1
|
Mao M, Zhou Y, Zhang H, Deng P, Yang J, Zhong J, Li N, Liu Q, Li X, Wu X, Cheng Y. Synthesis and identification of azocoumarin derivatives toward imaging of α-synuclein aggregates in the brain. Eur J Med Chem 2025; 290:117587. [PMID: 40168910 DOI: 10.1016/j.ejmech.2025.117587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
To identify α-synuclein aggregation in synucleinopathies is still challenging, due to the lack of specific probes for α-synuclein aggregates with efficient brain uptake. In this work, compact molecules based on coumarin scaffold were synthesized and evaluated for detection and bioimaging of α-synuclein aggregates in the brain. Among the developed compounds, azocoumarin 5 containing push-pull electronic architecture featured selective fluorescence enhancement towards α-synuclein aggregates in comparison to other β-sheet protein species (β-amyloid, tau). In addition, azocoumarin [18F]Cou-NNF was succesfully developed, and demonstrated its potential as radiotracer for imaging brain α-synuclein aggregates, owing to its favorable affinity for α-synuclein aggregates accompanied with efficient brain uptake and little defluorination in vivo. Overall, compact azocoumarin provides an effective lead structure for developing α-synuclein probes, and N=N bond shows promise in enhancing selective affinity for α-synuclein aggregates.
Collapse
Affiliation(s)
- Meiting Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Huihui Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Pengxin Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jie Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jing Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qiangqiang Liu
- Chengdu New Radiomedicine Technology Co., Ltd., Chengdu, 610200, China
| | - Xianghui Li
- Chengdu New Radiomedicine Technology Co., Ltd., Chengdu, 610200, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yan Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Sun Q, Wu M, Xie R, Lai L, Chen Q, Guan J. Exploring the Application Potential of α-Synuclein Molecular Probes in Early Diagnosis of Parkinson's Disease: Focus on Imaging Methods. ACS Chem Neurosci 2025; 16:1838-1846. [PMID: 40334069 PMCID: PMC12100648 DOI: 10.1021/acschemneuro.5c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/01/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
This review aims to explore the potential application of α-synuclein (α-syn) molecular probes in the early diagnosis of Parkinson's disease (PD), particularly through systematic evaluation using medical imaging methods. In recent years, The abnormal aggregation of α-syn within the central nervous system is now recognized as a central driver of PD pathophysiology, solidifying its role as a critical diagnostic and prognostic biomarker. Early diagnosis of PD is critical for enabling precision therapeutic interventions and mitigating neurodegenerative progression, thereby enhancing long-term functional outcomes and the quality of life. However, challenges remain in clinical practice, particularly concerning the late timing of diagnosis and the lack of specific biomarkers. By analyzing the existing literature, we will assess the effectiveness of different imaging techniques combined with α-syn probes and discuss their advantages and limitations in clinical applications. These imaging methods can provide visualization of early pathological changes, helping to improve the recognition rate of PD. Finally, we emphasize the importance of future research to explore new molecular probes and imaging technologies that can improve early diagnosis rates and treatment outcomes for PD.
Collapse
Affiliation(s)
- Qiyuan Sun
- Department
of Medical Imaging, Longgang District Central
Hospital of Shenzhen, Shenzhen518116, China
| | - Mingmin Wu
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong515041, China
| | - Runxia Xie
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong515041, China
| | - Lingfeng Lai
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong515041, China
| | - Qiujie Chen
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong515041, China
| | - Jitian Guan
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong515041, China
| |
Collapse
|
3
|
Chisholm TS, Hunter CA. Ligands for Protein Fibrils of Amyloid-β, α-Synuclein, and Tau. Chem Rev 2025. [PMID: 40327808 DOI: 10.1021/acs.chemrev.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Amyloid fibrils are characteristic features of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The use of small molecule ligands that bind to amyloid fibrils underpins both fundamental research aiming to better understand the pathology of neurodegenerative disease, and clinical research aiming to develop diagnostic tools for these diseases. To date, a large number of amyloid-binding ligands have been reported in the literature, predominantly targeting protein fibrils composed of amyloid-β (Aβ), tau, and α-synuclein (αSyn) fibrils. Fibrils formed by a particular protein can adopt a range of possible morphologies, but protein fibrils formed in vivo possess disease-specific morphologies, highlighting the need for morphology-specific amyloid-binding ligands. This review details the morphologies of Aβ, tau, and αSyn fibril polymorphs that have been reported as a result of structural work and describes a database of amyloid-binding ligands containing 4,288 binding measurements for 2,404 unique compounds targeting Aβ, tau, or αSyn fibrils.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
4
|
Bisi N, Pinzi L, Rastelli G, Tonali N. Early Diagnosis of Neurodegenerative Diseases: What Has Been Undertaken to Promote the Transition from PET to Fluorescence Tracers. Molecules 2024; 29:722. [PMID: 38338465 PMCID: PMC10856728 DOI: 10.3390/molecules29030722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's Disease (AD) and Parkinson's Disease (PD) represent two among the most frequent neurodegenerative diseases worldwide. A common hallmark of these pathologies is the misfolding and consequent aggregation of amyloid proteins into soluble oligomers and insoluble β-sheet-rich fibrils, which ultimately lead to neurotoxicity and cell death. After a hundred years of research on the subject, this is the only reliable histopathological feature in our hands. Since AD and PD are diagnosed only once neuronal death and the first symptoms have appeared, the early detection of these diseases is currently impossible. At present, there is no effective drug available, and patients are left with symptomatic and inconclusive therapies. Several reasons could be associated with the lack of effective therapeutic treatments. One of the most important factors is the lack of selective probes capable of detecting, as early as possible, the most toxic amyloid species involved in the onset of these pathologies. In this regard, chemical probes able to detect and distinguish among different amyloid aggregates are urgently needed. In this article, we will review and put into perspective results from ex vivo and in vivo studies performed on compounds specifically interacting with such early species. Following a general overview on the three different amyloid proteins leading to insoluble β-sheet-rich amyloid deposits (amyloid β1-42 peptide, Tau, and α-synuclein), a list of the advantages and disadvantages of the approaches employed to date is discussed, with particular attention paid to the translation of fluorescence imaging into clinical applications. Furthermore, we also discuss how the progress achieved in detecting the amyloids of one neurodegenerative disease could be leveraged for research into another amyloidosis. As evidenced by a critical analysis of the state of the art, substantial work still needs to be conducted. Indeed, the early diagnosis of neurodegenerative diseases is a priority, and we believe that this review could be a useful tool for better investigating this field.
Collapse
Affiliation(s)
- Nicolò Bisi
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17, Av. des Sciences, 91400 Orsay, France
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (G.R.)
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (G.R.)
| | - Nicolò Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17, Av. des Sciences, 91400 Orsay, France
| |
Collapse
|
5
|
Chen Y, Liang Z, Wang Q, Xiao L, Xie S, Yang S, Liu X, Ling D, Li F. Alpha-Synuclein Oligomers Driven T1-T2 Switchable Nanoprobes for Early and Accurate Diagnosis of Parkinson's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310404. [PMID: 38149464 DOI: 10.1002/adma.202310404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Indexed: 12/28/2023]
Abstract
The alpha-synuclein (α-syn) oligomers hold a central role in the pathology of Parkinson's disease (PD). Achieving accurate detection of α-syn oligomers in vivo presents a promising avenue for early and accurate diagnosis of PD. Magnetic resonance imaging (MRI), with non-invasion and exceptional tissue penetration, offers a potent tool for visualizing α-syn oligomers in vivo. Nonetheless, ensuring diagnostic specificity remains a formidable challenge. Herein, a novel MRI probe (ASOSN) is introduced, which encompasses highly sensitive antiferromagnetic nanoparticles functionalized with single-chain fragment variable antibodies, endowing it with the capacity for discerning recognition and binding to α-syn oligomers and triggering a switchable T1-T2 MRI signal. Significantly, ASOSN possesses the unique capability to accurately discriminate α-syn oligomers from neuroinflammation in vivo. Moreover, ASOSN facilitates the non-invasive and precise visualizing of endogenous α-syn oligomers in living systems. This innovative design heralds the development of a non-invasive visualization strategy for α-syn oligomers, marking a pivotal advancement for early and accurate diagnosis of PD.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zeyu Liang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Lin Xiao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xun Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
| |
Collapse
|
6
|
Tong Y, Zhu W, Chen J, Wen T, Xu F, Pang J. Discovery of Small-Molecule Degraders for Alpha-Synuclein Aggregates. J Med Chem 2023. [PMID: 37267712 DOI: 10.1021/acs.jmedchem.3c00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Alpha-synuclein (αSyn) species, especially the oligomers and fibers, are associated with multiple neurodegenerative diseases and cannot be directly targeted under the conventional pharmacological paradigm. Proteolysis-targeting chimera technology confers degradation of various "undruggable" targets; however, hardly any small-molecule degrader for αSyn aggregates has been reported yet. Herein, by using the probe molecule sery308 as a warhead, a series of small-molecule degraders for αSyn aggregates were designed and synthesized. Their degradation effects on αSyn aggregates were evaluated on a modified pre-formed fibril-seeding cell model. Compound 2b exhibited the highest degradation efficiency (DC50 = 7.51 ± 0.53 μM) with high selectivity. Mechanistic exploration revealed that both proteasomal and lysosomal pathways were involved in this kind of degradation. Moreover, the therapeutic effects of 2b were tested on SH-SY5Y (human neuroblastoma cell line) cells and Caenorhabditis elegans. Our results provided a new class of small-molecule candidates against synucleinopathies and broadened the substrate spectrum of PROTAC-based degraders.
Collapse
Affiliation(s)
- Yichen Tong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wentao Zhu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianzhi Wen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization & Innovative Drug Development of Chinese Ministry of Education (MOE) & Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Haque R, Maity D. Small molecule-based fluorescent probes for the detection of α-Synuclein aggregation states. Bioorg Med Chem Lett 2023; 86:129257. [PMID: 36966976 DOI: 10.1016/j.bmcl.2023.129257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
The formation of aggregates due to protein misfolding is encountered in various neurodegenerative diseases. α-Synuclein (α-Syn) aggregation is linked to Parkinson's disease (PD). It is one of the most prevalent neurodegenerative disorders after Alzheimer's disease. Aggregation of α-Syn is associated with Lewy body formation and degeneration of the dopaminergic neurons in the brain. These are the pathological hallmarks of PD progression. α-Syn aggregates in a multi-step process. The native unstructured α-Syn monomers combine to form oligomers, followed by amyloid fibrils, and finally Lewy bodies. Recent evidence suggests that α-Syn oligomerization and fibrils formation play major roles in PD development. α-Syn oligomeric species is the main contributor to neurotoxicity. Therefore, the detection of α-Syn oligomers and fibrils has drawn significant attention for potential diagnostic and therapeutic development. In this regard, the fluorescence strategy has become the most popular approach for following the protein aggregation process. Thioflavin T (ThT) is the most frequently used probe for monitoring amyloid kinetics. Unfortunately, it suffers from several significant drawbacks including the inability to detect neurotoxic oligomers. Researchers developed several small molecule-based advanced fluorescent probes compared to ThT for the detection/monitoring of α-Syn aggregates states. These are summarized here.
Collapse
|
8
|
Wang Q, Zhong J, Li K, Wu J, Wang X, Jiang S, Dai J, Cheng Y. Compact Luminol Chemiluminophores for In Vivo Detection and Imaging of β-Sheet Protein Aggregates. Anal Chem 2023; 95:1065-1073. [PMID: 36542087 DOI: 10.1021/acs.analchem.2c03776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein aggregation has been found in a wide range of neurodegenerative protein-misfolding diseases. The demand for in vivo technologies to identify protein aggregation is at the leading edge for the pathogenic study, diagnostic development, and therapeutic intervention of these devastating disorders. Herein, we report a series of luminol analogues to construct a facile chemiluminescence (CL)-based approach for in vivo detection and imaging of β-sheet protein aggregates. The synthesized compounds exhibited a distinct chemiluminescent response with long emission wavelengths toward reactive oxygen species under physiological conditions and displayed signal amplification in the presence of β-sheet protein aggregates, including α-synuclein, β-amyloid, and tau. Among them, CyLumi-3 was further evaluated as a chemiluminescent probe in preclinical models. By intravenous administration into the model mice via the tail vein, in vivo CL imaging noninvasively detected the specific CL of the probe targeting the α-synuclein aggregates in the brains of living mice. Based on its structural characteristics, CyLumi-3 can readily interact with α-synuclein aggregates with significantly enhanced fluorescence and can identify α-synuclein aggregates in vivo via distinctive CL amplification, which could pave the way for a more comprehensive understanding of protein aggregation in preclinical studies and would provide new hints for developing small-molecule chemiluminophores for protein aggregates.
Collapse
Affiliation(s)
- Qinyu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kexin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiajun Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoxue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shen Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Yan Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Lysophospholipids–potent candidates for brain food, protects neuronal cells against α-Synuclein aggregation. Biomed Pharmacother 2022; 156:113891. [DOI: 10.1016/j.biopha.2022.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
|
10
|
Heng Y, Li YY, Wen L, Yan JQ, Chen NH, Yuan YH. Gastric Enteric Glial Cells: A New Contributor to the Synucleinopathies in the MPTP-Induced Parkinsonism Mouse. Molecules 2022; 27:7414. [PMID: 36364248 PMCID: PMC9656042 DOI: 10.3390/molecules27217414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 05/19/2024] Open
Abstract
Accumulating evidence has shown that Parkinson's disease (PD) is a systemic disease other than a mere central nervous system (CNS) disorder. One of the most important peripheral symptoms is gastrointestinal dysfunction. The enteric nervous system (ENS) is regarded as an essential gateway to the environment. The discovery of the prion-like behavior of α-synuclein makes it possible for the neurodegenerative process to start in the ENS and spread via the gut-brain axis to the CNS. We first confirmed that synucleinopathies existed in the stomachs of chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/probenecid (MPTP/p)-induced PD mice, as indicated by the significant increase in abnormal aggregated and nitrated α-synuclein in the TH-positive neurons and enteric glial cells (EGCs) of the gastric myenteric plexus. Next, we attempted to clarify the mechanisms in single MPTP-injected mice. The stomach naturally possesses high monoamine oxidase-B (MAO-B) activity and low superoxide dismutase (SOD) activity, making the stomach susceptible to MPTP-induced oxidative stress, as indicated by the significant increase in reactive oxygen species (ROS) in the stomach and elevated 4-hydroxynonenal (4-HNE) in the EGCs after MPTP exposure for 3 h. Additionally, stomach synucleinopathies appear before those of the nigrostriatal system, as determined by Western blotting 12 h after MPTP injection. Notably, nitrated α-synuclein was considerably increased in the EGCs after 3 h and 12 h of MPTP exposure. Taken together, our work demonstrated that the EGCs could be new contributors to synucleinopathies in the stomach. The early-initiated synucleinopathies might further influence neighboring neurons in the myenteric plexus and the CNS. Our results offer a new experimental clue for interpreting the etiology of PD.
Collapse
Affiliation(s)
- Yang Heng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan-Yan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lu Wen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Qing Yan
- Department of Pharmacy, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union, Medical College, Beijing 100021, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|