1
|
Baehr C, Jahan R, Gebo A, Vigliaturo J, Song D, Rahman MT, Tronconi D, Khaimraj A, Seaman R, Marecki C, Kim CM, Persano S, Runyon SP, Pravetoni M. Bivalent Hapten Display Strategies for Conjugate Vaccines Targeting Opioid Mixtures Containing Fentanyl. Bioconjug Chem 2025; 36:676-687. [PMID: 40091228 DOI: 10.1021/acs.bioconjchem.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Increasingly, street mixtures of opioids are reported to contain combinations of synthetic opioids, such as fentanyl with fentanyl analogues or counterfeit oxycodone pills containing fentanyl. While antiopioid immunotherapeutics have been investigated as a possible approach to address the opioid epidemic, the efficacy of vaccines and antibodies is limited to specific target opioids, based on the chemical structure of the haptens used in vaccines. Hence, there is a need for rational design of antiopioid conjugate vaccines that simultaneously target multiple opioids. Here, four novel haptens were synthesized, which were designed to elicit antibodies capable of binding to fentanyl other target opioids, including carfentanil, alfentanil, or oxycodone. Haptens were conjugated to CRM carrier protein and formulated with an aluminum salt adjuvant, and vaccines containing bivalent haptens were compared to admixtures of individual conjugate vaccines targeting the two opioids separately. Rats were immunized with monovalent, admixed, or novel bivalent vaccines, and the blockade of opioid effects was assessed against the individual drugs and their mixtures. Opioid-specific antibody titer was measured, and in vivo effects of vaccines were assessed in terms of preventing opioid-induced antinociception and respiratory depression and opioid distribution to the brain. While the bivalent vaccines reduced the effects of some target opioids, the admixed vaccine formulations were more effective against fentanyl/carfentanil and fentanyl/alfentanil mixtures. The bivalent fentanyl/oxycodone vaccine was as effective as the monovalent vaccines against a single drug challenge. These results inform the design of future vaccines against opioids and other drugs, particularly in the context of vaccines against polysubstance use that require optimization of response against multiple drugs of interest.
Collapse
Affiliation(s)
- Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Rajwana Jahan
- RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Ann Gebo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Jennifer Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Daihyun Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Md Toufiqur Rahman
- RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Davide Tronconi
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98104, United States
- Università degli Studi di Milano, Milano 20122, Italy
| | - Aaron Khaimraj
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Robert Seaman
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98104, United States
| | - Courtney Marecki
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98104, United States
| | - Caroline M Kim
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98104, United States
| | - Stefano Persano
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Scott P Runyon
- RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98104, United States
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98104, United States
- Garvey Institute for Brain Health Solutions, Seattle, Washington 98104, United States
| |
Collapse
|
2
|
Duerksen JM, Ramjiawan M, Witt J, Fitzpatrick-Wong S, Tappia PS, Ramjiawan B, Mansouri B, Sareen J, Knight E. The addictive process of opioids: current and novel interventions in opioid use disorder. Can J Physiol Pharmacol 2025; 103:111-122. [PMID: 39933161 DOI: 10.1139/cjpp-2024-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The growing epidemic of opioid misuse presents numerous challenges for healthcare practitioners and patients alike as friction exists between ease of use and efficacy, and potential for overuse and addiction. With over 82 000 deaths related to opioid overdose in North America in 2020, it is imperative to gain a better understanding of the underlying mechanisms behind the addiction process, as well as the current methods being used in the arsenal against this disease. The current best pharmacological approaches for mediating opioid use disorder are methadone, buprenorphine, naltrexone, and naloxone, which act on opioid receptors to produce diverse effects based upon the patients' needs. The variety of effects that these drugs produce, which include removing opioid withdrawal, reversing overdose effects, and blocking opioid properties, makes this arsenal of therapeutics a global necessity in addressing the opioid use epidemic. Accordingly, this narrative review provides a summary of the available data regarding the physiological processes by which opioid addiction takes place and discusses the current and future potential of interventional methods used to mitigate opioid use disorder. The mechanisms of action and subsequent functional outcomes must be understood to reduce the number of opioid-related deaths worldwide.
Collapse
Affiliation(s)
- James M Duerksen
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB, Canada
| | - Matthew Ramjiawan
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB, Canada
| | - Julia Witt
- Department of Economics, Faculty of Arts, University of Manitoba, Winnipeg, MB, Canada
| | | | - Paramjit S Tappia
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB, Canada
| | - Bram Ramjiawan
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Jitender Sareen
- Department of Psychiatry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Erin Knight
- Department of Psychiatry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Galbo-Thomma LK, Marecki C, Kim CM, Hiranita T, Taylor JR, Maguire DR, Hicks D, Gebo A, Khaimraj A, Baehr C, Pravetoni M, France CP. A humanized monoclonal antibody attenuates fentanyl self-administration and reverses and prevents fentanyl-induced ventilatory depression in rhesus monkeys. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06751-9. [PMID: 39907778 DOI: 10.1007/s00213-025-06751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Medications for opioid use disorder (OUD) and overdose have been available for decades, yet nearly 70% of fatal drug overdoses in the United States are attributed to the opioid receptor agonist fentanyl and its analogs. There is a pressing need for more and better medications that reduce fentanyl use and prevent overdose. A humanized (h) monoclonal antibody (mAb) targeting fentanyl, hHY6-F9, was tested for attenuating intravenous fentanyl self-administration and reversing and preventing fentanyl-induced ventilatory depression in rhesus monkeys. A single administration of hHY6-F9 significantly decreased fentanyl, but not heroin or cocaine, self-administration. In some monkeys, fentanyl self-administration remained decreased for ~ 2 weeks. hHY6-F9 was as effective as 32 µg/kg naloxone in reversing fentanyl-induced ventilatory depression, with a single administration protecting against fentanyl-induced ventilatory depression for 2-3 weeks. Moreover, pharmacokinetic analyses indicate that hHY6-F9 continued to sequester fentanyl in the serum for 2 weeks. This study demonstrates that hHY6-F9 selectively attenuates the positive reinforcing and ventilatory depressant effects of fentanyl, indicating its possible utility for preventing relapse and overdose.
Collapse
Affiliation(s)
- Lindsey K Galbo-Thomma
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr. Mail Code 7764, San Antonio, TX, 78229, USA
| | - Courtney Marecki
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Caroline M Kim
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr. Mail Code 7764, San Antonio, TX, 78229, USA
| | - Julia R Taylor
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr. Mail Code 7764, San Antonio, TX, 78229, USA
| | - David R Maguire
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr. Mail Code 7764, San Antonio, TX, 78229, USA
| | - Dustin Hicks
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ann Gebo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Aaron Khaimraj
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Charles P France
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr. Mail Code 7764, San Antonio, TX, 78229, USA.
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Tuncturk M, Kushwaha S, Heider RM, Oesterle T, Weinshilboum R, Ho MF. The development of opioid vaccines as a novel strategy for the treatment of opioid use disorder and overdose prevention. Int J Neuropsychopharmacol 2025; 28:pyaf005. [PMID: 39831679 PMCID: PMC11792077 DOI: 10.1093/ijnp/pyaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025] Open
Abstract
Opioid use disorder (OUD) affects over 40 million people worldwide, creating significant social and economic burdens. Medication for opioid use disorder (MOUD) is often considered the primary treatment approach for OUD. MOUD, including methadone, buprenorphine, and naltrexone, is effective for some, but its benefits may be limited by poor adherence to treatment recommendations. Immunopharmacotherapy offers an innovative approach by using vaccines to generate antibodies that neutralize opioids, blocking them from crossing the blood-brain barrier and reducing their psychoactive effects. To date, only 3 clinical trials for opioid vaccines have been published. While these studies demonstrated the potential of opioid vaccines for relapse prevention, there is currently no standardized protocol for evaluating their effectiveness. We have reviewed recent preclinical studies that demonstrated the efficacy of vaccines targeting opioids, including heroin, morphine, oxycodone, hydrocodone, and fentanyl. These studies showed that vaccines against opioids reduced drug reinforcement, decreased opioid-induced antinociception, and increased survival rates against lethal opioid doses. These studies also demonstrated the importance of vaccine formulation and the use of adjuvants in enhancing antibody production and specificity. Finally, we highlighted the strengths and concerns associated with the opioid vaccine treatment, including ethical considerations.
Collapse
Affiliation(s)
- Mustafa Tuncturk
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Shikha Kushwaha
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Robin M Heider
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Tyler Oesterle
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Ming-Fen Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Chapman A, Xu M, Schroeder M, Goldstein JM, Chida A, Lee JR, Tang X, Wharton RE, Finn MG. Substructure-Specific Antibodies Against Fentanyl Derivatives. ACS NANO 2025; 19:3714-3725. [PMID: 39792034 PMCID: PMC11781026 DOI: 10.1021/acsnano.4c14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Structural variants of the synthetic opioid fentanyl are a major threat to public health. Following an investigation showing that many derivatives are poorly detected by commercial lateral flow and related assays, we created hapten conjugate vaccines using an immunogenic virus-like particle carrier and eight synthetic fentanyl derivatives designed to mimic the structural features of several of the more dangerous analogues. Immunization of mice elicited strong antihapten humoral responses, allowing the screening of hundreds of hapten-specific hybridomas for binding strength and specificity. A panel of 13 monoclonal IgG antibodies were selected, each showing a different pattern of recognition of fentanyl structural variations, and all proving to be highly efficient at capturing parent fentanyl compounds in competition ELISA experiments. These results provide antibody reagents for assay development as well as a demonstration of the power of the immune system to create binding agents capable of both broad and specific recognition of small-molecule targets.
Collapse
Affiliation(s)
- Asheley Chapman
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Dr., Atlanta, Georgia 30332, United States
| | - Minghao Xu
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Dr., Atlanta, Georgia 30332, United States
| | - Michelle Schroeder
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Dr., Atlanta, Georgia 30332, United States
| | - Jason M. Goldstein
- Immunodiagnostic
Development Team, Preparedness, Response, & Outbreak Services
Branch, Division of Core Laboratory Services & Response, Office
of Laboratory Systems and Response, Centers
for Disease Control and Prevention, 1600 Clifton Rd NE., Atlanta, Georgia 30333, United States
| | - Asiya Chida
- Immunodiagnostic
Development Team, Preparedness, Response, & Outbreak Services
Branch, Division of Core Laboratory Services & Response, Office
of Laboratory Systems and Response, Centers
for Disease Control and Prevention, 1600 Clifton Rd NE., Atlanta, Georgia 30333, United States
| | - Joo R. Lee
- Immunodiagnostic
Development Team, Preparedness, Response, & Outbreak Services
Branch, Division of Core Laboratory Services & Response, Office
of Laboratory Systems and Response, Centers
for Disease Control and Prevention, 1600 Clifton Rd NE., Atlanta, Georgia 30333, United States
| | - Xiaoling Tang
- Immunodiagnostic
Development Team, Preparedness, Response, & Outbreak Services
Branch, Division of Core Laboratory Services & Response, Office
of Laboratory Systems and Response, Centers
for Disease Control and Prevention, 1600 Clifton Rd NE., Atlanta, Georgia 30333, United States
| | - Rebekah E. Wharton
- Division
of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, Georgia 30341, United States
| | - M. G. Finn
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Dr., Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, 901 Atlantic
Dr. Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Gallant JP, Hicks D, Shi K, Moeller NH, Hoppe B, Lake EW, Baehr C, Pravetoni M, Aihara H, LeBeau AM. Identification and biophysical characterization of a novel domain-swapped camelid antibody specific for fentanyl. J Biol Chem 2024; 300:107502. [PMID: 38945452 PMCID: PMC11321312 DOI: 10.1016/j.jbc.2024.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Opioid use disorders (OUD) and overdoses are ever-evolving public health threats that continue to grow in incidence and prevalence in the United States and abroad. Current treatments consist of opioid receptor agonists and antagonists, which are safe and effective but still suffer from some limitations. Murine and humanized monoclonal antibodies (mAb) have emerged as an alternative and complementary strategy to reverse and prevent opioid-induced respiratory depression. To explore antibody applications beyond traditional heavy-light chain mAbs, we identified and biophysically characterized a novel single-domain antibody specific for fentanyl from a camelid variable-heavy-heavy (VHH) domain phage display library. Structural data suggested that VHH binding to fentanyl was facilitated by a unique domain-swapped dimerization mechanism, which accompanied a rearrangement of complementarity-determining region loops leading to the formation of a fentanyl-binding pocket. Structure-guided mutagenesis further identified an amino acid substitution that improved the affinity and relaxed the requirement for dimerization of the VHH in fentanyl binding. Our studies demonstrate VHH engagement of an opioid and inform on how to further engineer a VHH for enhanced stability and efficacy, laying the groundwork for exploring the in vivo applications of VHH-based biologics against OUD and overdose.
Collapse
Affiliation(s)
- Joseph P Gallant
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Dustin Hicks
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicholas H Moeller
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brooke Hoppe
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Eric W Lake
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA; Center for Medication Development for Substance Use Disorders, University of Washington, Seattle, Washington, USA.
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Aaron M LeBeau
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
7
|
Hosztafi S, Galambos AR, Köteles I, Karádi DÁ, Fürst S, Al-Khrasani M. Opioid-Based Haptens: Development of Immunotherapy. Int J Mol Sci 2024; 25:7781. [PMID: 39063024 PMCID: PMC11277321 DOI: 10.3390/ijms25147781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past decades, extensive preclinical research has been conducted to develop vaccinations to protect against substance use disorder caused by opioids, nicotine, cocaine, and designer drugs. Morphine or fentanyl derivatives are small molecules, and these compounds are not immunogenic, but when conjugated as haptens to a carrier protein will elicit the production of antibodies capable of reacting specifically with the unconjugated hapten or its parent compound. The position of the attachment in opioid haptens to the carrier protein will influence the specificity of the antiserum produced in immunized animals with the hapten-carrier conjugate. Immunoassays for the determination of opioid drugs are based on the ability of drugs to inhibit the reaction between drug-specific antibodies and the corresponding drug-carrier conjugate or the corresponding labelled hapten. Pharmacological studies of the hapten-carrier conjugates resulted in the development of vaccines for treating opioid use disorders (OUDs). Immunotherapy for opioid addiction includes the induction of anti-drug vaccines which are composed of a hapten, a carrier protein, and adjuvants. In this review we survey the design of opioid haptens, the development of the opioid radioimmunoassay, and the results of immunotherapy for OUDs.
Collapse
Affiliation(s)
- Sándor Hosztafi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes Endre u. 9., H-1092 Budapest, Hungary;
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| | - István Köteles
- Department of Pharmaceutical Chemistry, Semmelweis University, Hogyes Endre u. 9., H-1092 Budapest, Hungary;
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Dávid Á Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78., H-1082 Budapest, Hungary
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4., H-1445 Budapest, Hungary; (A.R.G.); (D.Á.K.); (S.F.)
| |
Collapse
|
8
|
Powers N, Massena C, Crouse B, Smith M, Hicks L, Evans JT, Miller S, Pravetoni M, Burkhart D. Self-Adjuvanting TLR7/8 Agonist and Fentanyl Hapten Co-Conjugate Achieves Enhanced Protection against Fentanyl Challenge. Bioconjug Chem 2023; 34:1811-1821. [PMID: 37758302 PMCID: PMC10587865 DOI: 10.1021/acs.bioconjchem.3c00347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Currently approved pharmacotherapies for opioid use disorders (OUDs) and overdose reversal agents are insufficient to slow the spread of OUDs due to the proliferation of fentanyl. This is evident in the 31% rise in drug overdose deaths from 2019 to 2022, with rates increasing from 21.6 to 28.3 overdoses per 100,000 deaths. Vaccines are a potential alternative or adjunct therapy for the treatment of several substance use disorders (nicotine, cocaine) but have shown limited clinical success due to suboptimal antibody titers. In this study, we demonstrate that coconjugation of a Toll-like receptor 7/8 (TLR7/8) agonist (UM-3006) alongside a fentanyl-based hapten (F1) on the surface of the carrier protein cross-reactive material 197 (CRM) significantly increased generation of high-affinity fentanyl-specific antibodies. This demonstrated enhanced protection against fentanyl challenges relative to an unconjugated (admix) adjuvant control in mice. Inclusion of aluminum hydroxide (alum) adjuvant further increased titers and enhanced protection, as determined by analysis of fentanyl concentration in serum and brain tissue. Collectively, our findings present a promising approach to enhance the efficacy of antiopioid vaccines, underscoring the need for extensive exploration of TLR7/8 agonist conjugates as a compelling strategy to combat opioid use disorders.
Collapse
Affiliation(s)
- Noah Powers
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Casey Massena
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Bethany Crouse
- Department
of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mira Smith
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Linda Hicks
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Jay T. Evans
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Shannon Miller
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| | - Marco Pravetoni
- Department
of Psychiatry and Behavioral Sciences, University
of Washington School of Medicine, Seattle, Washington 98195, United States
| | - David Burkhart
- Center
for Translational Medicine, Department of Biomedical and Pharmaceutical
Sciences, University of Montana, 32 Campus Drive, Skaggs Building, Missoula, Montana 59801, United States
| |
Collapse
|
9
|
Crouse B, Miller SM, Muelken P, Hicks L, Vigliaturo JR, Marker CL, Guedes AGP, Pentel PR, Evans JT, LeSage MG, Pravetoni M. A TLR7/8 agonist increases efficacy of anti-fentanyl vaccines in rodent and porcine models. NPJ Vaccines 2023; 8:107. [PMID: 37488109 PMCID: PMC10366150 DOI: 10.1038/s41541-023-00697-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2023] [Indexed: 07/26/2023] Open
Abstract
Opioid use disorders (OUD) and overdose are public health threats worldwide. Widespread access to highly potent illicit synthetic opioids such as fentanyl is driving the recent rise in fatal overdoses. Vaccines containing fentanyl-based haptens conjugated to immunogenic carrier proteins offer a long-lasting, safe, and cost-effective strategy to protect individuals from overdose upon accidental or deliberate exposure to fentanyl and its analogs. Prophylactic or therapeutic active immunization with an anti-fentanyl vaccine induces the production of fentanyl-specific antibodies that bind the drug in the blood and prevent its distribution to the brain, which reduces its reinforcing effects and attenuates respiratory depression and bradycardia. To increase the efficacy of a lead anti-fentanyl vaccine, this study tested whether the incorporation of synthetic toll-like receptor (TLR) 4 and TLR7/8 agonists as vaccine adjuvants would increase vaccine efficacy against fentanyl challenge, overdose, and self-administration in either rats or Hanford miniature pigs. Formulation of the vaccine with a nucleolipid TLR7/8 agonist enhanced its immunogenicity and efficacy in preventing fentanyl-induced respiratory depression, analgesia, bradycardia, and self-administration in either rats or mini-pigs. These studies support the use of TLR7/8 adjuvants in vaccine formulations to improve their clinical efficacy against OUD and potentially other substance use disorders (SUD).
Collapse
Affiliation(s)
- Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- HealthPartners Institute, Research and Evaluation Division, 8170 33rd Ave S, Bloomington, MN, 55425, USA
| | - Shannon M Miller
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Peter Muelken
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Linda Hicks
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
| | - Jennifer R Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Cheryl L Marker
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Luvo Bioscience, 7500W. Henrietta Road, Rush, NY, 14543, USA
| | - Alonso G P Guedes
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Paul R Pentel
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Jay T Evans
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Mark G LeSage
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Center for Medication Development for Substance Use Disorders, Seattle, WA, USA.
| |
Collapse
|
10
|
Miller SM, Crouse B, Hicks L, Amin H, Cole S, Bazin HG, Burkhart DJ, Pravetoni M, Evans JT. A lipidated TLR7/8 adjuvant enhances the efficacy of a vaccine against fentanyl in mice. NPJ Vaccines 2023; 8:97. [PMID: 37429853 PMCID: PMC10333387 DOI: 10.1038/s41541-023-00694-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Opioid use disorders (OUD) and opioid-related fatal overdoses are a public health concern in the United States. Approximately 100,000 fatal opioid-related overdoses occurred annually from mid-2020 to the present, the majority of which involved fentanyl or fentanyl analogs. Vaccines have been proposed as a therapeutic and prophylactic strategy to offer selective and long-lasting protection against accidental or deliberate exposure to fentanyl and closely related analogs. To support the development of a clinically viable anti-opioid vaccine suitable for human use, the incorporation of adjuvants will be required to elicit high titers of high-affinity circulating antibodies specific to the target opioid. Here we demonstrate that the addition of a synthetic TLR7/8 agonist, INI-4001, but not a synthetic TLR4 agonist, INI-2002, to a candidate conjugate vaccine consisting of a fentanyl-based hapten, F1, conjugated to the diphtheria cross-reactive material (CRM), significantly increased generation of high-affinity F1-specific antibody concentrations, and reduced drug distribution to the brain after fentanyl administration in mice.
Collapse
Affiliation(s)
- Shannon M Miller
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Linda Hicks
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
| | - Hardik Amin
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
| | - Shelby Cole
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Helene G Bazin
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - David J Burkhart
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA
- Inimmune Corporation, Missoula, MT, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jay T Evans
- Department of Biomedical and Pharmaceutical Sciences, Center for Translational Medicine, University of Montana, Missoula, MT, USA.
- Inimmune Corporation, Missoula, MT, USA.
| |
Collapse
|
11
|
Han Y, Cao L, Yuan K, Shi J, Yan W, Lu L. Unique Pharmacology, Brain Dysfunction, and Therapeutic Advancements for Fentanyl Misuse and Abuse. Neurosci Bull 2022; 38:1365-1382. [PMID: 35570233 PMCID: PMC9107910 DOI: 10.1007/s12264-022-00872-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/13/2022] [Indexed: 11/20/2022] Open
Abstract
Fentanyl is a fully synthetic opioid with analgesic and anesthetic properties. It has become a primary driver of the deadliest opioid crisis in the United States and elsewhere, consequently imposing devastating social, economic, and health burdens worldwide. However, the neural mechanisms that underlie the behavioral effects of fentanyl and its analogs are largely unknown, and approaches to prevent fentanyl abuse and fentanyl-related overdose deaths are scarce. This review presents the abuse potential and unique pharmacology of fentanyl and elucidates its potential mechanisms of action, including neural circuit dysfunction and neuroinflammation. We discuss recent progress in the development of pharmacological interventions, anti-fentanyl vaccines, anti-fentanyl/heroin conjugate vaccines, and monoclonal antibodies to attenuate fentanyl-seeking and prevent fentanyl-induced respiratory depression. However, translational studies and clinical trials are still lacking. Considering the present opioid crisis, the development of effective pharmacological and immunological strategies to prevent fentanyl abuse and overdose are urgently needed.
Collapse
|
12
|
Crouse B, Wu MM, Gradinati V, Kassick AJ, Song D, Jahan R, Averick S, Runyon S, Comer SD, Pravetoni M. Efficacy and Selectivity of Monovalent and Bivalent Vaccination Strategies to Protect against Exposure to Carfentanil, Fentanyl, and Their Mixtures in Rats. ACS Pharmacol Transl Sci 2022; 5:331-343. [PMID: 35592436 PMCID: PMC9112413 DOI: 10.1021/acsptsci.1c00260] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 12/23/2022]
Abstract
Drug-related fatal overdoses have significantly increased in the past decade due to the widespread availability of illicit fentanyl and other potent synthetic opioids such as carfentanil. Deliberate or accidental consumption or exposure to carfentanil, fentanyl, and their mixture induces respiratory depression and bradycardia that can be difficult to reverse with the opioid receptor antagonist naloxone. Vaccines offer a promising strategy to reduce the incidence of fatalities associated with fentanyl-related substances, as well as treatment for opioid use disorder (OUD). This study reports monovalent and bivalent vaccination strategies that elicit polyclonal antibody responses effective in protecting against the pharmacological actions of carfentanil, fentanyl, or carfentanil/fentanyl mixtures. Rats were prophylactically immunized with individual conjugate vaccines containing either carfentanil- or fentanyl-based haptens, or their combination in bivalent vaccine formulations, and then challenged with carfentanil, fentanyl, or their mixture. First, these studies identified a lead vaccine protective against carfentanil-induced antinociception, respiratory depression, and bradycardia. Then, efficacy against both carfentanil and fentanyl was achieved through bivalent vaccination strategies that combined lead anti-carfentanil and anti-fentanyl vaccines via either heterologous prime/boost or co-administration immunization regimens. These preclinical data support the development of vaccines as a viable strategy to prevent toxicity from exposure to excessive doses of carfentanil, fentanyl, or their mixtures.
Collapse
Affiliation(s)
- Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,School of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Mariah M Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,School of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Valeria Gradinati
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Andrew J Kassick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospita, Pittsburgh, Pennsylvania 15212, United States
| | - Daihyun Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Rajwana Jahan
- RTI International, Durham, North Carolina 27709, United States
| | - Saadyah Averick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospita, Pittsburgh, Pennsylvania 15212, United States
| | - Scott Runyon
- RTI International, Durham, North Carolina 27709, United States
| | - Sandra D Comer
- Division on Substance Use Disorders, New York State Psychiatric Institute, and Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
13
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
14
|
Lee JC, Janda KD. Development of effective therapeutics for polysubstance use disorders. Curr Opin Chem Biol 2021; 66:102105. [PMID: 34936944 DOI: 10.1016/j.cbpa.2021.102105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022]
Abstract
Traditional pharmacotherapies for substance use disorders have focused on mono-substance abuse. However, recent epidemiological studies have found polysubstance use disorders (PUD) are becoming more prevalent and the abuse of adulterated drugs has led to increasing unintentional overdose deaths. Unfortunately, there are no approved pharmacological agents for PUD. Hence, a therapeutic model of interest to address this growing epidemic is immunopharmacotherapy, where individuals are inoculated with conjugate vaccines formulated with haptens that mimic the drug of abuse. These conjugate vaccines have demonstrated significant therapeutic potential against mono-substance abuse, thus recent studies have applied this model to address PUD. This review presents immunopharmacotherapeutic advancements against polysubstance abuse and discusses necessary developments for conjugate vaccines in order to effectively treat this unaddressed epidemic.
Collapse
Affiliation(s)
- Jinny Claire Lee
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The WIRM Institute for Research & Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The WIRM Institute for Research & Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States.
| |
Collapse
|
15
|
Barrientos R, Whalen C, Torres OB, Sulima A, Bow EW, Komla E, Beck Z, Jacobson AE, Rice KC, Matyas GR. Bivalent Conjugate Vaccine Induces Dual Immunogenic Response That Attenuates Heroin and Fentanyl Effects in Mice. Bioconjug Chem 2021; 32:2295-2306. [PMID: 34076427 PMCID: PMC8603354 DOI: 10.1021/acs.bioconjchem.1c00179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Indexed: 11/29/2022]
Abstract
Opioid use disorders and fatal overdose due to consumption of fentanyl-laced heroin remain a major public health menace in the United States. Vaccination may serve as a promising potential remedy to combat accidental overdose and to mitigate the abuse potential of opioids. We previously reported the heroin and fentanyl monovalent vaccines carrying, respectively, a heroin hapten, 6-AmHap, and a fentanyl hapten, para-AmFenHap, conjugated to tetanus toxoid (TT). Herein, we describe the mixing of these antigens to formulate a bivalent vaccine adjuvanted with liposomes containing monophosphoryl lipid A (MPLA) adsorbed on aluminum hydroxide. Immunization of mice with the bivalent vaccine resulted in IgG titers of >105 against both haptens. The polyclonal sera bound heroin, 6-acetylmorphine, morphine, and fentanyl with dissociation constants (Kd) of 0.25 to 0.50 nM. Mice were protected from the anti-nociceptive effects of heroin, fentanyl, and heroin +9% (w/w) fentanyl. No cross-reactivity to methadone and buprenorphine was observed in vivo. Naloxone remained efficacious in immunized mice. These results highlighted the potential of combining TT-6-AmHap and TT-para-AmFenHap to yield an efficacious bivalent vaccine that could ablate heroin and fentanyl effects. This vaccine warrants further testing to establish its potential translatability to humans.
Collapse
Affiliation(s)
- Rodell
C. Barrientos
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Connor Whalen
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Oscar B. Torres
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Agnieszka Sulima
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Eric W. Bow
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Essie Komla
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Zoltan Beck
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Arthur E. Jacobson
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Kenner C. Rice
- Drug
Design and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National
Institute on Drug Abuse and the National Institute on Alcohol Abuse
and Alcoholism, National Institutes of Health, Department of Health
and Human Services, 9800 Medical Center Drive, Bethesda, Maryland 20892, United States
| | - Gary R. Matyas
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
16
|
Crouse B, Zhang L, Robinson C, Ban Y, Vigliaturo JR, Roy S, Pravetoni M. Housing conditions and microbial environment do not affect the efficacy of vaccines for treatment of opioid use disorders in mice and rats. Hum Vaccin Immunother 2021; 17:4383-4392. [PMID: 34411500 PMCID: PMC8828096 DOI: 10.1080/21645515.2021.1954442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/21/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022] Open
Abstract
Vaccines offer a promising prophylactic and therapeutic intervention to counteract opioid use disorders (OUD) and fatal overdoses. Vaccines generate opioid-specific antibodies that bind the target opioid, reducing drug distribution to the brain and preventing drug-induced behavioral and pharmacological effects. Due to their selectivity, anti-opioid vaccines can be administered in combination with FDA-approved medications. Because patients with OUD or other substance use disorders may be affected by other multifactorial co-morbidities, such as infection or depression, it is important to test whether vaccine efficacy is modified by factors that may impact individual innate or adaptive immunity. To that end, this study tested whether housing conditions would affect the efficacy of two lead vaccine formulations targeting oxycodone and fentanyl in male mice and rats, and further analyzed whether differences in the gastrointestinal (GI) microbiome would be correlated with either vaccine efficacy or housing conditions. Results showed that housing mice and rats in either conventional (non-controlled) or specific pathogen-free (SPF, sterile barrier maintained) environment did not affect vaccine-induced antibody responses against oxycodone and fentanyl, nor their efficacy against oxycodone- and fentanyl-induced antinociception, respiratory depression, and bradycardia. Differences in the GI microbiome detected via 16S rRNA gene sequencing were related to the housing environment. This study supports use of anti-opioid vaccines in clinical populations that may display deficits in microbiome function.
Collapse
Affiliation(s)
- Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Li Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christine Robinson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer R Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sabita Roy
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- University of Minnesota Center for Immunology, Minneapolis, MN, USA
| |
Collapse
|
17
|
Barbosa-Mendez S, Matus-Ortega M, Hernandez-Miramontes R, Salazar-Juárez A. Synergistic immune and antinociceptive effects induced from the combination of two different vaccines against morphine/heroin in mouse. Hum Vaccin Immunother 2021; 17:3515-3528. [PMID: 34170784 PMCID: PMC8437472 DOI: 10.1080/21645515.2021.1935171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022] Open
Abstract
Animal studies have reported the use of different opioid-vaccine formulations with relative success These studies have suggested that new opioid-vaccine formulations are required, which are capable of triggering a robust humoral response. One strategy that has been used is the co-administration of two or more vaccines with different but complementary properties, which are capable of generating a robust immune response. We have developed two formulations of opioid-vaccine, the M6-TT, and M3-TT, which generate a robust immune response capable of recognizing heroin and morphine. In this work, we evaluate the combination of two vaccine formulations, which we call the M3/6-TT vaccine, to elicit a robust immune response and protection against heroin and morphine. Balb/c mice were immunized simultaneously with M6-TT vaccine and with M3-TT vaccine. A solid-phase antibody-capture ELISA was used for monitoring antibody titer responses after each booster dose in vaccinated animals. The study used tail-flick and hot-plate testing to evaluate the antinociceptive effects induced by heroin or morphine. Immunization with M3-TT and M6-TT vaccine elicits a robust immune response with an antibody titer of 1: 590 000 able to recognize heroin and morphine. These antibodies are capable of reducing the antinociceptive effects induced by doses of up to 40 mg/Kg. of morphine or 10 mg/kg of heroin. This suggests that the combination of two vaccine formulations that generate antibodies with different but complementary characteristics would be a new therapeutic strategy aimed at reducing drug relapses.
Collapse
Affiliation(s)
- Susana Barbosa-Mendez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México, México
| | - Maura Matus-Ortega
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México, México
| | - Ricardo Hernandez-Miramontes
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México, México
| | - Alberto Salazar-Juárez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, México, México
| |
Collapse
|
18
|
Wicks C, Hudlicky T, Rinner U. Morphine alkaloids: History, biology, and synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2021; 86:145-342. [PMID: 34565506 DOI: 10.1016/bs.alkal.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This chapter provides a short overview of the history of morphine since it's isolation by Sertürner in 1805. The biosynthesis of the title alkaloid as well as all total and formal syntheses of morphine and codeine published after 1996 are discussed in detail. The last section of this chapter provides a detailed overview of medicinally relevant derivatives of the title alkaloid.
Collapse
Affiliation(s)
- Christopher Wicks
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Tomas Hudlicky
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Uwe Rinner
- IMC Fachhochschule Krems/IMC University of Applied Sciences Krems, Krems, Austria.
| |
Collapse
|
19
|
Park H, Lee JC, Eubanks LM, Ellis B, Zhou B, Janda KD. Improvements on a chemically contiguous hapten for a vaccine to address fentanyl-contaminated heroin. Bioorg Med Chem 2021; 41:116225. [PMID: 34034147 DOI: 10.1016/j.bmc.2021.116225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
Unintentional overdose deaths related to opioids and psychostimulants have increased in prevalence due to the adulteration of these drugs with fentanyl. Synergistic effects between illicit compounds and fentanyl cause aggravated respiratory depression, leading to inadvertent fatalities. Traditional small-molecule therapies implemented in the expanding opioid epidemic present numerous problems since they interact with the same opioid receptors in the brain as the abused drugs. In this study, we report an optimized dual hapten for use as an immunopharmacotherapeutic tool in order to develop antibodies capable of binding to fentanyl-contaminated heroin in the periphery, thus impeding the drugs' psychoactive effects on the central nervous system. This vaccine produced antibodies with nanomolar affinities and effectively blocked opioid analgesic effects elicited by adulterated heroin. These findings provide further insight into the development of chemically contiguous haptens for broad-spectrum immunopharmacotherapies against opioid use disorders.
Collapse
Affiliation(s)
- Hyeri Park
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jinny Claire Lee
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Lisa M Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Beverly Ellis
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
20
|
Lack of effect of different pain-related manipulations on opioid self-administration, reinstatement of opioid seeking, and opioid choice in rats. Psychopharmacology (Berl) 2021; 238:1885-1897. [PMID: 33765177 PMCID: PMC10041878 DOI: 10.1007/s00213-021-05816-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 01/26/2023]
Abstract
RATIONALE AND OBJECTIVE Pain-related factors increase the risk for opioid addiction, and pain may function as a negative reinforcer to increase opioid taking and seeking. However, experimental pain-related manipulations generally do not increase opioid self-administration in rodents. This discrepancy may reflect insufficient learning of pain-relief contingencies or confounding effects of pain-related behavioral impairments. Here, we determined if pairing noxious stimuli with opioid self-administration would promote pain-related reinstatement of opioid seeking or increase opioid choice over food. METHODS In Experiment 1, rats self-administered fentanyl in the presence or absence of repeated intraplantar capsaicin injections in distinct contexts to model context-specific exposure to cutaneous nociception. After capsaicin-free extinction in both contexts, we tested if capsaicin would reinstate fentanyl seeking. In Experiment 2, rats self-administered heroin after intraperitoneal (i.p.) lactic acid injections to model acute visceral inflammatory pain. After lactic acid-free extinction, we tested if lactic acid would reinstate heroin seeking. In Experiment 3, we tested if repeated i.p. lactic acid or intraplantar Complete Freund's Adjuvant (CFA; to model sustained inflammatory pain) would increase fentanyl choice over food. RESULTS In Experiments 1-2, neither capsaicin nor lactic acid reinstated opioid seeking after extinction, and lactic acid did not increase heroin-induced reinstatement. In Experiment 3, lactic acid and CFA decreased reinforcement rate without affecting fentanyl choice. CONCLUSIONS Results extend the range of conditions across which pain-related manipulations fail to increase opioid seeking in rats and suggest that enhanced opioid-addiction risk in humans with chronic pain involves factors other than enhanced opioid reinforcement and relapse.
Collapse
|
21
|
Stone AE, Scheuermann SE, Haile CN, Cuny GD, Velasquez ML, Linhuber JP, Duddupudi AL, Vigliaturo JR, Pravetoni M, Kosten TA, Kosten TR, Norton EB. Fentanyl conjugate vaccine by injected or mucosal delivery with dmLT or LTA1 adjuvants implicates IgA in protection from drug challenge. NPJ Vaccines 2021; 6:69. [PMID: 33986280 PMCID: PMC8119695 DOI: 10.1038/s41541-021-00329-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
Fentanyl is a major contributor to the devastating increase in overdose deaths from substance use disorders (SUD). A vaccine targeting fentanyl could be a powerful immunotherapeutic. Here, we evaluated adjuvant and delivery strategies for conjugate antigen vaccination with fentanyl-based haptens. We tested adjuvants derived from the heat-labile toxin of E. coli including dmLT and LTA1 by intramuscular, sublingual or intranasal delivery. Our results show anti-fentanyl serum antibodies and antibody secreting cells in the bone-marrow after vaccination with highest levels observed with an adjuvant (alum, dmLT, or LTA1). Vaccine adjuvanted with LTA1 or dmLT elicited the highest levels of anti-fentanyl antibodies, whereas alum achieved highest levels against the carrier protein. Vaccination with sublingual dmLT or intranasal LTA1 provided the most robust blockade of fentanyl-induced analgesia and CNS penetration correlating strongly to anti-FEN IgA. In conclusion, this study demonstrates dmLT or LTA1 adjuvant as well as mucosal delivery may be attractive strategies for improving the efficacy of vaccines against SUD.
Collapse
Affiliation(s)
- Addison E Stone
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah E Scheuermann
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Colin N Haile
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Gregory D Cuny
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Marcela Lopez Velasquez
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Joshua P Linhuber
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Anantha L Duddupudi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Jennifer R Vigliaturo
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.,Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Therese A Kosten
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Thomas R Kosten
- Department of Psychology, University of Houston, Houston, TX, USA.,Texas Institute of Measurement Evaluation and Statistics, University of Houston, Houston, TX, USA
| | - Elizabeth B Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
22
|
Blake S, Bremer PT, Zhou B, Petrovsky N, Smith LC, Hwang CS, Janda KD. Developing Translational Vaccines against Heroin and Fentanyl through Investigation of Adjuvants and Stability. Mol Pharm 2021; 18:228-235. [PMID: 33301675 PMCID: PMC9946458 DOI: 10.1021/acs.molpharmaceut.0c00837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nearly insurmountable adversity that accompanies opioid use disorder (OUD) creates life-altering complications for opioid users. To worsen matters, existing small-molecule drugs continue to inadequately address OUD due to their engagement of the opioid receptor, which can leave the user to deal with side effects and financial hardships from their repeated use. An alternative therapeutic approach utilizes endogenously generated antibodies through active vaccination to reduce the effect of opioids without modulating the opioid receptor. Here, we explore different adjuvants and storage conditions to improve opioid vaccine efficacy and shelf life. Our results revealed that inulin-based formulations (Advax) containing a CpG oligodeoxynucleotide (ODN) acted as effective adjuvants when combined with a heroin conjugate: immunized mice showed excellent recovery from heroin-induced antinociception accompanied by high titer, high opioid affinity serum antibodies similar to the immunopotentiating properties of traditional alum-based adjuvants. Moreover, nonhuman primates vaccinated with a heroin/fentanyl combination vaccine demonstrated potent antibody responses against opioids when formulated with both inulin and alum adjuvants. Finally, storing a freeze-dried opioid vaccine formulation maintained efficacy for up 1 year at room temperature. The results from our studies represent an advance toward a clinically feasible opioid vaccine.
Collapse
Affiliation(s)
- Steven Blake
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Paul T. Bremer
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States,Cessation Therapeutics, LLC, 3031 Tisch Way, San Jose, California 95128, United States
| | - Bin Zhou
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nikolai Petrovsky
- Flinders Medical Centre, Flinders University, GPO Box 2100, Adelaide 5001, South Australia, Australia,Vaxine Pty Ltd, 11 Walkley Avenue, Warradale 5046, South Australia, Australia
| | - Lauren C. Smith
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Candy S. Hwang
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States,Corresponding Author: Kim D. Janda - The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States. Phone: (858), 785-2515. Fax: (858) 784-2595. .
| |
Collapse
|
23
|
Townsend EA, Bremer PT, Jacob NT, Negus SS, Janda KD, Banks ML. A synthetic opioid vaccine attenuates fentanyl-vs-food choice in male and female rhesus monkeys. Drug Alcohol Depend 2021; 218:108348. [PMID: 33268227 PMCID: PMC8224470 DOI: 10.1016/j.drugalcdep.2020.108348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
AIM Opioid-targeted vaccines are under consideration as candidate Opioid Use Disorder medications. We recently reported that a fentanyl-targeted vaccine produced a robust and long-lasting attenuation of fentanyl-vs-food choice in rats. In the current study, we evaluated an optimized fentanyl-targeted vaccine in rhesus monkeys to determine whether vaccine effectiveness to attenuate fentanyl choice translated to a species with greater phylogenetic similarity to humans. METHODS Adult male (2) and female (3) rhesus monkeys were trained to respond under a concurrent schedule of food (1 g pellets) and intravenous fentanyl (0, 0.032-1 μg/kg/injection) reinforcement during daily 2 h sessions. Fentanyl choice dose-effect functions were determined daily and 7-day buprenorphine treatments (0.0032-0.032 mg/kg/h IV; n = 4-5) were determined for comparison to vaccine effects. Subsequently, a fentanyl-CRM197 conjugate vaccine was administered at week 0, 3, 8, 15 over a 29-week experimental period during which fentanyl choice dose-effect functions continued to be determined daily. RESULTS Buprenorphine significantly decreased fentanyl choice and reciprocally increased food choice. Vaccination eliminated fentanyl choice and increased food choice in four-of-the-five monkeys. A transient and less robust vaccine effect was observed in the fifth monkey. Fentanyl-specific antibody concentrations peaked after the third vaccination to approximately 50 μg/mL while anti-fentanyl antibody affinity increased to a sustained low nanomolar level. CONCLUSION These results translate fentanyl vaccine effectiveness from rats to rhesus monkeys to decrease fentanyl-vs-food choice, albeit with greater individual differences observed in monkeys. These results support the potential and further clinical evaluation of this fentanyl-targeted vaccine as a candidate Opioid Use Disorder medication.
Collapse
Affiliation(s)
- E. Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA, corresponding author: (EAT) or (KDJ)
| | - Paul T. Bremer
- Cessation Therapeutics, San Jose, CA 95128, USA,Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Kim D. Janda
- Departments of Chemistry and Immunology and Microbial Science, Skaggs Institute for Chemical Biology, Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA., corresponding author: (EAT) or (KDJ)
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| |
Collapse
|
24
|
Robinson C, Gradinati V, Hamid F, Baehr C, Crouse B, Averick S, Kovaliov M, Harris D, Runyon S, Baruffaldi F, LeSage M, Comer S, Pravetoni M. Therapeutic and Prophylactic Vaccines to Counteract Fentanyl Use Disorders and Toxicity. J Med Chem 2020; 63:14647-14667. [PMID: 33215913 DOI: 10.1021/acs.jmedchem.0c01042] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incidence of fatal overdoses has increased worldwide due to the widespread access to illicit fentanyl and its potent analogues. Vaccines offer a promising strategy to reduce the prevalence of opioid use disorders (OUDs) and to prevent toxicity from accidental and deliberate exposure to fentanyl and its derivatives. This study describes the development and characterization of vaccine formulations consisting of novel fentanyl-based haptens conjugated to carrier proteins. Vaccine efficacy was tested against opioid-induced behavior and toxicity in mice and rats challenged with fentanyl and its analogues. Prophylactic vaccination reduced fentanyl- and sufentanil-induced antinociception, respiratory depression, and bradycardia in mice and rats. Therapeutic vaccination also reduced fentanyl intravenous self-administration in rats. Because of their selectivity, vaccines did not interfere with the pharmacological effects of commonly used anesthetics nor with methadone, naloxone, oxycodone, or heroin. These preclinical data support the translation of vaccines as a viable strategy to counteract fentanyl use disorders and toxicity.
Collapse
Affiliation(s)
- Christine Robinson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Valeria Gradinati
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Fatima Hamid
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Department of Veterinary Population Medicine, University of Minnesota Veterinary School, Minneapolis, Minnesota 55455, United States
| | - Bethany Crouse
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Department of Veterinary Population Medicine, University of Minnesota Veterinary School, Minneapolis, Minnesota 55455, United States
| | - Saadyah Averick
- Allegheny Health Network, Neuroscience Research Institute, Pittsburgh, Pennsylvania 15212, United States
| | - Marina Kovaliov
- Allegheny Health Network, Neuroscience Research Institute, Pittsburgh, Pennsylvania 15212, United States
| | - Danni Harris
- RTI International, Raleigh, North Carolina 27616, United States
| | - Scott Runyon
- RTI International, Raleigh, North Carolina 27616, United States
| | - Federico Baruffaldi
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, Minnesota 55415, United States
| | - Mark LeSage
- Department of Medicine, Hennepin Healthcare Research Institute, Minneapolis, Minnesota 55415, United States
| | - Sandra Comer
- Department of Psychiatry, Columbia University Irving Medical Center, and the New York State Psychiatric Institute, New York, New York 10027-6902, United States
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States.,Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Belz TF, Bremer PT, Zhou B, Blake S, Ellis B, Eubanks LM, Janda KD. Sulfonate-isosteric replacement examined within heroin-hapten vaccine design. Bioorg Med Chem Lett 2020; 30:127388. [PMID: 32738981 PMCID: PMC7398700 DOI: 10.1016/j.bmcl.2020.127388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Heroin overdose and addiction remain significant health and economic burdens in the world today costing billions of dollars annually. Moreover, only limited pharmacotherapeutic options are available for treatment of heroin addiction. In our efforts to combat the public health threat posed by heroin addiction, we have developed vaccines against heroin. To expand upon our existing heroin-vaccine arsenal, we synthesized new aryl and alkyl sulfonate ester haptens; namely aryl-mono-sulfonate (HMsAc) and Aryl/alkyl-di-sulfonate (H(Ds)2) as carboxyl-isosteres of heroin then compared them to our model heroin-hapten (HAc) through vaccination studies. Heroin haptens were conjugated to the carrier protein CRM197 and the resulting CRM-immunoconjugates were used to vaccinate Swiss Webster mice following an established immunization protocol. Binding studies revealed that the highest affinity anti-heroin antibodies were generated by the HMsAc vaccine followed by the HAc and H(Ds)2 vaccines, respectively (HMsAc > HAc≫HDs2). However, neither the HMsAc nor H(Ds)2 vaccines were able to generate high affinity antibodies to the psychoactive metabolite 6-acetyl morphine (6-AM), in comparison to the HAc vaccine. Blood brain bio-distribution studies supported these binding results with vaccine efficiency following the trend HAc > HMsAc ≫ H(Ds)2 The work described herein provides insight into the use of hapten-isosteric replacement in vaccine drug design.
Collapse
Affiliation(s)
- Tyson F Belz
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Paul T Bremer
- Cessation Therapeutics LLC, 3031 Tisch Way Ste 505, San Jose, CA 95128, United States
| | - Bin Zhou
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Steven Blake
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Beverly Ellis
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Lisa M Eubanks
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
26
|
Barrientos RC, Bow EW, Whalen C, Torres OB, Sulima A, Beck Z, Jacobson AE, Rice KC, Matyas GR. Novel Vaccine That Blunts Fentanyl Effects and Sequesters Ultrapotent Fentanyl Analogues. Mol Pharm 2020; 17:3447-3460. [PMID: 32787282 PMCID: PMC7482402 DOI: 10.1021/acs.molpharmaceut.0c00497] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Active
immunization is an emerging potential modality to combat
fatal overdose amid the opioid epidemic. In this study, we described
the design, synthesis, formulation, and animal testing of an efficacious
vaccine against fentanyl. The vaccine formulation is composed of a
novel fentanyl hapten conjugated to tetanus toxoid (TT) and adjuvanted
with liposomes containing monophosphoryl lipid A adsorbed on aluminum
hydroxide. The linker and hapten N-phenyl-N-(1-(4-(3-(tritylthio)propanamido)phenethyl)piperidin-4-yl)propionamide
were conjugated sequentially to TT using amine-N-hydroxysuccinimide-ester
and thiol–maleimide reaction chemistries, respectively. Conjugation
was facile, efficient, and reproducible with a protein recovery of
>98% and a hapten density of 30–35 per carrier protein molecule.
In mice, immunization induced high and robust antibody endpoint titers
in the order of >106 against the hapten. The antisera
bound
fentanyl, carfentanil, cyclopropyl fentanyl, para-fluorofentanyl, and furanyl fentanyl in vitro with
antibody-drug dissociation constants in the range of 0.36–4.66
nM. No cross-reactivity to naloxone, naltrexone, methadone, or buprenorphine
was observed. In vivo, immunization shifted the antinociceptive
dose–response curve of fentanyl to higher doses. Collectively,
these preclinical results showcased the desired traits of a potential
vaccine against fentanyl and demonstrated the feasibility of immunization
to combat fentanyl-induced effects.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States.,U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Eric W Bow
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, Department of Health and Human Services, National Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Connor Whalen
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Oscar B Torres
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States.,U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, Department of Health and Human Services, National Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Zoltan Beck
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States.,U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Arthur E Jacobson
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, Department of Health and Human Services, National Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, Department of Health and Human Services, National Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
27
|
Belz TF, Bremer PT, Zhou B, Ellis B, Eubanks LM, Janda KD. Enhancement of a Heroin Vaccine through Hapten Deuteration. J Am Chem Soc 2020; 142:13294-13298. [PMID: 32700530 DOI: 10.1021/jacs.0c05219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The United States is in the midst of an unprecedented epidemic of opioid substance use disorder, and while pharmacotherapies including opioid agonists and antagonists have shown success, they can be inadequate and frequently result in high recidivism. With these challenges facing opioid use disorder treatments immunopharmacotherapy is being explored as an alternative therapy option and is based upon antibody-opioid sequestering to block brain entry. Development of a heroin vaccine has become a major research focal point; however, producing an efficient vaccine against heroin has been particularly challenging because of the need to generate not only a potent immune response but one against heroin and its multiple psychoactive molecules. In this study, we explored the consequence of regioselective deuteration of a heroin hapten and its impact upon the immune response against heroin and its psychoactive metabolites. Deuterium (HdAc) and cognate protium heroin (HAc) haptens were compared head to head in an inclusive vaccine study. Strikingly the HdAc vaccine granted greater efficacy in blunting heroin analgesia in murine behavioral models compared to the HAc vaccine. Binding studies confirmed that the HdAc vaccine elicited both greater quantities and equivalent or higher affinity antibodies toward heroin and 6-AM. Blood-brain biodistribution experiments corroborated these affinity tests. These findings suggest that regioselective hapten deuteration could be useful for the resurrection of previous drug of abuse vaccines that have met limited success in the past.
Collapse
Affiliation(s)
- Tyson F Belz
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Paul T Bremer
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,Cessation Therapeutics LLC, 3031 Tisch Way Ste 505, San Jose, California 95128, United States
| | - Bin Zhou
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Beverly Ellis
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lisa M Eubanks
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
28
|
Gradinati V, Baruffaldi F, Abbaraju S, Laudenbach M, Amin R, Gilger B, Velagaleti P, Pravetoni M. Polymer-mediated delivery of vaccines to treat opioid use disorders and to reduce opioid-induced toxicity. Vaccine 2020; 38:4704-4712. [PMID: 32439214 DOI: 10.1016/j.vaccine.2020.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 11/15/2022]
Abstract
Vaccines offer a potential strategy to treat opioid use disorders (OUD) and to reduce the incidence of opioid-related overdoses. Vaccines induce opioid-specific polyclonal antibodies that selectively and effectively bind the target opioid and prevent its distribution across the blood-brain barrier. Because antibody-mediated reduction of drug distribution to the brain reduces drug-induced behavior and toxicity, vaccine efficacy depends on the quantity and quality of the antibody response. This study tested whether polymer-mediated delivery could improve vaccine efficacy against opioids as well as eliminate the need for booster injections normally required for a successful immunization. A series of novel biodegradable biocompatible thermogelling pentablock co-polymers were used to formulate a candidate vaccine against oxycodone in mice and rats. Polymer-based delivery of the anti-oxycodone vaccine was equally or more effective than administration in aluminum adjuvant in generating oxycodone-specific antibodies and in reducing oxycodone-induced effects and oxycodone distribution to the brain in mice and rats. The composition and release kinetics of the polymer formulations determined vaccine efficacy. Specifically, a formulation consisting of three simultaneous injections of the anti-oxycodone vaccine formulated in three different polymers with slow, intermediate, and fast release kinetics was more effective than an immunization regimen consisting of three sequential injections with the vaccine adsorbed on aluminum. The novel three-phased polymer vaccine formulation was effective in blocking oxycodone-induced antinociception, respiratory depression and bradycardia in rats.
Collapse
Affiliation(s)
- Valeria Gradinati
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States; University of Minnesota Medical School, Department of Pharmacology, Minneapolis, MN, United States
| | | | | | - Megan Laudenbach
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States
| | - Rasidul Amin
- Symmetry Biosciences, Raleigh, NC, United States
| | - Brian Gilger
- North Carolina State University, NC, United States
| | | | - Marco Pravetoni
- Hennepin Healthcare Research Institute, Minneapolis, MN, United States; University of Minnesota Medical School, Department of Pharmacology, Minneapolis, MN, United States; University of Minnesota, Center for Immunology, Minneapolis, MN, United States.
| |
Collapse
|