng Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Shan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Liubin Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China (P.Z.); (H.W.); (J.L.); (H.L.); (H.X.); (Q.W.); (L.L.)
| |
Collapse
|
7
|
Khoshakhlagh A, Aghaei SS, Abroun S, Soleimani M, Zolfaghari MR. Investigation of diverse biosynthetic secondary metabolites gene clusters using genome mining of indigenous Streptomyces strains isolated from saline soils in Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:881-890. [PMID: 36721452 PMCID: PMC9867626 DOI: 10.18502/ijm.v14i6.11263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Objectives Bioactive secondary metabolites are the products of microbial communities adapting to environmental challenges, which have yet remained anonymous. As a result of demands in the pharmaceutical, agricultural, and food industries, microbial metabolites should be investigated. The most substantial sources of secondary metabolites are Streptomyces strains and are potential candidates for bioactive compound production. So, we used genome mining and bioinformatics to predict the isolates secondary metabolites, biosynthesis, and potential pharmaceuticals. Materials and Methods This is a bioinformatics part of our previous experimental research. Here, we aimed to inspect the underlying secondary metabolite properties of 20 phylogenetically diverse Streptomyces species of saline soil by a rationalized computational workflow by several software tools. We examined the Metabolites' cytotoxicity and antibacterial effects using the MTT assay and plate count technique, respectively. Results Among Streptomyces species, three were selected for genome mining and predicted novel secondary metabolites and potential drug abilities. All 11 metabolites were cytotoxic to A549, but ectoine (p≤0.5) and geosmin (p≤0.001) significantly operated as an anti-cancer drug. Metabolites of oxytetracycline and phosphinothricin (p≤0.001), 4Z-annimycin and geosmin (p≤0.01), and ectoine (p≤0.5) revealed significant antibacterial activity. Conclusion Of all the 11 compounds investigated, annimycin, geosmin, phosphinothricin, and ectoine had antimicrobial properties, but geosmin also showed very significant anti-cancer properties.
Collapse
Affiliation(s)
- Amin Khoshakhlagh
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Seyed Soheil Aghaei
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran,Corresponding author: Seyed Soheil Aghaei, Ph.D, Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran. Tel: +98-25-32808080 Fax: +98-25-32804040
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Soleimani
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Li Y, Lee SR, Han EJ, Seyedsayamdost MR. Momomycin, an Antiproliferative Cryptic Metabolite from the Oxytetracycline Producer Streptomyces rimosus. Angew Chem Int Ed Engl 2022; 61:e202208573. [PMID: 35903822 PMCID: PMC9489664 DOI: 10.1002/anie.202208573] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Indexed: 08/27/2023]
Abstract
Natural products provide an important source of pharmaceuticals and chemical tools. Traditionally, assessment of unexplored microbial phyla has led to new natural products. However, with every new microbe, the number of orphan biosynthetic gene clusters (BGC) grows. As such, the more difficult proposition is finding new molecules from well-studied strains. Herein, we targeted Streptomyces rimosus, the widely-used oxytetracycline producer, for the discovery of new natural products. Using MALDI-MS-guided high-throughput elicitor screening (HiTES), we mapped the global secondary metabolome of S. rimosus and structurally characterized products of three cryptic BGCs, including momomycin, an unusual cyclic peptide natural product with backbone modifications and several non-canonical amino acids. We elucidated important aspects of its biosynthesis and evaluated its bioactivity. Our studies showcase HiTES as an effective approach for unearthing new chemical matter from "drained" strains.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
| | - Seoung Rak Lee
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
| | - Esther J. Han
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 (USA)
| |
Collapse
|
9
|
Wang C, Xiao D, Dun B, Yin M, Tsega AS, Xie L, Li W, Yue Q, Wang S, Gao H, Lin M, Zhang L, Molnár I, Xu Y. Chemometrics and genome mining reveal an unprecedented family of sugar acid-containing fungal nonribosomal cyclodepsipeptides. Proc Natl Acad Sci U S A 2022; 119:e2123379119. [PMID: 35914151 PMCID: PMC9371744 DOI: 10.1073/pnas.2123379119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023] Open
Abstract
Xylomyrocins, a unique group of nonribosomal peptide secondary metabolites, were discovered in Paramyrothecium and Colletotrichum spp. fungi by employing a combination of high-resolution tandem mass spectrometry (HRMS/MS)-based chemometrics, comparative genome mining, gene disruption, stable isotope feeding, and chemical complementation techniques. These polyol cyclodepsipeptides all feature an unprecedented d-xylonic acid moiety as part of their macrocyclic scaffold. This biosynthon is derived from d-xylose supplied by xylooligosaccharide catabolic enzymes encoded in the xylomyrocin biosynthetic gene cluster, revealing a novel link between carbohydrate catabolism and nonribosomal peptide biosynthesis. Xylomyrocins from different fungal isolates differ in the number and nature of their amino acid building blocks that are nevertheless incorporated by orthologous nonribosomal peptide synthetase (NRPS) enzymes. Another source of structural diversity is the variable choice of the nucleophile for intramolecular macrocyclic ester formation during xylomyrocin chain termination. This nucleophile is selected from the multiple available alcohol functionalities of the polyol moiety, revealing a surprising polyspecificity for the NRPS terminal condensation domain. Some xylomyrocin congeners also feature N-methylated amino acid residues in positions where the corresponding NRPS modules lack N-methyltransferase (M) domains, providing a rare example of promiscuous methylation in the context of an NRPS with an otherwise canonical, collinear biosynthetic program.
Collapse
Affiliation(s)
- Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Dongliang Xiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Baoqing Dun
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Miaomiao Yin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Adigo Setargie Tsega
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Linan Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Wenhua Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Han Gao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson, AZ 85706
- VTT Technical Research Centre of Finland, FI-02044 VTT, Espoo, Finland
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
10
|
Rivera-Chávez J, Ceapă CD, Figueroa M. Biological Dark Matter Exploration using Data Mining for the Discovery of Antimicrobial Natural Products. PLANTA MEDICA 2022; 88:702-720. [PMID: 35697058 DOI: 10.1055/a-1795-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The discovery of novel antimicrobials has significantly slowed down over the last three decades. At the same time, humans rely increasingly on antimicrobials because of the progressive antimicrobial resistance in medical practices, human communities, and the environment. Data mining is currently considered a promising option in the discovery of new antibiotics. Some of the advantages of data mining are the ability to predict chemical structures from sequence data, anticipation of the presence of novel metabolites, the understanding of gene evolution, and the corroboration of data from multiple omics technologies. This review analyzes the state-of-the-art for data mining in the fields of bacteria, fungi, and plant genomic data, as well as metabologenomics. It also summarizes some of the most recent research accomplishments in the field, all pinpointing to innovation through uncovering and implementing the next generation of antimicrobials.
Collapse
Affiliation(s)
- José Rivera-Chávez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Corina-Diana Ceapă
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
11
|
Li Y, Lee SR, Han EJ, Seyedsayamdost MR. Momomycin, an Antiproliferative Cryptic Metabolite from the Oxytetracycline Producer Streptomyces rimosus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuchen Li
- Princeton University Chemistry UNITED STATES
| | | | | | - Mohammad R. Seyedsayamdost
- Princeton University Chemistry Washington UniversityFrick Chemistry Lab, Room 333 08544 Princeton UNITED STATES
| |
Collapse
|
12
|
Transcriptomic and Metabolomic Analysis of the Response of Quinoa Seedlings to Low Temperatures. Biomolecules 2022; 12:biom12070977. [PMID: 35883533 PMCID: PMC9312504 DOI: 10.3390/biom12070977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 12/11/2022] Open
Abstract
Quinoa, a cool-weather high-altitude crop, is susceptible to low-temperature stress throughout its reproductive phase. Herein, we performed broadly targeted metabolic profiling of quinoa seedlings to explore the metabolites’ dynamics in response to low-temperature stress and transcriptome analysis to determine the underlying genetic mechanisms. Two variants, namely, Dian Quinoa 2324 and Dian Quinoa 281, were exposed to temperatures of −2, 5, and 22 °C. A total of 794 metabolites were detected; 52,845 genes, including 6628 novel genes, were annotated using UPLC-MS/MS analysis and the Illumina HiSeq system. Combined with morphological indicators to resolve the mechanism underlying quinoa seedling response to low-temperature stress, the molecular mechanisms of quinoa changed considerably based on temperature exposure. Soluble sugars heavily accumulated in plants with cold damage and changes in regulatory networks under freeze damage, such as the upregulation of α-linolenic acid metabolism and a reduction in energy substrates, may explain the spatial patterns of biosynthesis and accumulation of these metabolites. Genes that are actively expressed during cold responses, as revealed by co-expression analyses, may be involved in the regulation thereof. These results provide insights into the metabolic factors in quinoa under low-temperature stress and provide a reference for the screening of quinoa varieties resistant to low temperature.
Collapse
|
13
|
Maiti PK, Mandal S. Comprehensive genome analysis of Lentzea reveals repertoire of polymer-degrading enzymes and bioactive compounds with clinical relevance. Sci Rep 2022; 12:8409. [PMID: 35589875 PMCID: PMC9120177 DOI: 10.1038/s41598-022-12427-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
The genus Lentzea is a rare group of actinobacteria having potential for the exploration of bioactive compounds. Despite its proven ability to produce compounds with medical relevance, Lentzea genome analysis remains unexplored. Here we show a detailed understanding of the genetic features, biosynthetic gene clusters (BGCs), and genetic clusters for carbohydrate-active enzymes present in the Lentzea genome. Our analysis determines the genes for core proteins, non-ribosomal peptide synthetase condensation domain, and polyketide synthases-ketide synthase domain. The antiSMASH-based sequence analysis identifies 692 BGCs among which 8% are identical to the BGCs that produce geosmin, citrulassin, achromosin (lassopeptide), vancosamine, anabaenopeptin NZ857/nostamide A, alkylresorcinol, BE-54017, and bezastatin. The remaining BGCs code for advanced category antimicrobials like calcium-dependent, glycosylated, terpenoids, lipopeptides, thiopeptide, lanthipeptide, lassopeptide, lingual antimicrobial peptide and lantibiotics together with antiviral, antibacterial, antifungal, antiparasitic, anticancer agents. About 28% of the BGCs, that codes for bioactive secondary metabolites, are exclusive in Lentzea and could lead to new compound discoveries. We also find 7121 genes that code for carbohydrate-degrading enzymes which could essentially convert a wide range of polymeric carbohydrates. Genome mining of such genus is very much useful to give scientific leads for experimental validation in the discovery of new-generation bioactive molecules of biotechnological importance.
Collapse
Affiliation(s)
- Pulak Kumar Maiti
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
14
|
Salazar-Hamm PS, Hathaway JJM, Winter AS, Caimi NA, Buecher DC, Valdez EW, Northup DE. Great diversity of KS α sequences from bat-associated microbiota suggests novel sources of uncharacterized natural products. FEMS MICROBES 2022; 3:xtac012. [PMID: 35573391 PMCID: PMC9097503 DOI: 10.1093/femsmc/xtac012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Polyketide synthases (PKSs) are multidomain enzymes in microorganisms that synthesize complex, bioactive molecules. PKS II systems are iterative, containing only a single representative of each domain: ketosynthase alpha (KS[Formula: see text]), ketosynthase beta and the acyl carrier protein. Any gene encoding for one of these domains is representative of an entire PKS II biosynthetic gene cluster (BGC). Bat skin surfaces represent an extreme environment prolific in Actinobacteria that may constitute a source for bioactive molecule discovery. KS[Formula: see text] sequences were obtained from culturable bacteria from bats in the southwestern United States. From 467 bat bacterial isolates, we detected 215 (46%) had KS[Formula: see text] sequences. Sequencing yielded 210 operational taxonomic units, and phylogenetic placement found 45 (21%) shared <85% homology to characterized metabolites. Additionally, 16 Actinobacteria genomes from the bat microbiome were analyzed for biosynthetic capacity. A range of 69-93% of the BGCs were novel suggesting the bat microbiome may contain valuable uncharacterized natural products. Documenting and characterizing these are important in understanding the susceptibility of bats to emerging infectious diseases, such as white-nose syndrome. Also noteworthy was the relationship between KS [Formula: see text] homology and total BGC novelty within each fully sequenced strain. We propose amplification and detection of KS[Formula: see text] could predict a strain's global biosynthetic capacity.
Collapse
Affiliation(s)
- Paris S Salazar-Hamm
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | - Ara S Winter
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Nicole A Caimi
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | - Ernest W Valdez
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
- U.S. Geological Survey, Fort Collins Science Center, Department of Biology, MSC03 2020, University of New Mexico, lbuquerque, NM 87131, USA
| | - Diana E Northup
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
15
|
Reference-Grade Genome and Large Linear Plasmid of Streptomyces rimosus: Pushing the Limits of Nanopore Sequencing. Microbiol Spectr 2022; 10:e0243421. [PMID: 35377231 PMCID: PMC9045324 DOI: 10.1128/spectrum.02434-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces rimosus ATCC 10970 is the parental strain of industrial strains used for the commercial production of the important antibiotic oxytetracycline. As an actinobacterium with a large linear chromosome containing numerous long repeat regions, high GC content, and a single giant linear plasmid (GLP), these genomes are challenging to assemble. Here, we apply a hybrid sequencing approach relying on the combination of short- and long-read next-generation sequencing platforms and whole-genome restriction analysis by using pulsed-field gel electrophoresis (PFGE) to produce a high-quality reference genome for this biotechnologically important bacterium. By using PFGE to separate and isolate plasmid DNA from chromosomal DNA, we successfully sequenced the GLP using Nanopore data alone. Using this approach, we compared the sequence of GLP in the parent strain ATCC 10970 with those found in two semi-industrial progenitor strains, R6-500 and M4018. Sequencing of the GLP of these three S. rimosus strains shed light on several rearrangements accompanied by transposase genes, suggesting that transposases play an important role in plasmid and genome plasticity in S. rimosus. The polished annotation of secondary metabolite biosynthetic pathways compared to metabolite analysis in the ATCC 10970 strain also refined our knowledge of the secondary metabolite arsenal of these strains. The proposed methodology is highly applicable to a variety of sequencing projects, as evidenced by the reliable assemblies obtained. IMPORTANCE The genomes of Streptomyces species are difficult to assemble due to long repeats, extrachromosomal elements (giant linear plasmids [GLPs]), rearrangements, and high GC content. To improve the quality of the S. rimosus ATCC 10970 genome, producer of oxytetracycline, we validated the assembly of GLPs by applying a new approach to combine pulsed-field gel electrophoresis separation and GLP isolation and sequenced the isolated GLP with Oxford Nanopore technology. By examining the sequenced plasmids of ATCC 10970 and two industrial progenitor strains, R6-500 and M4018, we identified large GLP rearrangements. Analysis of the assembled plasmid sequences shed light on the role of transposases in genome plasticity of this species. The new methodological approach developed for Nanopore sequencing is highly applicable to a variety of sequencing projects. In addition, we present the annotated reference genome sequence of ATCC 10970 with a detailed analysis of the biosynthetic gene clusters.
Collapse
|
16
|
Gene editing enables rapid engineering of complex antibiotic assembly lines. Nat Commun 2021; 12:6872. [PMID: 34824225 PMCID: PMC8616955 DOI: 10.1038/s41467-021-27139-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 11/08/2022] Open
Abstract
Re-engineering biosynthetic assembly lines, including nonribosomal peptide synthetases (NRPS) and related megasynthase enzymes, is a powerful route to new antibiotics and other bioactive natural products that are too complex for chemical synthesis. However, engineering megasynthases is very challenging using current methods. Here, we describe how CRISPR-Cas9 gene editing can be exploited to rapidly engineer one of the most complex megasynthase assembly lines in nature, the 2.0 MDa NRPS enzymes that deliver the lipopeptide antibiotic enduracidin. Gene editing was used to exchange subdomains within the NRPS, altering substrate selectivity, leading to ten new lipopeptide variants in good yields. In contrast, attempts to engineer the same NRPS using a conventional homologous recombination-mediated gene knockout and complementation approach resulted in only traces of new enduracidin variants. In addition to exchanging subdomains within the enduracidin NRPS, subdomains from a range of NRPS enzymes of diverse bacterial origins were also successfully utilized.
Collapse
|
17
|
Caesar LK, Montaser R, Keller NP, Kelleher NL. Metabolomics and genomics in natural products research: complementary tools for targeting new chemical entities. Nat Prod Rep 2021; 38:2041-2065. [PMID: 34787623 PMCID: PMC8691422 DOI: 10.1039/d1np00036e] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2010 to 2021Organisms in nature have evolved into proficient synthetic chemists, utilizing specialized enzymatic machinery to biosynthesize an inspiring diversity of secondary metabolites. Often serving to boost competitive advantage for their producers, these secondary metabolites have widespread human impacts as antibiotics, anti-inflammatories, and antifungal drugs. The natural products discovery field has begun a shift away from traditional activity-guided approaches and is beginning to take advantage of increasingly available metabolomics and genomics datasets to explore undiscovered chemical space. Major strides have been made and now enable -omics-informed prioritization of chemical structures for discovery, including the prospect of confidently linking metabolites to their biosynthetic pathways. Over the last decade, more integrated strategies now provide researchers with pipelines for simultaneous identification of expressed secondary metabolites and their biosynthetic machinery. However, continuous collaboration by the natural products community will be required to optimize strategies for effective evaluation of natural product biosynthetic gene clusters to accelerate discovery efforts. Here, we provide an evaluative guide to scientific literature as it relates to studying natural product biosynthesis using genomics, metabolomics, and their integrated datasets. Particular emphasis is placed on the unique insights that can be gained from large-scale integrated strategies, and we provide source organism-specific considerations to evaluate the gaps in our current knowledge.
Collapse
Affiliation(s)
- Lindsay K Caesar
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Rana Montaser
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology and Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
18
|
Medema MH, de Rond T, Moore BS. Mining genomes to illuminate the specialized chemistry of life. Nat Rev Genet 2021; 22:553-571. [PMID: 34083778 PMCID: PMC8364890 DOI: 10.1038/s41576-021-00363-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
All organisms produce specialized organic molecules, ranging from small volatile chemicals to large gene-encoded peptides, that have evolved to provide them with diverse cellular and ecological functions. As natural products, they are broadly applied in medicine, agriculture and nutrition. The rapid accumulation of genomic information has revealed that the metabolic capacity of virtually all organisms is vastly underappreciated. Pioneered mainly in bacteria and fungi, genome mining technologies are accelerating metabolite discovery. Recent efforts are now being expanded to all life forms, including protists, plants and animals, and new integrative omics technologies are enabling the increasingly effective mining of this molecular diversity.
Collapse
Affiliation(s)
- Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Tristan de Rond
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Darcel L, Das S, Bonnard I, Banaigs B, Inguimbert N. Thirtieth Anniversary of the Discovery of Laxaphycins. Intriguing Peptides Keeping a Part of Their Mystery. Mar Drugs 2021; 19:md19090473. [PMID: 34564135 PMCID: PMC8471579 DOI: 10.3390/md19090473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Lipopeptides are a class of compounds generally produced by microorganisms through hybrid biosynthetic pathways involving non-ribosomal peptide synthase and a polyketyl synthase. Cyanobacterial-produced laxaphycins are examples of this family of compounds that have expanded over the past three decades. These compounds benefit from technological advances helping in their synthesis and characterization, as well as in deciphering their biosynthesis. The present article attempts to summarize most of the articles that have been published on laxaphycins. The current knowledge on the ecological role of these complex sets of compounds will also be examined.
Collapse
|
20
|
Behsaz B, Bode E, Gurevich A, Shi YN, Grundmann F, Acharya D, Caraballo-Rodríguez AM, Bouslimani A, Panitchpakdi M, Linck A, Guan C, Oh J, Dorrestein PC, Bode HB, Pevzner PA, Mohimani H. Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery. Nat Commun 2021; 12:3225. [PMID: 34050176 PMCID: PMC8163882 DOI: 10.1038/s41467-021-23502-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Non-Ribosomal Peptides (NRPs) represent a biomedically important class of natural products that include a multitude of antibiotics and other clinically used drugs. NRPs are not directly encoded in the genome but are instead produced by metabolic pathways encoded by biosynthetic gene clusters (BGCs). Since the existing genome mining tools predict many putative NRPs synthesized by a given BGC, it remains unclear which of these putative NRPs are correct and how to identify post-assembly modifications of amino acids in these NRPs in a blind mode, without knowing which modifications exist in the sample. To address this challenge, here we report NRPminer, a modification-tolerant tool for NRP discovery from large (meta)genomic and mass spectrometry datasets. We show that NRPminer is able to identify many NRPs from different environments, including four previously unreported NRP families from soil-associated microbes and NRPs from human microbiota. Furthermore, in this work we demonstrate the anti-parasitic activities and the structure of two of these NRP families using direct bioactivity screening and nuclear magnetic resonance spectrometry, illustrating the power of NRPminer for discovering bioactive NRPs.
Collapse
Affiliation(s)
- Bahar Behsaz
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Edna Bode
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexey Gurevich
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St Petersburg, Russia
| | - Yan-Ni Shi
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Florian Grundmann
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Deepa Acharya
- Tiny Earth Chemistry Hub, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrés Mauricio Caraballo-Rodríguez
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amina Bouslimani
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Morgan Panitchpakdi
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Annabell Linck
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Changhui Guan
- The Jackson Laboratory of Medical Genomics, Farmington, CT, USA
| | - Julia Oh
- The Jackson Laboratory of Medical Genomics, Farmington, CT, USA
| | - Pieter C Dorrestein
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Helge B Bode
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt & Senckenberg Research Institute, Frankfurt am Main, Germany.
- Max-Planck-Institute for Terrestrial Microbiology, Department for Natural Products in Organismic Interactions, Marburg, Germany.
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Hosein Mohimani
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Sukmarini L. Recent Advances in Discovery of Lead Structures from Microbial Natural Products: Genomics- and Metabolomics-Guided Acceleration. Molecules 2021; 26:molecules26092542. [PMID: 33925414 PMCID: PMC8123854 DOI: 10.3390/molecules26092542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/17/2023] Open
Abstract
Natural products (NPs) are evolutionarily optimized as drug-like molecules and remain the most consistently successful source of drugs and drug leads. They offer major opportunities for finding novel lead structures that are active against a broad spectrum of assay targets, particularly those from secondary metabolites of microbial origin. Due to traditional discovery approaches’ limitations relying on untargeted screening methods, there is a growing trend to employ unconventional secondary metabolomics techniques. Aided by the more in-depth understanding of different biosynthetic pathways and the technological advancement in analytical instrumentation, the development of new methodologies provides an alternative that can accelerate discoveries of new lead-structures of natural origin. This present mini-review briefly discusses selected examples regarding advancements in bioinformatics and genomics (focusing on genome mining and metagenomics approaches), as well as bioanalytics (mass-spectrometry) towards the microbial NPs-based drug discovery and development. The selected recent discoveries from 2015 to 2020 are featured herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong, Bogor 16911, West Java, Indonesia
| |
Collapse
|
22
|
Crüsemann M. Coupling Mass Spectral and Genomic Information to Improve Bacterial Natural Product Discovery Workflows. Mar Drugs 2021; 19:142. [PMID: 33807702 PMCID: PMC7998270 DOI: 10.3390/md19030142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
Bacterial natural products possess potent bioactivities and high structural diversity and are typically encoded in biosynthetic gene clusters. Traditional natural product discovery approaches rely on UV- and bioassay-guided fractionation and are limited in terms of dereplication. Recent advances in mass spectrometry, sequencing and bioinformatics have led to large-scale accumulation of genomic and mass spectral data that is increasingly used for signature-based or correlation-based mass spectrometry genome mining approaches that enable rapid linking of metabolomic and genomic information to accelerate and rationalize natural product discovery. In this mini-review, these approaches are presented, and discovery examples provided. Finally, future opportunities and challenges for paired omics-based natural products discovery workflows are discussed.
Collapse
Affiliation(s)
- Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
23
|
Kautsar SA, van der Hooft JJJ, de Ridder D, Medema MH. BiG-SLiCE: A highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. Gigascience 2021; 10:giaa154. [PMID: 33438731 PMCID: PMC7804863 DOI: 10.1093/gigascience/giaa154] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Genome mining for biosynthetic gene clusters (BGCs) has become an integral part of natural product discovery. The >200,000 microbial genomes now publicly available hold information on abundant novel chemistry. One way to navigate this vast genomic diversity is through comparative analysis of homologous BGCs, which allows identification of cross-species patterns that can be matched to the presence of metabolites or biological activities. However, current tools are hindered by a bottleneck caused by the expensive network-based approach used to group these BGCs into gene cluster families (GCFs). RESULTS Here, we introduce BiG-SLiCE, a tool designed to cluster massive numbers of BGCs. By representing them in Euclidean space, BiG-SLiCE can group BGCs into GCFs in a non-pairwise, near-linear fashion. We used BiG-SLiCE to analyze 1,225,071 BGCs collected from 209,206 publicly available microbial genomes and metagenome-assembled genomes within 10 days on a typical 36-core CPU server. We demonstrate the utility of such analyses by reconstructing a global map of secondary metabolic diversity across taxonomy to identify uncharted biosynthetic potential. BiG-SLiCE also provides a "query mode" that can efficiently place newly sequenced BGCs into previously computed GCFs, plus a powerful output visualization engine that facilitates user-friendly data exploration. CONCLUSIONS BiG-SLiCE opens up new possibilities to accelerate natural product discovery and offers a first step towards constructing a global and searchable interconnected network of BGCs. As more genomes are sequenced from understudied taxa, more information can be mined to highlight their potentially novel chemistry. BiG-SLiCE is available via https://github.com/medema-group/bigslice.
Collapse
Affiliation(s)
- Satria A Kautsar
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, sThe Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
24
|
Engineering Heterologous Hosts for the Enhanced Production of Non-ribosomal Peptides. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0080-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Tryon JH, Rote JC, Chen L, Robey MT, Vega MM, Phua WC, Metcalf WW, Ju KS, Kelleher NL, Thomson RJ. Genome Mining and Metabolomics Uncover a Rare d-Capreomycidine Containing Natural Product and Its Biosynthetic Gene Cluster. ACS Chem Biol 2020; 15:3013-3020. [PMID: 33151679 DOI: 10.1021/acschembio.0c00663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the metabolomics-driven genome mining of a new cyclic-guanidino incorporating non-ribosomal peptide synthetase (NRPS) gene cluster and full structure elucidation of its associated hexapeptide product, faulknamycin. Structural studies unveiled that this natural product contained the previously unknown (R,S)-stereoisomer of capreomycidine, d-capreomycidine. Furthermore, heterologous expression of the identified gene cluster successfully reproduces faulknamycin production without an observed homologue of VioD, the pyridoxal phosphate (PLP)-dependent enzyme found in all previous l-capreomycidine biosynthesis. An alternative NRPS-dependent pathway for d-capreomycidine biosynthesis is proposed.
Collapse
Affiliation(s)
- James H. Tryon
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jennifer C. Rote
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Li Chen
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Matthew T. Robey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Marvin M. Vega
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Wan Cheng Phua
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William W. Metcalf
- Carl R. Woese Institute for Genomic Biology and The Department of Microbiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
- The Division of Medicinal Chemistry and Pharmacognosy, Center for Applied Plant Sciences, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Neil L. Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Regan J. Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
26
|
Kozakai R, Ono T, Hoshino S, Takahashi H, Katsuyama Y, Sugai Y, Ozaki T, Teramoto K, Teramoto K, Tanaka K, Abe I, Asamizu S, Onaka H. Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides. Nat Chem 2020; 12:869-877. [PMID: 32719482 DOI: 10.1038/s41557-020-0508-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
Fusions of fatty acids and peptides expand the structural diversity of natural products; however, polyketide/ribosomally synthesized and post-translationally modified peptides (PK/RiPPs) hybrid lipopeptides are relatively rare. Here we report a family of PK/RiPPs called goadvionins, which inhibit the growth of Gram-positive bacteria, and an acyltransferase, GdvG, which catalyses the condensation of the PK and RiPP moieties. Goadvionin comprises a trimethylammonio 32-carbon acyl chain and an eight-residue RiPP with an avionin structure. The positions of six hydroxyl groups and one double bond in the very-long acyl chain were determined by radical-induced dissociation tandem mass spectrometry, which collides radical ion species to generate C-C bond cleavage fragments. GdvG belongs to the Gcn5-related N-acetyltransferase superfamily. Unlike conventional acyltransferases, GdvG transfers a very long acyl chain that is tethered to an acyl carrier protein to the N-terminal amino group of the RiPP moiety. gdvG homologues flanked by PK/fatty acid and RiPP biosynthesis genes are widely distributed in microbial species, suggesting that acyltransferase-catalysed condensation of PKs and RiPPs is a general strategy in biosynthesis of similar lipopeptides.
Collapse
Affiliation(s)
- Ryosuke Kozakai
- Graduate School of Agricultural and Life Sciences, Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Takuto Ono
- Graduate School of Agricultural and Life Sciences, Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Shotaro Hoshino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenori Takahashi
- Koichi Tanaka Mass Spectrometry Research Laboratory Shimadzu Corporation, Kyoto, Japan
| | - Yohei Katsuyama
- Graduate School of Agricultural and Life Sciences, Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Sugai
- Graduate School of Agricultural and Life Sciences, Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Taro Ozaki
- Graduate School of Agricultural and Life Sciences, Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Kazuya Teramoto
- Graduate School of Agricultural and Life Sciences, Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Kanae Teramoto
- Koichi Tanaka Mass Spectrometry Research Laboratory Shimadzu Corporation, Kyoto, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory Shimadzu Corporation, Kyoto, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Shumpei Asamizu
- Graduate School of Agricultural and Life Sciences, Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Onaka
- Graduate School of Agricultural and Life Sciences, Department of Biotechnology, The University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
27
|
Soldatou S, Eldjarn GH, Huerta-Uribe A, Rogers S, Duncan KR. Linking biosynthetic and chemical space to accelerate microbial secondary metabolite discovery. FEMS Microbiol Lett 2020; 366:5525086. [PMID: 31252431 PMCID: PMC6697067 DOI: 10.1093/femsle/fnz142] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Secondary metabolites can be viewed as a chemical language, facilitating communication between microorganisms. From an ecological point of view, this metabolite exchange is in constant flux due to evolutionary and environmental pressures. From a biomedical perspective, the chemistry is unsurpassed for its antibiotic properties. Genome sequencing of microorganisms has revealed a large reservoir of Biosynthetic Gene Clusters (BGCs); however, linking these to the secondary metabolites they encode is currently a major bottleneck to chemical discovery. This linking of genes to metabolites with experimental validation will aid the elicitation of silent or cryptic (not expressed under normal laboratory conditions) BGCs. As a result, this will accelerate chemical dereplication, our understanding of gene transcription and provide a comprehensive resource for synthetic biology. This will ultimately provide an improved understanding of both the biosynthetic and chemical space. In recent years, integrating these complex metabolomic and genomic data sets has been achieved using a spectrum of manual and automated approaches. In this review, we cover examples of these approaches, while addressing current challenges and future directions in linking these data sets.
Collapse
Affiliation(s)
- Sylvia Soldatou
- Department of Chemistry, University of Aberdeen, Aberdeen, UK. AB24 3UE
| | | | - Alejandro Huerta-Uribe
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK. G4 0RE
| | - Simon Rogers
- School of Computing Science, University of Glasgow, Glasgow, UK. G12 8RZ
| | - Katherine R Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK. G4 0RE
| |
Collapse
|
28
|
Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, van der Hooft JJJ, Ernst M, Kang KB, Aceves CM, Caraballo-Rodríguez AM, Koester I, Weldon KC, Bertrand S, Roullier C, Sun K, Tehan RM, Boya P CA, Christian MH, Gutiérrez M, Ulloa AM, Tejeda Mora JA, Mojica-Flores R, Lakey-Beitia J, Vásquez-Chaves V, Zhang Y, Calderón AI, Tayler N, Keyzers RA, Tugizimana F, Ndlovu N, Aksenov AA, Jarmusch AK, Schmid R, Truman AW, Bandeira N, Wang M, Dorrestein PC. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc 2020; 15:1954-1991. [PMID: 32405051 DOI: 10.1038/s41596-020-0317-5] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule-focused tandem mass spectrometry (MS2) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS2 dataset and to connect this chemical insight to the user's underlying biological questions. This can be performed within one liquid chromatography (LC)-MS2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS2 data with sample information (metadata) and annotated MS2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking-one of the main analysis tools used within the GNPS platform-creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90- to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.
Collapse
Affiliation(s)
- Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Louis-Félix Nothias
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mélissa Nothias-Esposito
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amina Bouslimani
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Daniel Petras
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Julia M Gauglitz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Nicole Sikora
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Madeleine Ernst
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Christine M Aceves
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Irina Koester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kelly C Weldon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center of Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Samuel Bertrand
- Groupe Mer, Molécules, Santé-EA 2160, UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Nantes, France
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, Nantes, France
| | - Catherine Roullier
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, Nantes, France
| | - Kunyang Sun
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Richard M Tehan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Cristopher A Boya P
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Nagarjuna Nagar, India
| | - Martin H Christian
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | | | | | - Randy Mojica-Flores
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Departamento de Química, Universidad Autónoma de Chiriquí (UNACHI), David, Chiriquí, Panama
| | - Johant Lakey-Beitia
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Victor Vásquez-Chaves
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Yilue Zhang
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Angela I Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Nicole Tayler
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Nagarjuna Nagar, India
| | - Robert A Keyzers
- School of Chemical & Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Fidele Tugizimana
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
- International R&D Division, Omnia Group (Pty) Ltd., Johannesburg, South Africa
| | - Nombuso Ndlovu
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Alexander A Aksenov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Alan K Jarmusch
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Robin Schmid
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
| | - Mingxun Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Computational Mass Spectrometry, University of California, San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
30
|
Belknap KC, Park CJ, Barth BM, Andam CP. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci Rep 2020; 10:2003. [PMID: 32029878 PMCID: PMC7005152 DOI: 10.1038/s41598-020-58904-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/22/2020] [Indexed: 01/05/2023] Open
Abstract
Streptomyces bacteria are known for their prolific production of secondary metabolites, many of which have been widely used in human medicine, agriculture and animal health. To guide the effective prioritization of specific biosynthetic gene clusters (BGCs) for drug development and targeting the most prolific producer strains, knowledge about phylogenetic relationships of Streptomyces species, genome-wide diversity and distribution patterns of BGCs is critical. We used genomic and phylogenetic methods to elucidate the diversity of major classes of BGCs in 1,110 publicly available Streptomyces genomes. Genome mining of Streptomyces reveals high diversity of BGCs and variable distribution patterns in the Streptomyces phylogeny, even among very closely related strains. The most common BGCs are non-ribosomal peptide synthetases, type 1 polyketide synthases, terpenes, and lantipeptides. We also found that numerous Streptomyces species harbor BGCs known to encode antitumor compounds. We observed that strains that are considered the same species can vary tremendously in the BGCs they carry, suggesting that strain-level genome sequencing can uncover high levels of BGC diversity and potentially useful derivatives of any one compound. These findings suggest that a strain-level strategy for exploring secondary metabolites for clinical use provides an alternative or complementary approach to discovering novel pharmaceutical compounds from microbes.
Collapse
Affiliation(s)
- Kaitlyn C Belknap
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - Cooper J Park
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - Brian M Barth
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - Cheryl P Andam
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA.
| |
Collapse
|
31
|
Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, Parkinson EI, De Los Santos ELC, Yeong M, Cruz-Morales P, Abubucker S, Roeters A, Lokhorst W, Fernandez-Guerra A, Cappelini LTD, Goering AW, Thomson RJ, Metcalf WW, Kelleher NL, Barona-Gomez F, Medema MH. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol 2020; 16:60-68. [PMID: 31768033 PMCID: PMC6917865 DOI: 10.1038/s41589-019-0400-9] [Citation(s) in RCA: 531] [Impact Index Per Article: 106.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 10/04/2019] [Indexed: 01/06/2023]
Abstract
Genome mining has become a key technology to exploit natural product diversity. Although initially performed on a single-genome basis, the process is now being scaled up to mine entire genera, strain collections and microbiomes. However, no bioinformatic framework is currently available for effectively analyzing datasets of this size and complexity. In the present study, a streamlined computational workflow is provided, consisting of two new software tools: the 'biosynthetic gene similarity clustering and prospecting engine' (BiG-SCAPE), which facilitates fast and interactive sequence similarity network analysis of biosynthetic gene clusters and gene cluster families; and the 'core analysis of syntenic orthologues to prioritize natural product gene clusters' (CORASON), which elucidates phylogenetic relationships within and across these families. BiG-SCAPE is validated by correlating its output to metabolomic data across 363 actinobacterial strains and the discovery potential of CORASON is demonstrated by comprehensively mapping biosynthetic diversity across a range of detoxin/rimosamide-related gene cluster families, culminating in the characterization of seven detoxin analogues.
Collapse
Affiliation(s)
- Jorge C Navarro-Muñoz
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
- Fungal Natural Products Group, Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Nelly Selem-Mojica
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | | | - Satria A Kautsar
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - James H Tryon
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Elizabeth I Parkinson
- Carl R. Woese Institute for Genomic Biology and Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Marley Yeong
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Pablo Cruz-Morales
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Sahar Abubucker
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
- Sanofi, Cambridge, MA, USA
| | - Arne Roeters
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Wouter Lokhorst
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Antonio Fernandez-Guerra
- Microbial Genomics and Bioinformatics, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | | | | - Regan J Thomson
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - William W Metcalf
- Carl R. Woese Institute for Genomic Biology and Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
32
|
Niu G, Li W. Next-Generation Drug Discovery to Combat Antimicrobial Resistance. Trends Biochem Sci 2019; 44:961-972. [PMID: 31256981 DOI: 10.1016/j.tibs.2019.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
Abstract
The widespread emergence of antibiotic-resistant pathogens poses a severe threat to public health. This problem becomes even worse with a coincident decline in the supply of new antibiotics. Conventional bioactivity-guided natural product discovery has failed to meet the urgent need for new antibiotics, largely due to limited resources and high rediscovery rates. Recent advances in cultivation techniques, analytical technologies, and genomics-based approaches have greatly expanded our access to previously underexploited microbial sources. These strategies will enable us to access new reservoirs of microorganisms and unleash their chemical potentials, thus opening new opportunities for the discovery of next-generation drugs to address the growing concerns of antimicrobial resistance.
Collapse
Affiliation(s)
- Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
33
|
Fox Ramos AE, Evanno L, Poupon E, Champy P, Beniddir MA. Natural products targeting strategies involving molecular networking: different manners, one goal. Nat Prod Rep 2019; 36:960-980. [PMID: 31140509 DOI: 10.1039/c9np00006b] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2019Landmark advances in bioinformatics tools have recently enhanced the field of natural products research, putting today's natural product chemists in the enviable position of being able to perform the efficient targeting/discovery of previously undescribed molecules by expediting the prioritization of the isolation workflow. Among these advances, MS/MS molecular networking has appeared as a promising approach to dereplicate complex natural product mixtures, leading to a real revolution in the "art of natural product isolation" by accelerating the pace of research of this field. This review illustrates through selected cornerstone studies the new thinking in natural product isolation by drawing a parallel between the different underlying philosophies behind the use of molecular networking in targeting natural products.
Collapse
Affiliation(s)
- Alexander E Fox Ramos
- Équipe "Pharmacognosie-Chimie des Substances Naturelles", BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290, Châtenay-Malabry, France.
| | - Laurent Evanno
- Équipe "Pharmacognosie-Chimie des Substances Naturelles", BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290, Châtenay-Malabry, France.
| | - Erwan Poupon
- Équipe "Pharmacognosie-Chimie des Substances Naturelles", BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290, Châtenay-Malabry, France.
| | - Pierre Champy
- Équipe "Pharmacognosie-Chimie des Substances Naturelles", BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290, Châtenay-Malabry, France.
| | - Mehdi A Beniddir
- Équipe "Pharmacognosie-Chimie des Substances Naturelles", BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 5 rue J.-B. Clément, 92290, Châtenay-Malabry, France.
| |
Collapse
|
34
|
Precursor-feeding and altered-growth conditions reveal novel blue pigment production by Rubrivivax benzoatilyticus JA2. Biotechnol Lett 2019; 41:813-822. [PMID: 31069568 DOI: 10.1007/s10529-019-02682-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To explore the secondary metabolite biosynthetic potential of Rubrivivax benzoatilyticus JA2 using a new metabolite mining strategy. RESULTS Combination of precursor-feeding and altered growth conditions were used to mine new biomolecules. Strain JA2 utilised L-phenylalanine as sole source of nitrogen and showed pigments production only under phenylalanine-amended aerobic cultures. Stable isotope based precursor feeding studies indicated the blue pigment consists of 4-phenyl rings derived from L-phenylalanine. The purified blue pigment displayed characteristic visible-absorption and pH-dependent color variations. Precursor-feeding under altered growth conditions activated the plausible novel aromatic pigment production in strain JA2. CONCLUSION Our approach unraveled the previously unknown pigment synthesis in strain JA2 and demonstrated the potential of mining strategy in discovering the hidden secondary metabolite repertoire in microorganisms.
Collapse
|
35
|
McErlean M, Overbay J, Van Lanen S. Refining and expanding nonribosomal peptide synthetase function and mechanism. J Ind Microbiol Biotechnol 2019; 46:493-513. [PMID: 30673909 PMCID: PMC6460464 DOI: 10.1007/s10295-018-02130-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are involved in the biosynthesis of numerous peptide and peptide-like natural products that have been exploited in medicine, agriculture, and biotechnology, among other fields. As a consequence, there have been considerable efforts aimed at understanding how NRPSs orchestrate the assembly of these natural products. This review highlights several recent examples that continue to expand upon the fundamental knowledge of NRPS mechanism and includes (1) the discovery of new NRPS substrates and the mechanism by which these sometimes structurally complex substrates are made, (2) the characterization of new NRPS activities and domains that function during the process of peptide assembly, and (3) the various catalytic strategies that are utilized to release the NRPS product. These findings continue to strengthen the predictive power for connecting genes to products, thereby facilitating natural product discovery and development in the Genomics Era.
Collapse
Affiliation(s)
- Matt McErlean
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Jonathan Overbay
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Steven Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
36
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as mollebenzylanol A from Rhododendron molle.
Collapse
|