1
|
Detlie TE, Burisch J, Jahnsen J, Bonderup O, Hellström PM, Lindgren S, Frigstad SO. Iron deficiency should not be accepted in patients with inflammatory bowel disease - a Scandinavian expert opinion. Scand J Gastroenterol 2025; 60:430-438. [PMID: 40202208 DOI: 10.1080/00365521.2025.2487907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
AIM In this paper, we aim to explain the reason why iron deficiency (ID) is common in patients with inflammatory bowel disease (IBD), how to better apply diagnostic tools to uncover the state of ID as well as how to interpret the results, and not least, how to treat ID in this group of patients. METHODS This article is an expert review and opinion paper on a topic that is too often forgotten in clinical practice. We have not performed a systematic review, but we present the most important research allocated to the topic to substantiate an expert opinion. RESULTS This position paper summarises the pathophysiology of ID and gives recommendations on the monitoring and treatment of ID in IBD. ID with or without concurrent anaemia (IDA) is the most common systemic complication in patients with IBD, related to both disease activity and severity. It has consequences both for health-related quality of life and future course of disease of the IBD patient. Intravenous iron is an efficacious and well tolerated, but still underused, therapy for ID and IDA. Iron deficiency should be treated before symptoms of anaemia appear and quality of life is impacted. However, there is still limited awareness of how to detect and treat ID in clinical practice. Uncertainty regarding which diagnostic tests to use and how to interpret the results may also be responsible for variations in clinical practice. In addition, opinions on how to correct ID and IDA differ, in relation to both clinical efficacy and safety. CONCLUSION The consequences of ID in patients with IBD are significant. Guidelines on diagnosis, treatment and follow-up of ID should be implemented. IDA is a manifestation of severe ID and preventive strategies focusing on efficient treatment of ID regardless of the level of haemoglobin should therefore be explored.
Collapse
Affiliation(s)
- Trond Espen Detlie
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Johan Burisch
- Gastrounit, Medical Division, University Hospital Copenhagen - Amager and Hvidovre Hospital, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, University Hospital Copenhagen - Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole Bonderup
- Department of Gastroenterology, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Per M Hellström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Stefan Lindgren
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Gastroenterology, Skane University Hospital Malmö, Lund, Sweden
| | | |
Collapse
|
2
|
Lykkesfeldt J, Carr AC, Tveden-Nyborg P. The pharmacology of vitamin C. Pharmacol Rev 2025; 77:100043. [PMID: 39986139 DOI: 10.1016/j.pharmr.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
Ascorbic acid, the reduced form of vitamin C, is a ubiquitous small carbohydrate. Despite decades of focused research, new metabolic functions of this universal electron donor are still being discovered and add to the complexity of our view of vitamin C in human health. Although praised as an unsurpassed water-soluble antioxidant in plasma and cells, the most interesting functions of vitamin C seem to be its roles as specific electron donor in numerous biological reactions ranging from the well-known hydroxylation of proline to cofactor for the epigenetic master regulators ten-eleven translocation enzymes and Jumonji domain-containing histone-lysine demethylases. Some of these functions may have important implications for disease prevention and treatment and have spiked renewed interest in, eg, vitamin C's potential in cancer therapy. Moreover, some fundamental pharmacokinetic properties of vitamin C remain to be established including if other mechanisms than passive diffusion governs the efflux of ascorbate anions from the cell. Taken together, there still seems to be much to learn about the pharmacology of vitamin C and its role in health and disease. This review explores new avenues of vitamin C and integrates our present knowledge of its pharmacology. SIGNIFICANCE STATEMENT: Vitamin C is involved in multiple biological reactions of which most are essential to human health. Hundreds of millions of people are considered deficient in vitamin C according to accepted guidelines, but little is known about the long-term consequences. Although the complexity of vitamin C's physiology and pharmacology has been widely disregarded in clinical studies for decades, it seems clear that a deeper understanding of particularly its pharmacology holds the key to unravel and possibly exploit the potential of vitamin C in disease prevention and therapy.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pernille Tveden-Nyborg
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Smith-Díaz C, Das AB, Jurkowski TP, Hore TA, Vissers MCM. Exploring the Ascorbate Requirement of the 2-Oxoglutarate-Dependent Dioxygenases. J Med Chem 2025; 68:2219-2237. [PMID: 39883951 PMCID: PMC11831678 DOI: 10.1021/acs.jmedchem.4c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/20/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
In humans, the 2-oxoglutarate-dependent dioxygenases (2-OGDDs) catalyze hydroxylation reactions involved in cell metabolism, the biosynthesis of small molecules, DNA and RNA demethylation, the hypoxic response and the formation of collagen. The reaction is catalyzed by a highly oxidizing ferryl-oxo species produced when the active site non-heme iron engages molecular oxygen. Enzyme activity is specifically stimulated by l-ascorbic acid (ascorbate, vitamin C), an effect not well mimicked by other reducing agents. In this perspective article we discuss the reliance of the 2-OGDDs on ascorbate availability. We draw upon findings from studies with different 2-OGDDs to piece together a comprehensive theory for the specific role of ascorbate in supporting enzyme activity. Our discussion centers on the capacity for ascorbate to act as an efficient radical scavenger and its propensity to reduce and chelate transition metals. In addition, we consider the evidence supporting stereospecific binding of ascorbate in the enzyme active site.
Collapse
Affiliation(s)
- Carlos
C. Smith-Díaz
- Ma̅tai
Ha̅ora − Centre for Redox Biology and Medicine, Department
of Biomedical Science and Pathology, University
of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Andrew B. Das
- Ma̅tai
Ha̅ora − Centre for Redox Biology and Medicine, Department
of Biomedical Science and Pathology, University
of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Tomasz P. Jurkowski
- Cardiff
University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, U.K.
| | - Timothy A. Hore
- Department
of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Margreet C. M. Vissers
- Ma̅tai
Ha̅ora − Centre for Redox Biology and Medicine, Department
of Biomedical Science and Pathology, University
of Otago, Christchurch, Christchurch 8140, New Zealand
| |
Collapse
|
4
|
Alves F, Lane D, Nguyen TPM, Bush AI, Ayton S. In defence of ferroptosis. Signal Transduct Target Ther 2025; 10:2. [PMID: 39746918 PMCID: PMC11696223 DOI: 10.1038/s41392-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR). A common thread uniting all key enzymes and metabolites that combat lipid peroxidation during ferroptosis is a dependence on a key cellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH). We will outline how cells control central carbon metabolism to produce NADPH and necessary precursors to defend against ferroptosis. Subsequently we will discuss evidence for ferroptosis and NADPH dysregulation in different disease contexts including glucose-6-phosphate dehydrogenase deficiency, cancer and neurodegeneration. Finally, we discuss several anti-ferroptosis therapeutic strategies spanning the use of radical trapping agents, iron modulation and glutathione dependent redox support and highlight the current landscape of clinical trials focusing on ferroptosis.
Collapse
Affiliation(s)
- Francesca Alves
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darius Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | | | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Kontoghiorghes GJ. The Importance and Essentiality of Natural and Synthetic Chelators in Medicine: Increased Prospects for the Effective Treatment of Iron Overload and Iron Deficiency. Int J Mol Sci 2024; 25:4654. [PMID: 38731873 PMCID: PMC11083551 DOI: 10.3390/ijms25094654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
6
|
Feng Q, Fang W, Guo Y, Hu P, Shi J. Nebulized Therapy of Early Orthotopic Lung Cancer by Iron-Based Nanoparticles: Macrophage-Regulated Ferroptosis of Cancer Stem Cells. J Am Chem Soc 2023; 145:24153-24165. [PMID: 37897426 DOI: 10.1021/jacs.3c08032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Cancer stem cells (CSCs) within protumorigenic microlesions are a critical driver in the initiation and progression of early stage lung cancer, where immune cells provide an immunosuppressive niche to strengthen the CSC stemness. As the mutual interactions between CSCs and immune cells are increasingly recognized, regulating the immune cells to identify and effectively eliminate CSCs has recently become one of the most attractive therapeutic options, especially for abundant tumor-associated macrophages (TAMs). Herein, we developed a nebulized nanocatalytic medicine strategy in which iron-based nanoparticle-regulated TAMs effectively target CSC niches and trigger CSC ferroptosis in the early stage of lung cancer. Briefly, the iron-based nanoparticles can effectively accumulate in lung cancer microlesions (minimum 122 μm in diameter) through dextran-mediated TAM targeting by nebulization administration, and as a result, nanoparticle-internalized TAMs can play a predominant role of the iron factory in elevating the iron level surrounding CSC niches and destroying redox equilibrium through downregulating glucose-6-phosphate metabolite following their lysosomal degradation and iron metabolism. The altered microenvironment results in the enhanced sensitivity of CSCs to ferroptosis due to their high expression of the CD44 receptor mediating iron endocytosis. In an orthotopic mouse model of lung cancer, the initiation and progression of early lung cancer are significantly suppressed through ferroptosis-induced stemness reduction of CSCs by nebulization administration. This work presents a nebulized therapeutic strategy for early lung cancer through modulation of communications between TAMs and CSCs, which is expected to be a general approach for regulating primary microlesions and micrometastatic niches of lung cancer.
Collapse
Affiliation(s)
- Qishuai Feng
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Wenming Fang
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Yuedong Guo
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Ping Hu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| |
Collapse
|
7
|
Kuramarohit S, Yaourtis AM, Nguyen A, Wood ML, Levina A, Lay PA. Anti-Migratory and Cytotoxic Activities of [Ga(8-hydroxyquinolinato) 3 ]: Roles of Endogenous Cu(II) and Drug-Induced Phenotypic Changes. Chemistry 2023; 29:e202203323. [PMID: 37385951 DOI: 10.1002/chem.202203323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
As shown by IncuCyte Zoom imaging proliferation assays, invasive triple-negative human breast MDA-MB-231 cancer cells treated with sub-toxic doses (5.0-20 μM, 72 h) of [GaQ3 ] (Q=8-hydroxyquinolinato) caused profound morphological changes and inhibition of cell migration, which were likely due to terminal cell differentiation or similar phenotypical change. This is the first demonstration of potential use of a metal complex in differentiation anti-cancer therapy. Additionally, a trace amount of Cu(II) (0.20 μM) added to the medium dramatically increased [GaQ3 ] cytotoxicity (IC50 ~2 μM, 72 h) due to its partial dissociation and the action of the HQ ligand as a Cu(II) ionophore, as shown with electrospray mass spectrometry and fluorescence spectroscopy assays in the medium. Hence, cytotoxicity of [GaQ3 ] is strongly linked to ligand binding of essential metal ions in the medium, for example, Cu(II). Appropriate delivery mechanisms of such complexes and their ligands could enable a powerful new triple therapeutic approach for cancer chemotherapy, including cytotoxicity against primary tumour, arrest of metastases, and activation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Serene Kuramarohit
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- University of California, Berkeley, USA
| | - Andria M Yaourtis
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Annie Nguyen
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michelle L Wood
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Kontoghiorghes GJ. Deferiprone and Iron-Maltol: Forty Years since Their Discovery and Insights into Their Drug Design, Development, Clinical Use and Future Prospects. Int J Mol Sci 2023; 24:ijms24054970. [PMID: 36902402 PMCID: PMC10002863 DOI: 10.3390/ijms24054970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The historical insights and background of the discovery, development and clinical use of deferiprone (L1) and the maltol-iron complex, which were discovered over 40 years ago, highlight the difficulties, complexities and efforts in general orphan drug development programs originating from academic centers. Deferiprone is widely used for the removal of excess iron in the treatment of iron overload diseases, but also in many other diseases associated with iron toxicity, as well as the modulation of iron metabolism pathways. The maltol-iron complex is a recently approved drug used for increasing iron intake in the treatment of iron deficiency anemia, a condition affecting one-third to one-quarter of the world's population. Detailed insights into different aspects of drug development associated with L1 and the maltol-iron complex are revealed, including theoretical concepts of invention; drug discovery; new chemical synthesis; in vitro, in vivo and clinical screening; toxicology; pharmacology; and the optimization of dose protocols. The prospects of the application of these two drugs in many other diseases are discussed under the light of competing drugs from other academic and commercial centers and also different regulatory authorities. The underlying scientific and other strategies, as well as the many limitations in the present global scene of pharmaceuticals, are also highlighted, with an emphasis on the priorities for orphan drug and emergency medicine development, including the roles of the academic scientific community, pharmaceutical companies and patient organizations.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
9
|
Levina A, Chetcuti ARM, Lay PA. Controversial Role of Transferrin in the Transport of Ruthenium Anticancer Drugs. Biomolecules 2022; 12:biom12091319. [PMID: 36139158 PMCID: PMC9496346 DOI: 10.3390/biom12091319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ruthenium complexes are at the forefront of developments in metal-based anticancer drugs, but many questions remain open regarding their reactivity in biological media, including the role of transferrin (Tf) in their transport and cellular uptake. A well-known anticancer drug, KP1019 ((IndH)[RuIIICl4(Ind)2], where Ind = indazole) and a reference complex, [RuIII(nta)2]3- (nta = nitrilotriacetato(3-)) interacted differently with human apoTf, monoFeTf, or Fe2Tf. These reactions were studied by biolayer interferometry (BLI) measurements of Ru-Fe-Tf binding to recombinant human transferrin receptor 1 (TfR1) in conjunction with UV-vis spectroscopy and particle size analysis. Cellular Ru uptake in human hepatoma (HepG2) cells was measured under the conditions of the BLI assays. The mode of Tf binding and cellular Ru uptake were critically dependent on the nature of Ru complex, availability of Fe(III) binding sites of Tf, and the presence of proteins that competed for metal binding, particularly serum albumin. Cellular uptake of KP1019 was not Tf-mediated and occurred mostly by passive diffusion, which may also be suitable for treatments of inoperable cancers by intratumoral injections. High cellular Ru uptake from a combination of [RuIII(nta)2]3- and Fe2Tf in the absence of significant Ru-Tf binding was likely to be due to trapping of Ru(III) species into the endosome during TfR1-mediated endocytosis of Fe2Tf.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (A.L.); (P.A.L.)
| | | | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- School of Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: (A.L.); (P.A.L.)
| |
Collapse
|
10
|
Xue B, DasGupta D, Alam M, Khan MS, Wang S, Shamsi A, Islam A, Hassan MI. Investigating binding mechanism of thymoquinone to human transferrin, targeting Alzheimer's disease therapy. J Cell Biochem 2022; 123:1381-1393. [PMID: 35722728 DOI: 10.1002/jcb.30299] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
Iron deposition in the central nervous system (CNS) is one of the causes of neurodegenerative diseases. Human transferrin (hTf) acts as an iron carrier present in the blood plasma, preventing it from contributing to redox reactions. Plant compounds and their derivatives are frequently being used in preventing or delaying Alzheimer's disease (AD). Thymoquinone (TQ), a natural product has gained popularity because of its broad therapeutic applications. TQ is one of the significant phytoconstituent of Nigella sativa. The binding of TQ to hTf was determined by spectroscopic methods and isothermal titration calorimetry. We have observed that TQ strongly binds to hTf with a binding constant (K) of 0.22 × 106 M-1 and forming a stable complex. In addition, isothermal titration calorimetry revealed the spontaneous binding of TQ with hTf. Molecular docking analysis showed key residues of the hTf that were involved in the binding to TQ. We further performed a 250 ns molecular dynamics simulation which deciphered the dynamics and stability of the hTf-TQ complex. Structure analysis suggested that the binding of TQ doesn't cause any significant alterations in the hTf structure during the course of simulation and a stable complex is formed. Altogether, we have elucidated the mechanism of binding of TQ with hTf, which can be further implicated in the development of a novel strategy for AD therapy.
Collapse
Affiliation(s)
- Bin Xue
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Debarati DasGupta
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shuo Wang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.,Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, UAE, Ajman
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Levina A, Crans DC, Lay PA. Advantageous Reactivity of Unstable Metal Complexes: Potential Applications of Metal-Based Anticancer Drugs for Intratumoral Injections. Pharmaceutics 2022; 14:790. [PMID: 35456624 PMCID: PMC9026487 DOI: 10.3390/pharmaceutics14040790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Injections of highly cytotoxic or immunomodulating drugs directly into the inoperable tumor is a procedure that is increasingly applied in the clinic and uses established Pt-based drugs. It is advantageous for less stable anticancer metal complexes that fail administration by the standard intravenous route. Such hydrophobic metal-containing complexes are rapidly taken up into cancer cells and cause cell death, while the release of their relatively non-toxic decomposition products into the blood has low systemic toxicity and, in some cases, may even be beneficial. This concept was recently proposed for V(V) complexes with hydrophobic organic ligands, but it can potentially be applied to other metal complexes, such as Ti(IV), Ga(III) and Ru(III) complexes, some of which were previously unsuccessful in human clinical trials when administered via intravenous injections. The potential beneficial effects include antidiabetic, neuroprotective and tissue-regenerating activities for V(V/IV); antimicrobial activities for Ga(III); and antimetastatic and potentially immunogenic activities for Ru(III). Utilizing organic ligands with limited stability under biological conditions, such as Schiff bases, further enhances the tuning of the reactivities of the metal complexes under the conditions of intratumoral injections. However, nanocarrier formulations are likely to be required for the delivery of unstable metal complexes into the tumor.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Debbie C. Crans
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Levina A, Wang B, Lay PA. Urea Gel Electrophoresis in Studies of Conformational Changes of Transferrin on Binding and Transport of Non-Ferric Metal Ions. Gels 2021; 8:19. [PMID: 35049554 PMCID: PMC8774473 DOI: 10.3390/gels8010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Transferrin (Tf) is a crucial transporter protein for Fe(III), but its biological role in binding other metal ions and their delivery into cells remain highly controversial. The first systematic exploration of the effect of non-Fe(III) metal ion binding on Tf conformation has been performed by urea-polyacrylamide gel electrophoresis (urea-PAGE), which is commonly used for nucleic acids but rarely for proteins. Closed Tf conformation, similar to that caused by Fe(III)-Tf binding, was formed for In(III), V(III) or Cr(III) binding to Tf. In all these cases, metal distribution between Tf lobes and/or the rate of metal release under acidic conditions differed from that of Fe(III)-Tf. By contrast, Ga(III) and V(IV) did not form closed Tf conformation under urea-PAGE conditions. Apart from Fe(III), only In(III) was able to increase the proportion of closed Tf conformation in whole serum. These results suggest that Tf is unlikely to act as a natural carrier of any metal ion, except Fe(III), into cells but can reduce toxicity of exogenous metal ions by binding them in serum and preventing their entry into cells.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia;
| | - Boer Wang
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia;
| | - Peter A. Lay
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Analytical, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Silva AM, Moniz T, de Castro B, Rangel M. Human transferrin: An inorganic biochemistry perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Edwards KC, Gannon MW, Frantom PA, Vincent JB. Low-molecular-weight chromium-binding substance (LMWCr) may bind and carry Cr(III) from the endosome. J Inorg Biochem 2021; 223:111555. [PMID: 34315118 DOI: 10.1016/j.jinorgbio.2021.111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Trivalent chromium has been proposed to be transported in vivo from the bloodstream to the tissues via endocytosis by transferrin (Tf), the major iron transport protein in the blood. While Cr(III) loss from the Tf/Tf receptor complex after acidification to pH 5.5 has recently been shown to be sufficiently rapid to be physiologically relevant, the released Cr(III) still must exit the endosome during the time of the endocytosis cycle (circa 15 min). Cr(III) binds too slowly to small ligands such as citrate or ascorbate, or even EDTA, for such complexes to form and be transported from the endosome, while no trivalent ion transporters are known. However, the apo form of the peptide low-molecular-weight chromium-binding substance (LMWCr) can remove Cr(III) from Cr(III)2-Tf at neutral pH, albeit slowly, and LMWCr is known to be transported from cells after binding Cr(III), although the transporter is not known. LMWCr subsequently carries Cr(III) to the bloodstream ultimately for removal from the body in the urine. The rate of binding of Cr(III) to apoLMWCr was significantly enhanced in the presence of the Tf/Tf receptor complex. These results suggest that apoLMWCr may function to bind Cr(III) released in the endosomes for ultimate removal from the body as part of a Cr(III) detoxification process.
Collapse
Affiliation(s)
- Kyle C Edwards
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - Michael W Gannon
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - Patrick A Frantom
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - John B Vincent
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487-0336, USA.
| |
Collapse
|
15
|
Kontoghiorghes GJ, Kolnagou A, Demetriou T, Neocleous M, Kontoghiorghe CN. New Era in the Treatment of Iron Deficiency Anaemia Using Trimaltol Iron and Other Lipophilic Iron Chelator Complexes: Historical Perspectives of Discovery and Future Applications. Int J Mol Sci 2021; 22:ijms22115546. [PMID: 34074010 PMCID: PMC8197347 DOI: 10.3390/ijms22115546] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
The trimaltol iron complex (International Non-proprietary Name: ferric maltol) was originally designed, synthesised, and screened in vitro and in vivo in 1980–1981 by Kontoghiorghes G.J. following his discovery of the novel alpha-ketohydroxyheteroaromatic (KHP) class of iron chelators (1978–1981), which were intended for clinical use, including the treatment of iron deficiency anaemia (IDA). Iron deficiency anaemia is a global health problem affecting about one-third of the world’s population. Many (and different) ferrous and ferric iron complex formulations are widely available and sold worldwide over the counter for the treatment of IDA. Almost all such complexes suffer from instability in the acidic environment of the stomach and competition from other dietary molecules or drugs. Natural and synthetic lipophilic KHP chelators, including maltol, have been shown in in vitro and in vivo studies to form stable iron complexes, to transfer iron across cell membranes, and to increase iron absorption in animals. Trimaltol iron, sold as Feraccru or Accrufer, was recently approved for clinical use in IDA patients in many countries, including the USA and in EU countries, and was shown to be effective and safe, with a better therapeutic index in comparison to other iron formulations. Similar properties of increased iron absorption were also shown by lipophilic iron complexes of 8-hydroxyquinoline, tropolone, 2-hydroxy-4-methoxypyridine-1-oxide, and related analogues. The interactions of the KHP iron complexes with natural chelators, drugs, metal ions, proteins, and other molecules appear to affect the pharmacological and metabolic effects of both iron and the KHP chelators. A new era in the treatment of IDA and other possible clinical applications, such as theranostic and anticancer formulations and metal radiotracers in diagnostic medicine, are envisaged from the introduction of maltol, KHP, and similar lipophilic chelators.
Collapse
|
16
|
Benjamín-Rivera JA, Cardona-Rivera AE, Vázquez-Maldonado ÁL, Dones-Lassalle CY, Pabón-Colon HL, Rodríguez-Rivera HM, Rodríguez I, González-Espiet JC, Pazol J, Pérez-Ríos JD, Catala-Torres JF, Carrasquillo Rivera M, De Jesus-Soto MG, Cordero-Virella NA, Cruz-Maldonado PM, González-Pagan P, Hernández-Ríos R, Gaur K, Loza-Rosas SA, Tinoco AD. Exploring Serum Transferrin Regulation of Nonferric Metal Therapeutic Function and Toxicity. INORGANICS 2020; 8:48. [PMID: 36844373 PMCID: PMC9957567 DOI: 10.3390/inorganics8090048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Serum transferrin (sTf) plays a pivotal role in regulating iron biodistribution and homeostasis within the body. The molecular details of sTf Fe(III) binding blood transport, and cellular delivery through transferrin receptor-mediated endocytosis are generally well-understood. Emerging interest exists in exploring sTf complexation of nonferric metals as it facilitates the therapeutic potential and toxicity of several of them. This review explores recent X-ray structural and physiologically relevant metal speciation studies to understand how sTf partakes in the bioactivity of key non-redox active hard Lewis acidic metals. It challenges preconceived notions of sTf structure function correlations that were based exclusively on the Fe(III) model by revealing distinct coordination modalities that nonferric metal ions can adopt and different modes of binding to metal-free and Fe(III)-bound sTf that can directly influence how they enter into cells and, ultimately, how they may impact human health. This knowledge informs on biomedical strategies to engineer sTf as a delivery vehicle for metal-based diagnostic and therapeutic agents in the cancer field. It is the intention of this work to open new avenues for characterizing the functionality and medical utility of nonferric-bound sTf and to expand the significance of this protein in the context of bioinorganic chemistry.
Collapse
Affiliation(s)
- Josué A. Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Andrés E. Cardona-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | | | - Héctor L. Pabón-Colon
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Israel Rodríguez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jean C. González-Espiet
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jessika Pazol
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jobaniel D. Pérez-Ríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - José F. Catala-Torres
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Michael G. De Jesus-Soto
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Paola M. Cruz-Maldonado
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Patricia González-Pagan
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Raul Hernández-Ríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Sergio A. Loza-Rosas
- Departamento de Química y Bioquímica, Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja 150003, Colombia
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
- Correspondence: ; Tel.: +1-939-319-9701
| |
Collapse
|
17
|
Trying to Solve the Puzzle of the Interaction of Ascorbic Acid and Iron: Redox, Chelation and Therapeutic Implications. MEDICINES 2020; 7:medicines7080045. [PMID: 32751493 PMCID: PMC7460366 DOI: 10.3390/medicines7080045] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Iron and ascorbic acid (vitamin C) are essential nutrients for the normal growth and development of humans, and their deficiency can result in serious diseases. Their interaction is of nutritional, physiological, pharmacological and toxicological interest, with major implications in health and disease. Millions of people are using pharmaceutical and nutraceutical preparations of these two nutrients, including ferrous ascorbate for the treatment of iron deficiency anaemia and ascorbate combination with deferoxamine for increasing iron excretion in iron overload. The main function and use of vitamin C is its antioxidant activity against reactive oxygen species, which are implicated in many diseases of free radical pathology, including biomolecular-, cellular- and tissue damage-related diseases, as well as cancer and ageing. Ascorbic acid and its metabolites, including the ascorbate anion and oxalate, have metal binding capacity and bind iron, copper and other metals. The biological roles of ascorbate as a vitamin are affected by metal complexation, in particular following binding with iron and copper. Ascorbate forms a complex with Fe3+ followed by reduction to Fe2+, which may potentiate free radical production. The biological and clinical activities of iron, ascorbate and the ascorbate–iron complex can also be affected by many nutrients and pharmaceutical preparations. Optimal therapeutic strategies of improved efficacy and lower toxicity could be designed for the use of ascorbate, iron and the iron–ascorbate complex in different clinical conditions based on their absorption, distribution, metabolism, excretion, toxicity (ADMET), pharmacokinetic, redox and other properties. Similar strategies could also be designed in relation to their interactions with food components and pharmaceuticals, as well as in relation to other aspects concerning personalized medicine.
Collapse
|
18
|
Levina A, Lay PA. Vanadium(V/IV)–Transferrin Binding Disrupts the Transferrin Cycle and Reduces Vanadium Uptake and Antiproliferative Activity in Human Lung Cancer Cells. Inorg Chem 2020; 59:16143-16153. [DOI: 10.1021/acs.inorgchem.0c00926] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Kontoghiorghes GJ, Kontoghiorghe CN. Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases. Cells 2020; 9:E1456. [PMID: 32545424 PMCID: PMC7349684 DOI: 10.3390/cells9061456] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Iron is essential for all living organisms. Many iron-containing proteins and metabolic pathways play a key role in almost all cellular and physiological functions. The diversity of the activity and function of iron and its associated pathologies is based on bond formation with adjacent ligands and the overall structure of the iron complex in proteins or with other biomolecules. The control of the metabolic pathways of iron absorption, utilization, recycling and excretion by iron-containing proteins ensures normal biologic and physiological activity. Abnormalities in iron-containing proteins, iron metabolic pathways and also other associated processes can lead to an array of diseases. These include iron deficiency, which affects more than a quarter of the world's population; hemoglobinopathies, which are the most common of the genetic disorders and idiopathic hemochromatosis. Iron is the most common catalyst of free radical production and oxidative stress which are implicated in tissue damage in most pathologic conditions, cancer initiation and progression, neurodegeneration and many other diseases. The interaction of iron and iron-containing proteins with dietary and xenobiotic molecules, including drugs, may affect iron metabolic and disease processes. Deferiprone, deferoxamine, deferasirox and other chelating drugs can offer therapeutic solutions for most diseases associated with iron metabolism including iron overload and deficiency, neurodegeneration and cancer, the detoxification of xenobiotic metals and most diseases associated with free radical pathology.
Collapse
Affiliation(s)
- George J. Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus;
| | | |
Collapse
|
20
|
Przybyło M, Langner M. On the physiological and cellular homeostasis of ascorbate. Cell Mol Biol Lett 2020; 25:32. [PMID: 32514268 PMCID: PMC7257198 DOI: 10.1186/s11658-020-00223-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent interest in the role of ascorbate in crucial metabolic processes is driven by the growing number of medical reports that show beneficial effects of ascorbate supplementation for maintaining general well-being and recovery from a variety of medical conditions. The effect of ascorbate on the local body environment highly depends on its local concentration; at low concentrations it can cause the reduction of reactive oxygen and facilitate activities of enzymes, while at high concentrations it generates free radicals by reducing ferric ions. Ascorbate serving as an electron donor assists the iron-containing proteins and the iron transfer between various aqueous compartments. These functions require effective and adjustable mechanisms responsible for ascorbate biodistribution. In the paper we propose a new biophysical model of ascorbate redistribution between various aqueous body compartments. It combines recent experimental evidence regarding the ability of ascorbate to cross the lipid bilayer by unassisted diffusion, with active transport by well-characterized sodium vitamin C transporter (SVCT) membrane proteins. In the model, the intracellular concentration of ascorbate is maintained by the balance of two opposing fluxes: fast active and slow passive transport. The model provides a mechanistic understanding of ascorbate flux across the epidermal barrier in the gut as well as the role of astrocytes in ascorbate recycling in the brain. In addition, ascorbate passive diffusion across biological membranes, which depends on membrane electric potentials and pH gradients, provides the rationale for the correlation between ascorbate distribution and the transfer of iron ions inside a cell. The proposed approach provides, for the first time, a mechanistic account of processes leading to ascorbate physiological and cellular distribution, which helps to explain numerous experimental and clinical observations.
Collapse
Affiliation(s)
- Magdalena Przybyło
- Faculty of Biomedical Engineering, Wrocław University of Sciences and Technology, 50-370 Wrocław, Poland
- Lipid Systems Ltd, Krzemieniecka 48C, 54-613 Wrocław, Poland
| | - Marek Langner
- Faculty of Biomedical Engineering, Wrocław University of Sciences and Technology, 50-370 Wrocław, Poland
- Lipid Systems Ltd, Krzemieniecka 48C, 54-613 Wrocław, Poland
| |
Collapse
|
21
|
Release of trivalent chromium from serum transferrin is sufficiently rapid to be physiologically relevant. J Inorg Biochem 2020; 202:110901. [DOI: 10.1016/j.jinorgbio.2019.110901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022]
|