1
|
Kawa AB, Hashimoto JG, Beutler MM, Guizzetti M, Wolf ME. Changes in nucleus accumbens core translatome accompanying incubation of cocaine craving. Neuropsychopharmacology 2025:10.1038/s41386-025-02112-4. [PMID: 40301580 DOI: 10.1038/s41386-025-02112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 03/25/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
In the 'incubation of cocaine craving' model of relapse, rats exhibit progressive intensification (incubation) of cue-induced craving over several weeks of forced abstinence from cocaine self-administration. The expression of incubated craving depends on plasticity of excitatory synaptic transmission in nucleus accumbens core (NAcC) medium spiny neurons (MSN). Previously, we found that the maintenance of this plasticity and the expression of incubation depends on ongoing protein translation, and the regulation of translation is altered after incubation of cocaine craving. Here we used male and female rats that express Cre recombinase in either dopamine D1 receptor- or adenosine 2a (A2a) receptor-expressing MSN to express a GFP-tagged ribosomal subunit in a cell-type specific manner, enabling us to use Translating Ribosome Affinity Purification (TRAP) to isolate actively translating mRNAs from both MSN subtypes for analysis by RNA-seq. We compared rats that self-administered saline or cocaine. Saline rats were assessed on abstinence day (AD) 1, while cocaine rats were assessed on AD1 or AD40-50. For both D1-MSN and A2a-MSN, there were few differentially translated genes between saline and cocaine AD1 groups. In contrast, pronounced differences in the translatome were observed between cocaine rats on AD1 and AD40-50, and this was far more robust in D1-MSN. Notably, all comparisons revealed sex differences in translating mRNAs. Sequencing results were validated by qRT-PCR for several genes of interest. This study, the first to combine TRAP-seq, transgenic rats, and a cocaine self-administration paradigm, identifies translating mRNAs linked to incubation of cocaine craving in D1-MSN and A2a-MSN of the NAcC.
Collapse
Affiliation(s)
- Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- VA Portland Health Care System, Portland, OR, 97239, USA
| | - Madelyn M Beutler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- VA Portland Health Care System, Portland, OR, 97239, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
2
|
Wang B, Wang J, Beacher NJ, Lin DT, Zhang Y. Cell-type specific epigenetic and transcriptional mechanisms in substance use disorder. Front Cell Neurosci 2025; 19:1552032. [PMID: 40226298 PMCID: PMC11985801 DOI: 10.3389/fncel.2025.1552032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Substance use disorder (SUD) is a chronic and relapse-prone neuropsychiatric disease characterized by impaired brain circuitry within multiple cell types and neural circuits. Recent advancements in single-cell transcriptomics, epigenetics, and neural circuit research have unveiled molecular and cellular alterations associated with SUD. These studies have provided valuable insights into the transcriptional and epigenetic regulation of neuronal and non-neuronal cells, particularly in the context of drug exposure. Critical factors influencing the susceptibility of individuals to SUD include the regulation of gene expression during early developmental stages, neuroadaptive responses to psychoactive substances, and gene-environment interactions. Here we briefly review some of these mechanisms underlying SUD, with an emphasis on their crucial roles in in neural plasticity and maintenance of addiction and relapse in neuronal and non-neuronal cell-types. We foresee the possibility of integrating multi-omics technologies to devise targeted and personalized therapeutic strategies aimed at both the prevention and treatment of SUD. By utilizing these advanced methodologies, we can gain a deeper understanding of the fundamental biology of SUD, paving the way for more effective interventions.
Collapse
Affiliation(s)
- Bin Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiale Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nicholas J. Beacher
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yan Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| |
Collapse
|
3
|
Duque-Wilckens N, Joseph D, Syed M, Smith B, Maradiaga N, Yeh SY, Srinivasan V, Sotomayor F, Durga K, Nestler E, Moesers AJ, Robison AJ. FosB/ΔFosB activation in mast cells regulates gene expression to modulate allergic inflammation in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.06.592755. [PMID: 38766119 PMCID: PMC11100602 DOI: 10.1101/2024.05.06.592755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Mast cells are innate immune cells that regulate physiological processes by releasing pre-stored and newly synthesized mediators in response to allergens, infection, and other stimuli. Dysregulated mast cell activity can lead to multisystemic pathologies, but the underlying regulatory mechanisms remain poorly understood. We found that FOSB and ΔFOSB, transcription factors encoded by the FosB gene, are robustly expressed in mast cells following IgE-antigen stimulation, suggesting a role in modulating stimulus-induced mast cell functions. Using phenotypic, gene binding, and gene expression analyses in wild-type and mast cell-specific FosB knockout male mice, we demonstrate that FOSB/ΔFOSB modulates mast cell functions by limiting reactivity to allergen-like stimuli both in vitro and in vivo . These effects seem to be mediated, at least in part, by FOSB/ΔFOSB-driven enhanced expression of DUSP4, a dual-specificity phosphatase that attenuates MAPK signaling. These findings highlight FOSB/ΔFOSB as critical regulators of mast cell activity and potential targets for therapeutic intervention.
Collapse
|
4
|
Dubljević O, Pavković Ž, Srbovan M, Potrebić M, Stanojlović M, Pešić V. Attention-deficit/hyperactivity disorder-related psychomotor activity and altered neuronal activity in the medial prefrontal cortex and striatum in the A53T mouse model of Parkinson's disease and other synucleinopathies: Findings from an "endophenotype" approach. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111273. [PMID: 39870135 DOI: 10.1016/j.pnpbp.2025.111273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is associated with an increased risk of Parkinson's disease (PD) and other synucleinopathies later in life. The severity of the ADHD phenotype may play a significant role in this association. There is no indication that any of the existing animal models can unify these disorders. Using the Open Field Test, amphetamine-challenge test, Western blot and immunohistochemical analysis of neuronal activity markers (c-Fos, FosB and ΔFosB) we performed a deliberate neurobehavioral characterization of 6-month-old hemizygous A53T carriers (A53T+) of the JAX006823 strain, evaluating the utility of this transgenic mouse model of PD and other synucleinopathies in ADHD/PD continuum research. Adhering to the "endophenotype" approach, non-transgenic littermates (A53T-) and C57BL/6J mice (used to maintain the colony) were examined with A53T+ mice, to differentiate between biomarkers of transgenicity and endophenotypic traits related to the genetic background of the strain. Obtained results revealed that increased behavioral and acute striatal response to novelty, increased basal neuronal activity of the ventromedial prefrontal cortex and rate-dependent calming effect of amphetamine were endophenotypic characteristics of the strain. Increased acute response of the medial prefrontal cortex to novelty and chronic increase in neuronal activity of the striatum appeared as the mark of transgenicity. To the best of our knowledge, this is the first study to indicate external validity of a transgenic mouse model of PD and other synucleinopathies with the neurobehavioral pathology associated with ADHD, hinting at its potential in preclinical research of ADHD/PD continuum. The full capacity of the model remains to be explored.
Collapse
Affiliation(s)
- Olga Dubljević
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Željko Pavković
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Srbovan
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Potrebić
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miloš Stanojlović
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia; Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Vesna Pešić
- Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
5
|
Kambey PA, Wu J, Liu W, Su M, Buberwa W, Tang C. Targeting serum response factor (SRF) deactivates ΔFosB and mitigates Levodopa-induced dyskinesia in a mouse model of Parkinson's disease. Gene Ther 2024; 31:614-624. [PMID: 39384937 DOI: 10.1038/s41434-024-00492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is currently the preferred treatment for Parkinson's Disease (PD) and is considered the gold standard. However, prolonged use of L-DOPA in patients can result in involuntary movements known as Levodopa-induced dyskinesia (LID), which includes uncontrollable dystonia affecting the trunk, limbs, and face. The role of ΔFosB protein, a truncated splice variant of the FosB gene, in LID has been acknowledged, but its underlying mechanism has remained elusive. Here, using a mouse model of Parkinson's disease treated with chronic levodopa we demonstrate that serum response factor (SRF) binds to the FosB promoter, thereby activating FosB expression and levodopa induced-dyskinetic movements. Western blot analysis demonstrates a significant increase in SRF expression in the dyskinetic group compared to the control group. Knocking down SRF significantly reduced abnormal involuntary movements (AIMS) and ΔFosB expression compared to the control. Conversely, overexpression of SRF led to an increase in ΔFosB expression and worsened levodopa-induced dyskinesia. To shed light on the regulatory role of the Akt signaling pathway in this phenomenon, we administered the Akt agonist SC79 to PD mouse models via intraperitoneal injection, followed by L-DOPA administration. The expression of SRF, ΔFosB, and phosphorylated Akt (p-Akt) significantly increased in this group compared to the group receiving normal saline to signify that these happen through Akt signaling pathway. Collectively, our findings identify a promising therapeutic target for addressing levodopa-induced dyskinesia.
Collapse
Affiliation(s)
- Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Huangpu District, Guangzhou, China.
| | - Jiao Wu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - WenYa Liu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Mingyu Su
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Wokuheleza Buberwa
- Department of Neurology, The second affiliated hospital of Xi'an Jiaotong University, 710049, Xi'an, China
| | - Chuanxi Tang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
6
|
Kawa AB, Hashimoto JG, Beutler MM, Guizzetti M, Wolf ME. Changes in nucleus accumbens core translatome accompanying incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613147. [PMID: 39345421 PMCID: PMC11429699 DOI: 10.1101/2024.09.15.613147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In the 'incubation of cocaine craving' model of relapse, rats exhibit progressive intensification (incubation) of cue-induced craving over several weeks of forced abstinence from cocaine self-administration. The expression of incubated craving depends on plasticity of excitatory synaptic transmission in nucleus accumbens core (NAcC) medium spiny neurons (MSN). Previously, we found that the maintenance of this plasticity and the expression of incubation depends on ongoing protein translation, and the regulation of translation is altered after incubation of cocaine craving. Here we used male and female rats that express Cre recombinase in either dopamine D1 receptor- or adenosine 2a (A2a) receptor-expressing MSN to express a GFP-tagged ribosomal protein in a cell-type specific manner, enabling us to use Translating Ribosome Affinity Purification (TRAP) to isolate actively translating mRNAs from both MSN subtypes for analysis by RNA-seq. We compared rats that self-administered saline or cocaine. Saline rats were assessed on abstinence day (AD) 1, while cocaine rats were assessed on AD1 or AD40-50. For both D1-MSN and A2a-MSN, there were few differentially translated genes between saline and cocaine AD1 groups. In contrast, pronounced differences in the translatome were observed between cocaine rats on AD1 and AD40-50, and this was far more robust in D1-MSN. Notably, all comparisons revealed sex differences in translating mRNAs. Sequencing results were validated by qRT-PCR for several genes of interest. This study, the first to combine TRAP-seq, transgenic rats, and a cocaine self-administration paradigm, identifies translating mRNAs linked to incubation of cocaine craving in D1-MSN and A2a-MSN of the NAcC.
Collapse
Affiliation(s)
- Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
- VA Portland Health Care System, Portland, OR 97239
| | - Madelyn M Beutler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
- VA Portland Health Care System, Portland, OR 97239
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
7
|
Khanal P, Patil VS, Bhattacharya K, Shrivastava AK, Bhandare VV. Exploring the globoid cell leukodystrophy protein network and therapeutic interventions. Sci Rep 2024; 14:18067. [PMID: 39103379 PMCID: PMC11300594 DOI: 10.1038/s41598-024-66437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Globoid cell leukodystrophy is a severe rare disorder characterized by white matter degradation, resulting in a progressive loss of physical and mental abilities and has extremely limited therapeutic interventions. Therefore, this study aimed to delve into the Globoid cell leukodystrophy associated intricate network of differentially expressed genes (p < 0.05, |Fc|> 1) to identify potential druggable targets and possible therapeutic interventions using small molecules. The disease-associated neuronal protein circuit was constructed and analyzed, identifying 53 nodes (minimum edge cutoff 1), among which five (FOS, FOSB, GDNF, GFRA1, and JUN) were discerned as potential core protein nodes. Although our research enumerates the potential small molecules to target various protein nodes in the proposed disease network, we particularly underscore T-5224 to inhibit c-Jun activity as JUN was identified as one of the pivotal elements within the disease-associated neuronal protein circuit. The evaluation of T-5224 binding energy (- 11.0 kcal/mol) from docking study revealed that the compound to exhibit a notable affinity towards Jun/CRE complex. Moreover, the structural integrity of complex was affirmed through comprehensive molecular dynamics simulations, indicating a stable hydrophilic interaction between T-5224 and the Jun/CRE complex, thereby enhancing protein compactness and reducing solvent accessibility. This binding energy was further substantiated by free binding analysis, revealing a substantial thermodynamics complex state (- 448.00 ± 41.73 kJ/mol). Given that this investigation is confined to a computational framework, we additionally propose a hypothetical framework to ascertain the feasibility of inhibiting the Jun/CRE complex with T-5224 against Globoid cell leukodystrophy, employing a combination of in vitro and in vivo methodologies as a prospective avenue of this study.
Collapse
Affiliation(s)
- Pukar Khanal
- Department of Pharmacology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India.
- Silicon Script Sciences Private Limited, Bharatpur, Ghorahi, Dang, Nepal.
| | - Vishal S Patil
- Department of Pharmacology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, 781026, India
- Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Amit Kumar Shrivastava
- Department of Pharmacology, Universal College of Medical Sciences, Ranigaon, Bhairahawa, Rupandehi, Nepal
| | | |
Collapse
|
8
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
9
|
Nestler EJ, Russo SJ. Neurobiological basis of stress resilience. Neuron 2024; 112:1911-1929. [PMID: 38795707 PMCID: PMC11189737 DOI: 10.1016/j.neuron.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/28/2024]
Abstract
A majority of humans faced with severe stress maintain normal physiological and behavioral function, a process referred to as resilience. Such stress resilience has been modeled in laboratory animals and, over the past 15 years, has transformed our understanding of stress responses and how to approach the treatment of human stress disorders such as depression, post-traumatic stress disorder (PTSD), and anxiety disorders. Work in rodents has demonstrated that resilience to chronic stress is an active process that involves much more than simply avoiding the deleterious effects of the stress. Rather, resilience is mediated largely by the induction of adaptations that are associated uniquely with resilience. Such mechanisms of natural resilience in rodents are being characterized at the molecular, cellular, and circuit levels, with an increasing number being validated in human investigations. Such discoveries raise the novel possibility that treatments for human stress disorders, in addition to being geared toward reversing the damaging effects of stress, can also be based on inducing mechanisms of natural resilience in individuals who are inherently more susceptible. This review provides a progress report on this evolving field.
Collapse
Affiliation(s)
- Eric J Nestler
- Nash Family Department of Neuroscience and Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Scott J Russo
- Nash Family Department of Neuroscience and Department of Psychiatry, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
10
|
Stephens GS, Park J, Eagle A, You J, Silva-Pérez M, Fu CH, Choi S, Romain CPS, Sugimoto C, Buffington SA, Zheng Y, Costa-Mattioli M, Liu Y, Robison AJ, Chin J. Persistent ∆FosB expression limits recurrent seizure activity and provides neuroprotection in the dentate gyrus of APP mice. Prog Neurobiol 2024; 237:102612. [PMID: 38642602 PMCID: PMC11406539 DOI: 10.1016/j.pneurobio.2024.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.
Collapse
Affiliation(s)
| | - Jin Park
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Andrew Eagle
- Department of Physiology, Michigan State University, USA
| | - Jason You
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chia-Hsuan Fu
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Sumin Choi
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chiho Sugimoto
- Department of Physiology, Michigan State University, USA
| | - Shelly A Buffington
- Center for Precision Environmental Health, Department of Neuroscience, Baylor College of Medicine, USA
| | - Yi Zheng
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Yin Liu
- Department of Neurobiology and Anatomy, McGovern Medical School at UT Health, USA
| | - A J Robison
- Department of Physiology, Michigan State University, USA
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, USA.
| |
Collapse
|
11
|
Liu K, Zhang Z, Xu Y, Wu Y, Lian P, Ma Z, Tang Z, Zhang X, Yang X, Zhai H, Zhang L, Xu Y, Cao X. AMPK-mediated autophagy pathway activation promotes ΔFosB degradation to improve levodopa-induced dyskinesia. Cell Signal 2024; 118:111125. [PMID: 38432574 DOI: 10.1016/j.cellsig.2024.111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Parkinson's disease patients on chronic levodopa often suffer from motor complications, which tend to reduce their quality of life. Levodopa-induced dyskinesia (LID) is one of the most prevalent motor complications, often characterized by abnormal involuntary movements, and the pathogenesis of LID is still unclear but recent studies have suggested the involvement of autophagy. METHODS The onset of LID was mimicked by chronic levodopa treatment in a unilateral 6-hydroxydopamine (6-OHDA) -lesion rat model. Overexpression of ΔFosB in HEK293 cells to mimic the state of ΔFosB accumulation. The modulation of the AMP-activated protein kinase (AMPK)-mediated autophagy pathway using by metformin, AICAR (an AMPK activator), Compound C (an AMPK inhibitor) and chloroquine (an autophagy pathway inhibitor). The severity of LID was assessed by axial, limb, and orofacial (ALO) abnormal involuntary movements (AIMs) score and in vivo electrophysiology. The activity of AMPK pathway as well as autophagy markers and FosB-ΔFosB levels were detected by western blotting. RT-qPCR was performed to detect the transcription level of FosB-ΔFosB. The mechanism of autophagy dysfunction was further explored by immunofluorescence and transmission electron microscopy. RESULTS In vivo experiments demonstrated that chronic levodopa treatment reduced AMPK phosphorylation, impaired autophagosome-lysosomal fusion and caused FosB-ΔFosB accumulation in the striatum of PD rats. Long-term metformin intervention improved ALO AIMs scores as well as reduced the mean power of high gamma (hγ) oscillations and the proportion of striatal projection neurons unstable in response to dopamine for LID rats. Moreover, the intervention of metformin promoted AMPK phosphorylation, ameliorated the impairment of autophagosome-lysosomal fusion, thus, promoting FosB-ΔFosB degradation to attenuate its accumulation in the striatum of LID rats. However, the aforementioned roles of metformin were reversed by Compound C and chloroquine. The results of in vitro studies demonstrated the ability of metformin and AICAR to attenuate ΔFosB levels by promoting its degradation, while Compound C and chloroquine could block this effect. CONCLUSIONS In conclusion, our results suggest that long-term metformin treatment could promote ΔFosB degradation and thus attenuate the development of LID through activating the AMPK-mediated autophagy pathway. Overall, our results support the AMPK-mediated autophagy pathway as a novel therapeutic target for LID and also indicate that metformin is a promising therapeutic candidate for LID.
Collapse
Affiliation(s)
- Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaoyuan Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhicheng Tang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoman Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Heng Zhai
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Tan B, Browne CJ, Nöbauer T, Vaziri A, Friedman JM, Nestler EJ. Drugs of abuse hijack a mesolimbic pathway that processes homeostatic need. Science 2024; 384:eadk6742. [PMID: 38669575 PMCID: PMC11077477 DOI: 10.1126/science.adk6742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024]
Abstract
Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.
Collapse
Affiliation(s)
- Bowen Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University; New York, NY 10065, USA
| | - Caleb J. Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health; Toronto, ON, M5T 1R8, Canada
| | - Tobias Nöbauer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University; New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University; New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University; New York, NY 10065, USA
| | - Jeffrey M. Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University; New York, NY 10065, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| |
Collapse
|
13
|
Mews P, Sosnick L, Gurung A, Sidoli S, Nestler EJ. Decoding cocaine-induced proteomic adaptations in the mouse nucleus accumbens. Sci Signal 2024; 17:eadl4738. [PMID: 38626009 PMCID: PMC11170322 DOI: 10.1126/scisignal.adl4738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/28/2024] [Indexed: 04/18/2024]
Abstract
Cocaine use disorder (CUD) is a chronic neuropsychiatric condition that results from enduring cellular and molecular adaptations. Among substance use disorders, CUD is notable for its rising prevalence and the lack of approved pharmacotherapies. The nucleus accumbens (NAc), a region that is integral to the brain's reward circuitry, plays a crucial role in the initiation and continuation of maladaptive behaviors that are intrinsic to CUD. Leveraging advancements in neuroproteomics, we undertook a proteomic analysis that spanned membrane, cytosolic, nuclear, and chromatin compartments of the NAc in a mouse model. The results unveiled immediate and sustained proteomic modifications after cocaine exposure and during prolonged withdrawal. We identified congruent protein regulatory patterns during initial cocaine exposure and reexposure after withdrawal, which contrasted with distinct patterns during withdrawal. Pronounced proteomic shifts within the membrane compartment indicated adaptive and long-lasting molecular responses prompted by cocaine withdrawal. In addition, we identified potential protein translocation events between soluble-nuclear and chromatin-bound compartments, thus providing insight into intracellular protein dynamics after cocaine exposure. Together, our findings illuminate the intricate proteomic landscape that is altered in the NAc by cocaine use and provide a dataset for future research toward potential therapeutics.
Collapse
Affiliation(s)
- Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lucas Sosnick
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashik Gurung
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
14
|
Sourty M, Nasseef MT, Champagnol-Di Liberti C, Mondino M, Noblet V, Parise EM, Markovic T, Browne CJ, Darcq E, Nestler EJ, Kieffer BL. Manipulating ΔFOSB in D1-Type Medium Spiny Neurons of the Nucleus Accumbens Reshapes Whole-Brain Functional Connectivity. Biol Psychiatry 2024; 95:266-274. [PMID: 37517704 PMCID: PMC10834364 DOI: 10.1016/j.biopsych.2023.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND The transcription factor ΔFOSB, acting in the nucleus accumbens, has been shown to control transcriptional and behavioral responses to opioids and other drugs of abuse. However, circuit-level consequences of ΔFOSB induction on the rest of the brain, which are required for its regulation of complex behavior, remain unknown. METHODS We used an epigenetic approach in mice to suppress or activate the endogenous Fosb gene and thereby decrease or increase, respectively, levels of ΔFOSB selectively in D1-type medium spiny neurons of the nucleus accumbens and tested whether these modifications affect the organization of functional connectivity (FC) in the brain. We acquired functional magnetic resonance imaging data at rest and in response to a morphine challenge and analyzed both stationary and dynamic FC patterns. RESULTS The 2 manipulations modified brainwide communication markedly and differently. ΔFOSB down- and upregulation had overlapping effects on prefrontal- and retrosplenial cortex-centered networks, but also generated specific FC signatures for epithalamus (habenula) and dopaminergic/serotonergic centers, respectively. Analysis of dynamic FC patterns showed that increasing ΔFOSB essentially altered responsivity to morphine and uncovered striking modifications of the roles of the epithalamus and amygdala in brain communication, particularly upon ΔFOSB downregulation. CONCLUSIONS These novel findings illustrate how it is possible to link activity of a transcription factor within a single cell type of an identified brain region to consequent changes in circuit function brainwide by use of functional magnetic resonance imaging, and they pave the way for fundamental advances in bridging the gap between transcriptional and brain connectivity mechanisms underlying opioid addiction.
Collapse
Affiliation(s)
- Marion Sourty
- Institut National de la Santé et de la Recherche Médicale U1114, University of Strasbourg, Strasbourg, France; iCube, University of Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Md Taufiq Nasseef
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; Department of Mathematics, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Riyadh, Saudi Arabia
| | | | - Mary Mondino
- iCube, University of Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Vincent Noblet
- iCube, University of Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Eric M Parise
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tamara Markovic
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Caleb J Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emmanuel Darcq
- Institut National de la Santé et de la Recherche Médicale U1114, University of Strasbourg, Strasbourg, France; Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Brigitte L Kieffer
- Institut National de la Santé et de la Recherche Médicale U1114, University of Strasbourg, Strasbourg, France; Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
15
|
Fu CH, You JC, Mohila C, Rissman RA, Yoshor D, Viaene AN, Chin J. Hippocampal ΔFosB expression is associated with cognitive impairment in a subgroup of patients with childhood epilepsies. Front Neurol 2024; 14:1331194. [PMID: 38274865 PMCID: PMC10808715 DOI: 10.3389/fneur.2023.1331194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent seizures, and is often comorbid with other neurological and neurodegenerative diseases, such as Alzheimer's disease (AD). Patients with recurrent seizures often present with cognitive impairment. However, it is unclear how seizures, even when infrequent, produce long-lasting deficits in cognition. One mechanism may be seizure-induced expression of ΔFosB, a long-lived transcription factor that persistently regulates expression of plasticity-related genes and drives cognitive dysfunction. We previously found that, compared with cognitively-intact subjects, the activity-dependent expression of ΔFosB in the hippocampal dentate gyrus (DG) was increased in individuals with mild cognitive impairment (MCI) and in individuals with AD. In MCI patients, higher ΔFosB expression corresponded to lower Mini-Mental State Examination scores. Surgically resected DG tissue from patients with temporal lobe epilepsy also showed robust ΔFosB expression; however, it is unclear whether ΔFosB expression also corresponds to cognitive dysfunction in non-AD-related epilepsy. To test whether DG ΔFosB expression is indicative of cognitive impairment in epilepsies with different etiologies, we assessed ΔFosB expression in surgically-resected hippocampal tissue from 33 patients with childhood epilepsies who had undergone Wechsler Intelligence Scale for Children (WISC) testing prior to surgery. We found that ΔFosB expression is inversely correlated with Full-Scale Intelligence Quotient (FSIQ) in patients with mild to severe intellectual disability (FSIQ < 85). Our data indicate that ΔFosB expression corresponds to cognitive impairment in epilepsies with different etiologies, supporting the hypothesis that ΔFosB may epigenetically regulate gene expression and impair cognition across a wide range of epilepsy syndromes.
Collapse
Affiliation(s)
- Chia-Hsuan Fu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Jason C. You
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Carrie Mohila
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Robert A. Rissman
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
- Veteran's Affairs (VA) San Diego Healthcare System, San Diego, CA, United States
| | - Daniel Yoshor
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
16
|
Pang B, Wu X, Chen H, Yan Y, Du Z, Yu Z, Yang X, Wang W, Lu K. Exploring the memory: existing activity-dependent tools to tag and manipulate engram cells. Front Cell Neurosci 2024; 17:1279032. [PMID: 38259503 PMCID: PMC10800721 DOI: 10.3389/fncel.2023.1279032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 01/24/2024] Open
Abstract
The theory of engrams, proposed several years ago, is highly crucial to understanding the progress of memory. Although it significantly contributes to identifying new treatments for cognitive disorders, it is limited by a lack of technology. Several scientists have attempted to validate this theory but failed. With the increasing availability of activity-dependent tools, several researchers have found traces of engram cells. Activity-dependent tools are based on the mechanisms underlying neuronal activity and use a combination of emerging molecular biological and genetic technology. Scientists have used these tools to tag and manipulate engram neurons and identified numerous internal connections between engram neurons and memory. In this review, we provide the background, principles, and selected examples of applications of existing activity-dependent tools. Using a combination of traditional definitions and concepts of engram cells, we discuss the applications and limitations of these tools and propose certain developmental directions to further explore the functions of engram cells.
Collapse
Affiliation(s)
- Bo Pang
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Hailun Chen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiwen Yan
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Zibo Du
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zihan Yu
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Xiai Yang
- Department of Neurology, Ankang Central Hospital, Ankang, China
| | - Wanshan Wang
- Laboratory Animal Management Center, Southern Medical University, Guangzhou, China
- Guangzhou Southern Medical Laboratory Animal Sci. and Tech. Co., Ltd., Guangzhou, China
| | - Kangrong Lu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Tan B, Browne CJ, Nöbauer T, Vaziri A, Friedman JM, Nestler EJ. Drugs of abuse hijack a mesolimbic pathway that processes homeostatic need. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556059. [PMID: 37732251 PMCID: PMC10508763 DOI: 10.1101/2023.09.03.556059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Addiction prioritizes drug use over innate needs by "hijacking" brain circuits that direct motivation, but how this develops remains unclear. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we find that drugs of abuse augment ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell-type-specific manner. Combining "FOS-Seq", CRISPR-perturbations, and snRNA-seq, we identify Rheb as a shared molecular substrate that regulates cell-type-specific signal transductions in NAc while enabling drugs to suppress natural reward responses. Retrograde circuit mapping pinpoints orbitofrontal cortex which, upon activation, mirrors drug effects on innate needs. These findings deconstruct the dynamic, molecular, and circuit basis of a common reward circuit, wherein drug value is scaled to promote drug-seeking over other, normative goals.
Collapse
Affiliation(s)
- Bowen Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- These authors contributed equally
| | - Caleb J. Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- These authors contributed equally
| | - Tobias Nöbauer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY 10065, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey M. Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
18
|
Yeh SY, Estill M, Lardner CK, Browne CJ, Minier-Toribio A, Futamura R, Beach K, McManus CA, Xu SJ, Zhang S, Heller EA, Shen L, Nestler EJ. Cell Type-Specific Whole-Genome Landscape of ΔFOSB Binding in the Nucleus Accumbens After Chronic Cocaine Exposure. Biol Psychiatry 2023; 94:367-377. [PMID: 36906500 PMCID: PMC10314970 DOI: 10.1016/j.biopsych.2022.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND The ability of neurons to respond to external stimuli involves adaptations of gene expression. Induction of the transcription factor ΔFOSB in the nucleus accumbens, a key brain reward region, is important for the development of drug addiction. However, a comprehensive map of ΔFOSB's gene targets has not yet been generated. METHODS We used CUT&RUN (cleavage under targets and release using nuclease) to map the genome-wide changes in ΔFOSB binding in the 2 main types of nucleus accumbens neurons-D1 or D2 medium spiny neurons-after chronic cocaine exposure. To annotate genomic regions of ΔFOSB binding sites, we also examined the distributions of several histone modifications. Resulting datasets were leveraged for multiple bioinformatic analyses. RESULTS The majority of ΔFOSB peaks occur outside promoter regions, including intergenic regions, and are surrounded by epigenetic marks indicative of active enhancers. BRG1, the core subunit of the SWI/SNF chromatin remodeling complex, overlaps with ΔFOSB peaks, a finding consistent with earlier studies of ΔFOSB's interacting proteins. Chronic cocaine use induces broad changes in ΔFOSB binding in both D1 and D2 nucleus accumbens medium spiny neurons of male and female mice. In addition, in silico analyses predict that ΔFOSB cooperatively regulates gene expression with homeobox and T-box transcription factors. CONCLUSIONS These novel findings uncover key elements of ΔFOSB's molecular mechanisms in transcriptional regulation at baseline and in response to chronic cocaine exposure. Further characterization of ΔFOSB's collaborative transcriptional and chromatin partners specifically in D1 and D2 medium spiny neurons will reveal a broader picture of the function of ΔFOSB and the molecular basis of drug addiction.
Collapse
Affiliation(s)
- Szu-Ying Yeh
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Casey K Lardner
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Angelica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katherine Beach
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Catherine A McManus
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Song-Jun Xu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shuo Zhang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
19
|
Zhong J, Li C, Peng L, Pan Y, Yang Y, Guo Q, Zhong T. Repeated neonatal isoflurane exposure facilitated stress-related fear extinction impairment in male mice and was associated with ΔFosB accumulation in the basolateral amygdala and the hippocampal dentate gyrus. Behav Brain Res 2023; 446:114416. [PMID: 37003493 DOI: 10.1016/j.bbr.2023.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Volatile anesthetics elicit neurodevelopmental toxicity in rodents and primates and lead to more exaggerated anxiety-like behavior in response to future stress. Anxiety and fear are closely correlated and maladaptive fear-associated learning is regarded as the core mechanism underlying anxiety-related disorders. However, little is known about the interaction between early-life anesthetic exposure and future stress and the accompanying effect on fear-associated learning. In the present study, we evaluated the alterations in fear-associated learning (fear acquisition and extinction) occurring in mice receiving repeated neonatal isoflurane exposure and chronic variable stress (CVS) successively through a series of fear conditioning, fear reinforcing, and fear extinction paradigms. The corticosterone (CORT) response during CVS and the immunohistochemical levels of ΔFosB and c-Fos expression in the basolateral amygdala (BLA) and the hippocampal dentate gyrus (DG) after the extinction retrieval test were also investigated. The results showed that neonatal isoflurane exposure could increase CORT levels following the first diurnal CVS procedure, but not after completion of the whole CVS paradigm. Neonatal isoflurane exposure exerted a repressive effect on fear acquisition, in contrast to that seen with CVS. Neonatal isoflurane exposure and CVS both exerted suppressive effects on fear extinction and there was a significant synergy between them. Furthermore, neonatal isoflurane exposure facilitated CVS-mediated ΔFosB accumulation in the BLA and the hippocampal DG, which may have been responsible for c-Fos expression deficits and fear extinction impairment. Collectively, these findings contribute to the understanding of the interaction between early-life anesthetic exposure and future stress, as well as the accompanying behavioral alterations.
Collapse
Affiliation(s)
- JiaLing Zhong
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha city, Hunan Province, PR China
| | - ChunLin Li
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha city, Hunan Province, PR China
| | - LuoFang Peng
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China.
| | - Yudan Pan
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha city, Hunan Province, PR China
| | - Yong Yang
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha city, Hunan Province, PR China
| | - QuLian Guo
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha city, Hunan Province, PR China
| | - Tao Zhong
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha city, Hunan Province, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha city, Hunan Province, PR China.
| |
Collapse
|
20
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Chem Biol 2022; 17:2673-2678. [PMID: 36268572 DOI: 10.1021/acschembio.2c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Pharmacol Transl Sci 2022; 5:829-834. [PMID: 36268124 PMCID: PMC9578134 DOI: 10.1021/acsptsci.2c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/28/2022]
|
22
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Infect Dis 2022; 8:1975-1980. [PMID: 36073808 DOI: 10.1021/acsinfecdis.2c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Med Chem Lett 2022; 13:1524-1529. [PMID: 36262399 PMCID: PMC9575161 DOI: 10.1021/acsmedchemlett.2c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/30/2022] Open
|
24
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. J Med Chem 2022; 65:11894-11899. [PMID: 36073827 DOI: 10.1021/acs.jmedchem.2c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Chem Neurosci 2022. [PMID: 36067366 DOI: 10.1021/acschemneuro.2c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Kumar A, Aglyamova G, Yim Y, Bailey AO, Lynch H, Powell R, Nguyen N, Rosenthal Z, Zhao WN, Li Y, Chen J, Fan S, Lee H, Russell W, Stephan C, Robison A, Haggarty S, Nestler E, Zhou J, Machius M, Rudenko G. Chemically targeting the redox switch in AP1 transcription factor ΔFOSB. Nucleic Acids Res 2022; 50:9548-9567. [PMID: 36039764 PMCID: PMC9458432 DOI: 10.1093/nar/gkac710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
The AP1 transcription factor ΔFOSB, a splice variant of FOSB, accumulates in the brain in response to chronic insults such as exposure to drugs of abuse, depression, Alzheimer's disease and tardive dyskinesias, and mediates subsequent long-term neuroadaptations. ΔFOSB forms heterodimers with other AP1 transcription factors, e.g. JUND, that bind DNA under control of a putative cysteine-based redox switch. Here, we reveal the structural basis of the redox switch by determining a key missing crystal structure in a trio, the ΔFOSB/JUND bZIP domains in the reduced, DNA-free form. Screening a cysteine-focused library containing 3200 thiol-reactive compounds, we identify specific compounds that target the redox switch, validate their activity biochemically and in cell-based assays, and show that they are well tolerated in different cell lines despite their general potential to bind to cysteines covalently. A crystal structure of the ΔFOSB/JUND bZIP domains in complex with a redox-switch-targeting compound reveals a deep compound-binding pocket near the DNA-binding site. We demonstrate that ΔFOSB, and potentially other, related AP1 transcription factors, can be targeted specifically and discriminately by exploiting unique structural features such as the redox switch and the binding partner to modulate biological function despite these proteins previously being thought to be undruggable.
Collapse
Affiliation(s)
| | | | - Yun Young Yim
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Haley M Lynch
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Reid T Powell
- HTS Screening Core, Texas A&M University School of Medicine, Institute of Biosciences and Technology, Center for Translational Cancer Research, Houston, TX 77030, USA
| | - Nghi D Nguyen
- HTS Screening Core, Texas A&M University School of Medicine, Institute of Biosciences and Technology, Center for Translational Cancer Research, Houston, TX 77030, USA
| | - Zachary Rosenthal
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Departments of Psychiatry & Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Wen-Ning Zhao
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Departments of Psychiatry & Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jianping Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shanghua Fan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hubert Lee
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Clifford Stephan
- HTS Screening Core, Texas A&M University School of Medicine, Institute of Biosciences and Technology, Center for Translational Cancer Research, Houston, TX 77030, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Departments of Psychiatry & Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mischa Machius
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabby Rudenko
- To whom correspondence should be addressed. Tel: +1 409 772 6292; Fax: +1 409 772 9642;
| |
Collapse
|
27
|
Krapacher FA, Fernández‐Suárez D, Andersson A, Carrier‐Ruiz A, Ibáñez CF. Convergent dopamine and ALK4 signaling to PCBP1 controls FosB alternative splicing and cocaine behavioral sensitization. EMBO J 2022; 41:e110721. [PMID: 35730718 PMCID: PMC10545536 DOI: 10.15252/embj.2022110721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
ΔfosB is an alternatively spliced product of the FosB gene that is essential for dopamine-induced reward pathways and that acts as a master switch for addiction. However, the molecular mechanisms of its generation and regulation by dopamine signaling are unknown. Here, we report that dopamine D1 receptor signaling synergizes with the activin/ALK4/Smad3 pathway to potentiate the generation of ΔFosB mRNA in medium spiny neurons (MSNs) of the nucleus accumbens (NAc) via activation of the RNA-binding protein PCBP1, a regulator of mRNA splicing. Concurrent activation of PCBP1 and Smad3 by D1 and ALK4 signaling induced their interaction, nuclear translocation, and binding to sequences in exon-4 and intron-4 of FosB mRNA. Ablation of either ALK4 or PCBP1 in MSNs impaired ΔFosB mRNA induction and nuclear translocation of ΔFosB protein in response to repeated co-stimulation of D1 and ALK4 receptors. Finally, ALK4 is required in NAc MSNs of adult mice for behavioral sensitization to cocaine. These findings uncover an unexpected mechanism for ΔFosB generation and drug-induced sensitization through convergent dopamine and ALK4 signaling.
Collapse
Affiliation(s)
| | | | | | | | - Carlos F Ibáñez
- Department of NeuroscienceKarolinska InstituteStockholmSweden
- Peking‐Tsinghua Center for Life Sciences, PKU‐IDG/McGovern Institute for Brain ResearchPeking University School of Life SciencesBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|