1
|
Taha HB. Biomarker bust: meta-analyses reveal unreliability of neuronal extracellular vesicles for diagnosing parkinsonian disorders. Neural Regen Res 2025; 20:201-202. [PMID: 39657090 DOI: 10.4103/nrr.nrr-d-23-02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/02/2024] [Indexed: 12/17/2024] Open
Affiliation(s)
- Hash Brown Taha
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ortiz-Ross X, Taha HB, Press E, Rhone S, Blumstein DT. METHODS: Validating an immunoassay to measure fecal glucocorticoid metabolites in yellow-bellied marmots. Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111738. [PMID: 39251128 DOI: 10.1016/j.cbpa.2024.111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Quantifying physiological stress in wild animals is essential for understanding their health, reproductive success, and survival in a variable environment. The yellow-bellied marmot (Marmota flaviventer) study at the Rocky Mountain Biological Laboratory near Crested Butte, Colorado, USA is the world's second longest study of free-living mammals. Historically, we used a validated corticosterone radioimmunoassay (RIA) to measure fecal glucocorticoid metabolites (FGMs) as a proxy for physiological stress. However, the costs and risks associated with working with radioisotopes drove us to consider a more sustainable method. Here we evaluate the suitability of two competitive corticosterone enzyme assays (EIA), one from Cayman Chemical Company (CCC) and one from Arbor Assays (AA), to measure marmot FGMs via their cross-reaction. The findings revealed that the AA EIA better matched the RIA in terms of accuracy across high and low FGM concentrations, had superior assay parameters, showed the highest correlations with RIA results and effectively captured the annual variations in FGM concentrations, thus demonstrating its reliability for use in longitudinal studies. We further analytically validated the AA EIA for FGMs and confirmed its efficacy and lack of matrix effects, thus establishing its suitability for ongoing and future studies of FGMs in marmots. The transition to the AA EIA from the RIA ensures continued data integrity while enhancing safety and environmental sustainability.
Collapse
Affiliation(s)
- Xochitl Ortiz-Ross
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA; The Rocky Mountains Biological Laboratory, Gothic, CO, USA.
| | - Hash Brown Taha
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA. https://twitter.com/drhashbrownz
| | - Emily Press
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sarah Rhone
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA; The Rocky Mountains Biological Laboratory, Gothic, CO, USA. https://twitter.com/TeamMarmot
| |
Collapse
|
3
|
Trist BG, Wright CJ, Rangel A, Cottle L, Prasad A, Jensen NM, Gram H, Dzamko N, Jensen PH, Kirik D. Novel tools to quantify total, phospho-Ser129 and aggregated alpha-synuclein in the mouse brain. NPJ Parkinsons Dis 2024; 10:217. [PMID: 39516469 PMCID: PMC11549080 DOI: 10.1038/s41531-024-00830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Assays for quantifying aggregated and phosphorylated (S129) human α-synuclein protein are widely used to evaluate pathological burden in patients suffering from synucleinopathy disorders. Many of these assays, however, do not cross-react with mouse α-synuclein or exhibit poor sensitivity for this target, which is problematic considering the preponderance of mouse models at the forefront of pre-clinical α-synuclein research. In this project, we addressed this unmet need by reformulating two existing AlphaLISA® SureFire® Ultra™ total and pS129 α-synuclein assay kits to yield robust and ultrasensitive (LLoQ ≤ 0.5 pg/mL) quantification of mouse and human wild-type and pS129 α-synuclein protein. We then employed these assays, together with the BioLegend α-synuclein aggregate ELISA, to assess α-synuclein S129 phosphorylation and aggregation in different mouse brain tissue preparations. Overall, we highlight the compatibility of these new immunoassays with rodent models and demonstrate their potential to advance knowledge surrounding α-synuclein phosphorylation and aggregation in synucleinopathies.
Collapse
Affiliation(s)
- Benjamin Guy Trist
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
| | - Courtney Jade Wright
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Brain Repair and Imaging in Neural Systems (BRAINS), Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alejandra Rangel
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Melanoma Institute Australia, Sydney, NSW, Australia
| | - Louise Cottle
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Asheeta Prasad
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Nanna Møller Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Hjalte Gram
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Nicolas Dzamko
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Poul Henning Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Deniz Kirik
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Brain Repair and Imaging in Neural Systems (BRAINS), Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Silva AM, Hickford ES, Cutler P. An immunoassay for the quantification of phosphorylated α-synuclein at serine 129 in human cerebrospinal fluid. Bioanalysis 2024; 16:1125-1139. [PMID: 39404180 PMCID: PMC11583607 DOI: 10.1080/17576180.2024.2407718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/18/2024] [Indexed: 11/22/2024] Open
Abstract
The link between alpha Synuclein (α-Syn) phosphorylation and Parkinson's disease pathogenesis has not been fully elucidated, in part due to analytical methods with finite specificity and sensitivity, resulting in conflicting data on pathophysiological levels of the protein.One factor hindering the assessment of the role of pSer129 α-Syn is the lack of a fit for purpose assay. Antibodies were assessed for quantification of pSer129 α-Syn, resulting in a sensitive and specific assay suitable for use in Parkinson's disease and control CSF, with no significant difference found between the two populations. Total α-Syn was measured using a commercial kit, demonstrating a positive correlation between total and pSer129 α-Syn.This adds to available methods for pSer129 α-Syn in support of α-synucleinopathy research.
Collapse
Affiliation(s)
- Achani M Silva
- Precision Medicine, UCB Biopharma, 208 Bath Road, Slough, SL1 3WE, UK
| | | | - Paul Cutler
- Precision Medicine, UCB Biopharma, 208 Bath Road, Slough, SL1 3WE, UK
| |
Collapse
|
5
|
Hasabnis G, Altintas Z. Cardiac Troponin I-Responsive Nanocomposite Materials for Voltammetric Monitoring of Acute Myocardial Infarction. ACS OMEGA 2024; 9:30737-30750. [PMID: 39035901 PMCID: PMC11256321 DOI: 10.1021/acsomega.4c03252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Acute myocardial infarction (AMI) is a severe cardiovascular disease characterized by heart muscle damage due to inadequate blood supply, leading to a life-threatening risk of heart attack. Herein, we report on the design of polyaminophenol-based thin film functional polymers and their thorough optimization by electrochemical, spectroscopic, and microscopic techniques to develop a high-performance point-of-care voltammetric monitoring system. Molecularly imprinted polymer-based cTnI-responsive nanocomposite materials were prepared on an electrode surface by imprinting a specific cTnI epitope, integrating polyaminophenol electrodeposition, along with gold nanoparticles (AuNPs) and graphene quantum dots (GQDs). The characterization techniques, including cyclic and square wave voltammetries, electrochemical impedance spectroscopy, atomic force microscopy, fluorescence microscopy, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), and contact angle measurements proved the efficient fabrication of the voltammetric monitoring system relying on cTnI-responsive functional thin films. The sensing platform prepared with the optimized nanocomposite composition of AuNPs, GQDs, and molecularly imprinted polymers exhibited very high sensitivity, reproducibility, specificity, and affinity toward cTnI. The sensor showed a storage stability of 30 days, demonstrating great potential for use in early and point-of-care diagnosis of AMI with its 18 min detection time.
Collapse
Affiliation(s)
- Gauri
Kishore Hasabnis
- Institute
of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute
of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Zeynep Altintas
- Institute
of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute
of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Kiel
Nano, Surface and Interface Science (KiNSIS),
Kiel University, 24118 Kiel, Germany
| |
Collapse
|
6
|
Ramalingam N, Haass C, Dettmer U. Physiological roles of α-synuclein serine-129 phosphorylation - not an oxymoron. Trends Neurosci 2024; 47:480-490. [PMID: 38862330 PMCID: PMC11999472 DOI: 10.1016/j.tins.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
α-Synuclein (αS) is an abundant presynaptic protein that regulates neurotransmission. It is also a key protein implicated in a broad class of neurodegenerative disorders termed synucleinopathies, including Parkinson's disease (PD) and Lewy body dementia (LBD). Pathological αS deposits in these diseases, Lewy bodies (LBs)/neurites (LNs), contain about 90% of αS in its phospho-serine129 (pS129) form. Therefore, pS129 is widely used as a surrogate marker of pathology. However, recent findings demonstrate that pS129 is also physiologically triggered by neuronal activity to positively regulate synaptic transmission. In this opinion article, we contrast the literature on pathological and physiological pS129, with a special focus on the latter. We emphasize that pS129 is ambiguous and knowledge about the context is necessary to correctly interpret changes in pS129.
Collapse
Affiliation(s)
- Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany; Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Yu H, Feng R, Chen F, Wu Z, Li D, Qiu X. Rapid FRET Assay for the Early Detection of Alpha-Synuclein Aggregation in Parkinson's Disease. ACS Chem Neurosci 2024; 15:1378-1387. [PMID: 38506367 DOI: 10.1021/acschemneuro.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Alpha-synuclein (α-Syn) is a key protein of Parkinson's disease (PD). Oligomers formed by misfolding and aggregation of α-Syn can cause many pathological phenomena and aggravate the development of PD. Therefore, sensitive and accurate detection of oligomers is essential to understanding the pathology of PD and beneficial to screening and developing new drugs against PD. Here, we demonstrated a simple and sensitive method to detect the early aggregation of α-Syn via Förster resonance energy transfer (FRET) technology. We performed systematic investigations of the FRET sensitizations, efficiencies, and donor-to-acceptor distances during α-Syn aggregation, which was proved to be more sensitive to reflect small distance changes in the early stage of α-Syn aggregation, especially for α-Syn oligomers. The FRET assays were also applied to study the influence of Ser129 phosphorylation (pS129) on the aggregation rate of α-Syn. Our results showed that pS129 modification promotes α-Syn aggregation and enhances the ability of preformed fibrils to induce monomer aggregation. pS129 also increased the cytotoxicity of α-Syn. These results are of great significance for a better understanding of the pathological mechanisms of PD and future PD drug development.
Collapse
Affiliation(s)
- Hang Yu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Rui Feng
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fenglin Chen
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zuodong Wu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Dehai Li
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xue Qiu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
8
|
Taha HB, Bogoniewski A. Analysis of biomarkers in speculative CNS-enriched extracellular vesicles for parkinsonian disorders: a comprehensive systematic review and diagnostic meta-analysis. J Neurol 2024; 271:1680-1706. [PMID: 38103086 PMCID: PMC10973014 DOI: 10.1007/s00415-023-12093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Parkinsonian disorders, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), and corticobasal syndrome (CBS), exhibit overlapping early-stage symptoms, complicating definitive diagnosis despite heterogeneous cellular and regional pathophysiology. Additionally, the progression and the eventual conversion of prodromal conditions such as REM behavior disorder (RBD) to PD, MSA, or DLB remain challenging to predict. Extracellular vesicles (EVs) are small, membrane-enclosed structures released by cells, playing a vital role in communicating cell-state-specific messages. Due to their ability to cross the blood-brain barrier into the peripheral circulation, measuring biomarkers in blood-isolated speculative CNS enriched EVs has become a popular diagnostic approach. However, replication and independent validation remain challenging in this field. Here, we aimed to evaluate the diagnostic accuracy of speculative CNS-enriched EVs for parkinsonian disorders. METHODS We conducted a PRISMA-guided systematic review and meta-analysis, covering 18 studies with a total of 1695 patients with PD, 253 with MSA, 21 with DLB, 172 with PSP, 152 with CBS, 189 with RBD, and 1288 HCs, employing either hierarchical bivariate models or univariate models based on study size. RESULTS Diagnostic accuracy was moderate for differentiating patients with PD from HCs, but revealed high heterogeneity and significant publication bias, suggesting an inflation of the perceived diagnostic effectiveness. The bias observed indicates that studies with non-significant or lower effect sizes were less likely to be published. Although results for differentiating patients with PD from those with MSA or PSP and CBS appeared promising, their validity is limited due to the small number of involved studies coming from the same research group. Despite initial reports, our analyses suggest that using speculative CNS-enriched EV biomarkers may not reliably differentiate patients with MSA from HCs or patients with RBD from HCs, due to their lesser accuracy and substantial variability among the studies, further complicated by substantial publication bias. CONCLUSION Our findings underscore the moderate, yet unreliable diagnostic accuracy of biomarkers in speculative CNS-enriched EVs in differentiating parkinsonian disorders, highlighting the presence of substantial heterogeneity and significant publication bias. These observations reinforce the need for larger, more standardized, and unbiased studies to validate the utility of these biomarkers but also call for the development of better biomarkers for parkinsonian disorders.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Aleksander Bogoniewski
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Zhang C, Zheng K, Li C, Zhang R, Zhu Y, Xia L, Ma Y, Wyss HM, Cheng X, He S. Single-Molecule Protein Analysis by Centrifugal Droplet Immuno-PCR with Magnetic Nanoparticles. Anal Chem 2024; 96:1872-1879. [PMID: 38225884 DOI: 10.1021/acs.analchem.3c03724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Detecting proteins in ultralow concentrations in complex media is important for many applications but often relies on complicated techniques. Herein, a single-molecule protein analyzer with the potential for high-throughput applications is reported. Gold-coated magnetic nanoparticles with DNA-labeled antibodies were used for target recognition and separation. The immunocomplex was loaded into microdroplets generated with centrifugation. Immuno-PCR amplification of the DNA enabled the quantification of proteins at the level of single molecules. As an example, ultrasensitive detection of α-synuclein, a biomarker for neurodegenerative diseases, is achieved. The limit of detection was determined to be ∼50 aM in buffer and ∼170 aM in serum. The method exhibited high specificity and could be used to analyze post-translational modifications such as protein phosphorylation. This study will inspire wider studies on single-molecule protein detection, especially in disease diagnostics, biomarker discovery, and drug development.
Collapse
Affiliation(s)
- Chuan Zhang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Kaixin Zheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Chi Li
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Ranran Zhang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Yicheng Zhu
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Linxiao Xia
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Yicheng Ma
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Hans M Wyss
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Xiaoyu Cheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
- Ningbo Research Institute, Ningbo 310050, China
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
| | - Sailing He
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
- Ningbo Research Institute, Ningbo 310050, China
- ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
- Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, Stockholm S-100 44, Sweden
| |
Collapse
|
10
|
Lantz C, Lopez J, Goring AK, Zenaidee MA, Biggs K, Whitelegge JP, Ogorzalek Loo RR, Klärner FG, Schrader T, Bitan G, Loo JA. Characterization of Molecular Tweezer Binding on α-Synuclein with Native Top-Down Mass Spectrometry and Ion Mobility-Mass Spectrometry Reveals a Mechanism for Aggregation Inhibition. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2739-2747. [PMID: 37936057 PMCID: PMC10959575 DOI: 10.1021/jasms.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Parkinson's disease, a neurodegenerative disease that affects 15 million people worldwide, is characterized by deposition of α-synuclein into Lewy Bodies in brain neurons. Although this disease is prevalent worldwide, a therapy or cure has yet to be found. Several small compounds have been reported to disrupt fibril formation. Among these compounds is a molecular tweezer known as CLR01 that targets lysine and arginine residues. This study aims to characterize how CLR01 interacts with various proteoforms of α-synuclein and how the structure of α-synuclein is subsequently altered. Native mass spectrometry (nMS) measurements of α-synuclein/CLR01 complexes reveal that multiple CLR01 molecules can bind to α-synuclein proteoforms such as α-synuclein phosphorylated at Ser-129 and α-synuclein bound with copper and manganese ions. The binding of one CLR01 molecule shifts the ability for α-synuclein to bind other ligands. Electron capture dissociation (ECD) with Fourier transform-ion cyclotron resonance (FT-ICR) top-down (TD) mass spectrometry of α-synuclein/CLR01 complexes pinpoints the locations of the modifications on each proteoform and reveals that CLR01 binds to the N-terminal region of α-synuclein. CLR01 binding compacts the gas-phase structure of α-synuclein, as shown by ion mobility-mass spectrometry (IM-MS). These data suggest that when multiple CLR01 molecules bind, the N-terminus of α-synuclein shifts toward a more compact state. This compaction suggests a mechanism for CLR01 halting the formation of oligomers and fibrils involved in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Carter Lantz
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095 USA
| | - Jaybree Lopez
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095 USA
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095 USA
| | - Muhammad A. Zenaidee
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095 USA
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Karl Biggs
- Department of Neurology and Brain Research Institute, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, CA 90095 USA
| | - Julian P. Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, CA 90095 USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095 USA
| | | | - Thomas Schrader
- Institute of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
11
|
Taha HB, Ati SS. Evaluation of α-synuclein in CNS-originating extracellular vesicles for Parkinsonian disorders: A systematic review and meta-analysis. CNS Neurosci Ther 2023; 29:3741-3755. [PMID: 37416941 PMCID: PMC10651986 DOI: 10.1111/cns.14341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND & AIMS Parkinsonian disorders, such as Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS), share early motor symptoms but have distinct pathophysiology. As a result, accurate premortem diagnosis is challenging for neurologists, hindering efforts for disease-modifying therapeutic discovery. Extracellular vesicles (EVs) contain cell-state-specific biomolecules and can cross the blood-brain barrier to the peripheral circulation, providing a unique central nervous system (CNS) insight. This meta-analysis evaluated blood-isolated neuronal and oligodendroglial EVs (nEVs and oEVs) α-synuclein levels in Parkinsonian disorders. METHODS Following PRISMA guidelines, the meta-analysis included 13 studies. An inverse-variance random-effects model quantified effect size (SMD), QUADAS-2 assessed risk of bias and publication bias was evaluated. Demographic and clinical variables were collected for meta-regression. RESULTS The meta-analysis included 1,565 patients with PD, 206 with MSA, 21 with DLB, 172 with PSP, 152 with CBS and 967 healthy controls (HCs). Findings suggest that combined concentrations of nEVs and oEVs α-syn is higher in patients with PD compared to HCs (SMD = 0.21, p = 0.021), while nEVs α-syn is lower in patients with PSP and CBS compared to patients with PD (SMD = -1.04, p = 0.0017) or HCs (SMD = -0.41, p < 0.001). Additionally, α-syn in nEVs and/or oEVs did not significantly differ in patients with PD vs. MSA, contradicting the literature. Meta-regressions show that demographic and clinical factors were not significant predictors of nEVs or oEVs α-syn concentrations. CONCLUSION The results highlight the need for standardized procedures and independent validations in biomarker studies and the development of improved biomarkers for distinguishing Parkinsonian disorders.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Shomik S. Ati
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
12
|
Taha HB. Plasma versus serum for extracellular vesicle (EV) isolation: A duel for reproducibility and accuracy for CNS-originating EVs biomarker analysis. J Neurosci Res 2023; 101:1677-1686. [PMID: 37501394 DOI: 10.1002/jnr.25231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Blood-derived extracellular vesicles (EVs) are a popular source of biomarkers for central nervous system (CNS) diseases, but inconsistencies in isolation and analysis hinder their clinical translation. This review summarizes recent studies that investigate the impact of different anticoagulated plasma and serum on the yield, purity, and molecular content of EVs. Specifically, the studies compare ethylenediaminetetraacetic acid (EDTA), citrate, heparin plasma, and serum and highlight the risk of contamination from platelet-derived EVs. Here, I offer practical guidelines for standardizing EV isolation and analysis, recommending the use of plasma anticoagulated with acid-citrate-dextrose (ACD) or citrate followed by EDTA and heparin, subgroup analyses for samples from different biobank repositories, and avoiding serum and plasma-to-serum transformation. Other factors like illness, age, gender, meal timing, exercise, circadian timing, and arm pressure during blood draw can alter EV signatures. Yet, how these variables interact with different anticoagulated plasma or serum samples is unclear, necessitating further research. Furthermore, whether the changes are dependent on the isolation or quantification methodology remains an area of investigation. Importantly, the perspective emphasizes the need for consistency in experimental methodologies to improve the reproducibility and clinical applicability of CNS-originating EV biomarker studies. The proposed guidelines, along with ongoing efforts to standardize blood sample handling and collection, may facilitate the development of more reliable and informative CNS-originating EV biomarkers for diagnosis, prognosis, and treatment monitoring of CNS diseases.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
13
|
Taha HB, Bogoniewski A. Extracellular vesicles from bodily fluids for the accurate diagnosis of Parkinson's disease and related disorders: A systematic review and diagnostic meta-analysis. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e121. [PMID: 38939363 PMCID: PMC11080888 DOI: 10.1002/jex2.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 06/29/2024]
Abstract
Parkinsonian disorders, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy body (DLB), corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP) are often misdiagnosed due to overlapping symptoms and the absence of precise biomarkers. Furthermore, there are no current methods to ascertain the progression and conversion of prodromal conditions such as REM behaviour disorder (RBD). Extracellular vesicles (EVs), containing a mixture of biomolecules, have emerged as potential sources for parkinsonian diagnostics. However, inconsistencies in previous studies have left their diagnostic potential unclear. We conducted a meta-analysis, following PRISMA guidelines, to assess the diagnostic accuracy of general EVs isolated from various bodily fluids, including cerebrospinal fluid (CSF), plasma, serum, urine or saliva, in differentiating patients with parkinsonian disorders from healthy controls (HCs). The meta-analysis included 21 studies encompassing 1285 patients with PD, 24 with MSA, 105 with DLB, 99 with PSP, 101 with RBD and 783 HCs. Further analyses were conducted only for patients with PD versus HCs, given the limited number for other comparisons. Using bivariate and hierarchal receiver operating characteristics (HSROC) models, the meta-analysis revealed moderate diagnostic accuracy in distinguishing patients with PD from HCs, with substantial heterogeneity and publication bias. The trim-and-fill method revealed at least two missing studies with null or low diagnostic accuracy. CSF-EVs showed better overall diagnostic accuracy, while plasma-EVs had the lowest performance. General EVs demonstrated higher diagnostic accuracy compared to CNS-originating EVs, which are more time-consuming, labour- and cost-intensive to isolate. In conclusion, while holding promise, utilizing biomarkers in general EVs for PD diagnosis remains unfeasible due to existing challenges. The focus should shift toward harmonizing the field through standardization, collaboration, and rigorous validation. Current efforts by the International Society For Extracellular Vesicles (ISEV) aim to enhance the accuracy and reproducibility of EV-related research through rigor and standardization, aiming to bridge the gap between theory and practical clinical application.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology & PhysiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Aleksander Bogoniewski
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
14
|
Goolla M, Cheshire WP, Ross OA, Kondru N. Diagnosing multiple system atrophy: current clinical guidance and emerging molecular biomarkers. Front Neurol 2023; 14:1210220. [PMID: 37840912 PMCID: PMC10570409 DOI: 10.3389/fneur.2023.1210220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare and progressive neurodegenerative disorder characterized by motor and autonomic dysfunction. Accurate and early diagnosis of MSA is challenging due to its clinical similarity with other neurodegenerative disorders, such as Parkinson's disease and atypical parkinsonian disorders. Currently, MSA diagnosis is based on clinical criteria drawing from the patient's symptoms, lack of response to levodopa therapy, neuroimaging studies, and exclusion of other diseases. However, these methods have limitations in sensitivity and specificity. Recent advances in molecular biomarker research, such as α-synuclein protein amplification assays (RT-QuIC) and other biomarkers in cerebrospinal fluid and blood, have shown promise in improving the diagnosis of MSA. Additionally, these biomarkers could also serve as targets for developing disease-modifying therapies and monitoring treatment response. In this review, we provide an overview of the clinical syndrome of MSA and discuss the current diagnostic criteria, limitations of current diagnostic methods, and emerging molecular biomarkers that offer hope for improving the accuracy and early detection of MSA.
Collapse
Affiliation(s)
- Meghana Goolla
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Department of Surgery, University of Illinois, Chicago, IL, United States
| | | | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
- Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Naveen Kondru
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
15
|
Taha HB. Rethinking the reliability and accuracy of biomarkers in CNS-originating EVs for Parkinson's disease and multiple system atrophy. Front Neurol 2023; 14:1192115. [PMID: 37731853 PMCID: PMC10507694 DOI: 10.3389/fneur.2023.1192115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
16
|
Couch Y. Challenges associated with using extracellular vesicles as biomarkers in neurodegenerative disease. Expert Rev Mol Diagn 2023; 23:1091-1105. [PMID: 37916853 DOI: 10.1080/14737159.2023.2277373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION The hunt for new biomarkers - for the diagnosis of subcategories of disease, or for the monitoring of the efficacy of novel therapeutics - is an increasingly relevant challenge in the current era of precision medicine. In neurodegenerative research, the aim is to look for simple tools which can predict cognitive or motor decline early, and to determine whether these can also be used to test the efficacy of new interventions. Extracellular vesicles (EVs) are thought to play an important role in intercellular communication and have been shown to play a vital role in a number of diseases. AREAS COVERED The aim of this review is to examine what we know about EVs in neurodegeneration and to discuss their potential to be diagnostic and prognostic biomarkers in the future. It will cover the techniques used to isolate and study EVs and what is currently known about their presence in neurodegenerative diseases. In particular, we will discuss what is required for standardization in biomarker research, and the challenges associated with using EVs within this framework. EXPERT OPINION The technical challenges associated with isolating EVs consistently, combined with the complex techniques required for their efficient analysis, might preclude 'pure' EV populations from being used as effective biomarkers. Whilst biomarker discovery is important for more effective diagnosis, monitoring, prediction and prognosis in neurodegenerative disease, reproducibility and ease-of-use should be the priorities.
Collapse
Affiliation(s)
- Yvonne Couch
- Acute Stroke Program, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|