1
|
Carlsen J, Fossati S, Østergaard L, Gutiérrez‐Jiménez E, Palmfeldt J. Cerebral proteome adaptations to amyloid angiopathy are prevented by carbonic anhydrase inhibitors. Alzheimers Dement 2025; 21:e70122. [PMID: 40285374 PMCID: PMC12032195 DOI: 10.1002/alz.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a hallmark of Alzheimer's disease (AD), linked to adverse effects of emerging AD treatments. We explored the molecular effects of CAA in mouse brain and evaluated how these could be prevented by two repurposed United States Food and Drug Administration (FDA) approved treatments. METHODS Brain proteomics was performed on the Tg-SwDI genetic mouse model carrying disease causing mutations and developing AD characteristic cognitive deficits and severe CAA. Cortical and hippocampal tissues from presymptomatic male and female mice were studied. RESULTS We identify a core of dysregulated proteins across studies, including established markers of AD as well as proteins indicative of astrogliosis and negative regulators of synaptic stability and function. Two FDA approved, repurposed carbonic anhydrase inhibitors (CAIs), acetazolamide and methazolamide, were effective in preventing these molecular adaptations. DISCUSSION The two drugs broadly prevent proteome adaptations to the detrimental genotype and retain glutamatergic synapse proteins significantly closer to wild-type levels. HIGHLIGHTS The brain proteome changes of mice with CAA are mapped. Cortical and hippocampal tissues from presymptomatic male and female mice are studied. Markers of AD, astrogliosis, and synaptic stability are dysregulated. Two CAI are effective in preventing these protein changes.
Collapse
Affiliation(s)
- Jasper Carlsen
- Research Unit for Molecular Medicine (MMF), Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Silvia Fossati
- Alzheimer's Center at Temple (ACT) and Department of Neural SciencesTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Eugenio Gutiérrez‐Jiménez
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine (MMF), Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| |
Collapse
|
2
|
Wang C, Shao S, Li N, Zhang Z, Zhang H, Liu B. Advances in Alzheimer's Disease-Associated Aβ Therapy Based on Peptide. Int J Mol Sci 2023; 24:13110. [PMID: 37685916 PMCID: PMC10487952 DOI: 10.3390/ijms241713110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) urgently needs innovative treatments due to the increasing aging population and lack of effective drugs and therapies. The amyloid fibrosis of AD-associated β-amyloid (Aβ) that could induce a series of cascades, such as oxidative stress and inflammation, is a critical factor in the progression of AD. Recently, peptide-based therapies for AD are expected to be great potential strategies for the high specificity to the targets, low toxicity, fast blood clearance, rapid cell and tissue permeability, and superior biochemical characteristics. Specifically, various chiral amino acids or peptide-modified interfaces draw much attention as effective manners to inhibit Aβ fibrillation. On the other hand, peptide-based inhibitors could be obtained through affinity screening such as phage display or by rational design based on the core sequence of Aβ fibrosis or by computer aided drug design based on the structure of Aβ. These peptide-based therapies can inhibit Aβ fibrillation and reduce cytotoxicity induced by Aβ aggregation and some have been shown to relieve cognition in AD model mice and reduce Aβ plaques in mice brains. This review summarizes the design method and characteristics of peptide inhibitors and their effect on the amyloid fibrosis of Aβ. We further describe some analysis methods for evaluating the inhibitory effect and point out the challenges in these areas, and possible directions for the design of AD drugs based on peptides, which lay the foundation for the development of new effective drugs in the future.
Collapse
Affiliation(s)
- Cunli Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
| | - Shuai Shao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Na Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Lingshui Road, Dalian 116024, China; (C.W.); (S.S.); (N.L.); (Z.Z.); (H.Z.)
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Sato W, Watanabe-Takahashi M, Murata T, Utsunomiya-Tate N, Motoyama J, Anzai M, Ishihara S, Nishioka N, Uchiyama H, Togashi J, Nishihara S, Kawasaki K, Saito T, Saido TC, Funamoto S, Nishikawa K. A tailored tetravalent peptide displays dual functions to inhibit amyloid β production and aggregation. Commun Biol 2023; 6:383. [PMID: 37031306 PMCID: PMC10082830 DOI: 10.1038/s42003-023-04771-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Inhibition of amyloid-β peptide (Aβ) accumulation in the brain is a promising approach for treatment of Alzheimer's disease (AD). Aβ is produced by β-secretase and γ-secretase in endosomes via sequential proteolysis of amyloid precursor protein (APP). Aβ and APP have a common feature to readily cluster to form multimers. Here, using multivalent peptide library screens, we identified a tetravalent peptide, LME-tet, which binds APP and Aβ via multivalent interactions. In cells, LME-tet-bound APP in the plasma membrane is transported to endosomes, blocking Aβ production through specific inhibition of β-cleavage, but not γ-cleavage. LME-tet further suppresses Aβ aggregation by blocking formation of the β-sheet conformation. Inhibitory effects are not observed with a monomeric peptide, emphasizing the significance of multivalent interactions for mediating these activities. Critically, LME-tet efficiently reduces Aβ levels in the brain of AD model mice, suggesting it may hold promise for treatment of AD.
Collapse
Affiliation(s)
- Waka Sato
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Takuya Murata
- Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | | | - Jun Motoyama
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Masataka Anzai
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Seiko Ishihara
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Nanako Nishioka
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Hina Uchiyama
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Juri Togashi
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Saeka Nishihara
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, Riken Center For Brain Science, Saitama, Japan
| | - Satoru Funamoto
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan.
| |
Collapse
|
4
|
Gabrielli M, Prada I, Joshi P, Falcicchia C, D’Arrigo G, Rutigliano G, Battocchio E, Zenatelli R, Tozzi F, Radeghieri A, Arancio O, Origlia N, Verderio C. OUP accepted manuscript. Brain 2022; 145:2849-2868. [PMID: 35254410 PMCID: PMC9420022 DOI: 10.1093/brain/awac083] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/17/2022] [Accepted: 02/13/2022] [Indexed: 11/27/2022] Open
Abstract
Synaptic dysfunction is an early mechanism in Alzheimer’s disease that involves progressively larger areas of the brain over time. However, how it starts and propagates is unknown. Here we show that amyloid-β released by microglia in association with large extracellular vesicles (Aβ-EVs) alters dendritic spine morphology in vitro, at the site of neuron interaction, and impairs synaptic plasticity both in vitro and in vivo in the entorhinal cortex–dentate gyrus circuitry. One hour after Aβ-EV injection into the mouse entorhinal cortex, long-term potentiation was impaired in the entorhinal cortex but not in the dentate gyrus, its main target region, while 24 h later it was also impaired in the dentate gyrus, revealing a spreading of long-term potentiation deficit between the two regions. Similar results were obtained upon injection of extracellular vesicles carrying Aβ naturally secreted by CHO7PA2 cells, while neither Aβ42 alone nor inflammatory extracellular vesicles devoid of Aβ were able to propagate long-term potentiation impairment. Using optical tweezers combined to time-lapse imaging to study Aβ-EV–neuron interaction, we show that Aβ-EVs move anterogradely at the axon surface and that their motion can be blocked through annexin-V coating. Importantly, when Aβ-EV motility was inhibited, no propagation of long-term potentiation deficit occurred along the entorhinal–hippocampal circuit, implicating large extracellular vesicle motion at the neuron surface in the spreading of long-term potentiation impairment. Our data indicate the involvement of large microglial extracellular vesicles in the rise and propagation of early synaptic dysfunction in Alzheimer’s disease and suggest a new mechanism controlling the diffusion of large extracellular vesicles and their pathogenic signals in the brain parenchyma, paving the way for novel therapeutic strategies to delay the disease.
Collapse
Affiliation(s)
| | - Ilaria Prada
- CNR Institute of Neuroscience, Vedano al Lambro, MB 20854, Italy
| | - Pooja Joshi
- CNR Institute of Neuroscience, Vedano al Lambro, MB 20854, Italy
| | | | - Giulia D’Arrigo
- CNR Institute of Neuroscience, Vedano al Lambro, MB 20854, Italy
| | - Grazia Rutigliano
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa 56127, Italy
- CNR Institute of Clinical Physiology, Pisa 56124, Italy
| | - Elisabetta Battocchio
- CNR Institute of Neuroscience, Vedano al Lambro, MB 20854, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Rossella Zenatelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Francesca Tozzi
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, 56124, Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
- Consorzio Sistemi a Grande Interfase (CSGI), Department of Chemistry, University of Florence, Sesto Fiorentino, FI 50019, Italy
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York 10032, NY, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Nicola Origlia
- Correspondence may also be addressed to: Nicola Origlia CNR Institute of Neuroscience, via Moruzzi 1 Pisa, 56124, Italy E-mail:
| | - Claudia Verderio
- Correspondence to: Claudia Verderio CNR Institute of Neuroscience via Raoul Follereau 3, Vedano al Lambro MB, 20854, Italy E-mail:
| |
Collapse
|
5
|
Mamsa SSA, Meloni BP. Arginine and Arginine-Rich Peptides as Modulators of Protein Aggregation and Cytotoxicity Associated With Alzheimer's Disease. Front Mol Neurosci 2021; 14:759729. [PMID: 34776866 PMCID: PMC8581540 DOI: 10.3389/fnmol.2021.759729] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
A substantial body of evidence indicates cationic, arginine-rich peptides (CARPs) are effective therapeutic compounds for a range of neurodegenerative pathologies, with beneficial effects including the reduction of excitotoxic cell death and mitochondrial dysfunction. CARPs, therefore, represent an emergent class of promising neurotherapeutics with multimodal mechanisms of action. Arginine itself is a known chaotrope, able to prevent misfolding and aggregation of proteins. The putative role of proteopathies in chronic neurodegenerative diseases such as Alzheimer's disease (AD) warrants investigation into whether CARPs could also prevent the aggregation and cytotoxicity of amyloidogenic proteins, particularly amyloid-beta and tau. While monomeric arginine is well-established as an inhibitor of protein aggregation in solution, no studies have comprehensively discussed the anti-aggregatory properties of arginine and CARPs on proteins associated with neurodegenerative disease. Here, we review the structural, physicochemical, and self-associative properties of arginine and the guanidinium moiety, to explore the mechanisms underlying the modulation of protein aggregation by monomeric and multimeric arginine molecules. Arginine-rich peptide-based inhibitors of amyloid-beta and tau aggregation are discussed, as well as further modulatory roles which could reduce proteopathic cytotoxicity, in the context of therapeutic development for AD.
Collapse
Affiliation(s)
- Somayra S A Mamsa
- School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, QEII Medical Centre, Perth, WA, Australia
| | - Bruno P Meloni
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Perth, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Crawley, WA, Australia.,Department of Neurology, Sir Charles Gairdner Hospital, QEII Medical Centre, Perth, WA, Australia
| |
Collapse
|
6
|
In Vitro and In Vivo Efficacies of the Linear and the Cyclic Version of an All-d-Enantiomeric Peptide Developed for the Treatment of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22126553. [PMID: 34207233 PMCID: PMC8234218 DOI: 10.3390/ijms22126553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Multiple sources of evidence suggest that soluble amyloid β (Aβ)-oligomers are responsible for the development and progression of Alzheimer’s disease (AD). In order to specifically eliminate these toxic Aβ-oligomers, our group has developed a variety of all-d-peptides over the past years. One of them, RD2, has been intensively studied and showed such convincing in vitro and in vivo properties that it is currently in clinical trials. In order to further optimize the compounds and to elucidate the characteristics of therapeutic d-peptides, several rational drug design approaches have been performed. Two of these d-peptides are the linear tandem (head-to-tail) d-peptide RD2D3 and its cyclized form cRD2D3. Tandemization and cyclization should result in an increased in vitro potency and increase pharmacokinetic properties, especially crossing the blood–brain-barrier. In comparison, cRD2D3 showed a superior pharmacokinetic profile to RD2D3. This fact suggests that higher efficacy can be achieved in vivo at equally administered concentrations. To prove this hypothesis, we first established the in vitro profile of both d-peptides here. Subsequently, we performed an intraperitoneal treatment study. This study failed to provide evidence that cRD2D3 is superior to RD2D3 in vivo as in some tests cRD2D3 failed to show equal or higher efficacy.
Collapse
|
7
|
Structural Studies Providing Insights into Production and Conformational Behavior of Amyloid-β Peptide Associated with Alzheimer's Disease Development. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102897. [PMID: 34068293 PMCID: PMC8153327 DOI: 10.3390/molecules26102897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease is the most common type of neurodegenerative disease in the world. Genetic evidence strongly suggests that aberrant generation, aggregation, and/or clearance of neurotoxic amyloid-β peptides (Aβ) triggers the disease. Aβ accumulates at the points of contact of neurons in ordered cords and fibrils, forming the so-called senile plaques. Aβ isoforms of different lengths are found in healthy human brains regardless of age and appear to play a role in signaling pathways in the brain and to have neuroprotective properties at low concentrations. In recent years, different substances have been developed targeting Aβ production, aggregation, interaction with other molecules, and clearance, including peptide-based drugs. Aβ is a product of sequential cleavage of the membrane glycoprotein APP (amyloid precursor protein) by β- and γ-secretases. A number of familial mutations causing an early onset of the disease have been identified in the APP, especially in its transmembrane domain. The mutations are reported to influence the production, oligomerization, and conformational behavior of Aβ peptides. This review highlights the results of structural studies of the main proteins involved in Alzheimer's disease pathogenesis and the molecular mechanisms by which perspective therapeutic substances can affect Aβ production and nucleation.
Collapse
|
8
|
Rationally designed peptide-based inhibitor of Aβ42 fibril formation and toxicity: a potential therapeutic strategy for Alzheimer's disease. Biochem J 2020; 477:2039-2054. [PMID: 32427336 PMCID: PMC7293109 DOI: 10.1042/bcj20200290] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Amyloid beta peptide (Aβ42) aggregation in the brain is thought to be responsible for the onset of Alzheimer's disease, an insidious condition without an effective treatment or cure. Hence, a strategy to prevent aggregation and subsequent toxicity is crucial. Bio-inspired peptide-based molecules are ideal candidates for the inhibition of Aβ42 aggregation, and are currently deemed to be a promising option for drug design. In this study, a hexapeptide containing a self-recognition component unique to Aβ42 was designed to mimic the β-strand hydrophobic core region of the Aβ peptide. The peptide is comprised exclusively of D-amino acids to enhance specificity towards Aβ42, in conjunction with a C-terminal disruption element to block the recruitment of Aβ42 monomers on to fibrils. The peptide was rationally designed to exploit the synergy between the recognition and disruption components, and incorporates features such as hydrophobicity, β-sheet propensity, and charge, that all play a critical role in the aggregation process. Fluorescence assays, native ion-mobility mass spectrometry (IM-MS) and cell viability assays were used to demonstrate that the peptide interacts with Aβ42 monomers and oligomers with high specificity, leading to almost complete inhibition of fibril formation, with essentially no cytotoxic effects. These data define the peptide-based inhibitor as a potentially potent anti-amyloid drug candidate for this hitherto incurable disease.
Collapse
|
9
|
Li Y, Cao X, Tian C, Zheng JS. Chemical protein synthesis-assisted high-throughput screening strategies for d-peptides in drug discovery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Zhang X, Zhong M, Zhao P, Zhang X, Li Y, Wang X, Sun J, Lan W, Sun H, Wang Z, Gao H. Screening a specific Zn(ii)-binding peptide for improving the cognitive decline of Alzheimer's disease in APP/PS1 transgenic mice by inhibiting Zn 2+-mediated amyloid protein aggregation and neurotoxicity. Biomater Sci 2020; 7:5197-5210. [PMID: 31588929 DOI: 10.1039/c9bm00676a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zn2+ has been implicated in the progression of Alzheimer's disease (AD), as amyloid-β protein (Aβ) aggregation and neurotoxicity are mediated by zinc ions. Therefore, development of metal chelators for inhibiting and regulating metal-triggered Aβ aggregation has received attention as a strategy for treating AD. Here, we used an approach based on phage display to screen for a Zn(ii)-binding peptide that specifically blocks Zn-triggered Aβ aggregation. A fixed Zn(ii) resin was prepared using Ni-IDA affinity resin, and the target Zn(ii) was screened by interaction with a heptapeptide phage library. After negative biopanning against IDA and four rounds of positive biopanning against Zn(ii), high specificity Zn(ii)-binding phages were obtained. Through DNA sequencing and ELISA, 15 sets of Zn(ii)-binding peptides with high histidine contents were identified. We chose a highly specific peptide against Zn(ii) with the sequence of H-M-Q-T-N-H-H, and its abilities to chelate Zn2+ and inhibit Zn2+-mediated Aβ aggregation were assessed in vitro. We loaded the Zn(ii)-binding peptide onto PEG-modified chitosan nanoparticles (NPs) to improve the stability and the bioavailability of the Zn(ii) binding peptide. PEG-modified chitosan NPs loaded with Zn(ii)-binding peptide (PEG/PZn-CS NPs) reduced Zn2+ concentrations and Aβ secretion in mouse neuroblastoma (N)2a cells stably over-expressing the APP Swedish mutation (N2aswe). Zn2+-Induced neurotoxicity, oxidative stress, and apoptosis were attenuated by PEG/PZn-CS NPs. Intranasal administration of PEG/PZn-CS NPs improved the cognitive ability of APPswe/PS1d9 (APP/PS1) double-transgenic mice and reduced Aβ plaques in the mouse brain. This study indicated that a Zn(ii)-binding peptide and its NPs have promise as a potential anti-AD agent.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang T, Gering I, Kutzsche J, Nagel-Steger L, Willbold D. Toward the Mode of Action of the Clinical Stage All-d-Enantiomeric Peptide RD2 on Aβ42 Aggregation. ACS Chem Neurosci 2019; 10:4800-4809. [PMID: 31710458 DOI: 10.1021/acschemneuro.9b00458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The aggregation of amyloid-β (Aβ) into oligomers and fibrillary structures is critical for the pathogenesis of Alzheimer's disease (AD). Recently, research effort has been focused on developing novel agents that can preferentially suppress Aβ oligomer mediated toxicities, for example, by directly targeting these toxic assemblies. The compound RD2 has been developed and optimized for Aβ42 monomer binding and stabilization of the monomer in its native intrinsically disordered conformation. It has been demonstrated to improve and even reverse the cognitive and behavioral deficits in AD mouse models, while the detailed mechanism of action is not fully clarified. Here we focused on exploring the interaction between RD2 and Aβ42 monomers and its consequences for the fibrillation of Aβ42. RD2 binds to Aβ42 monomers with nanomolar affinities, according to microscale thermophoresis and surface plasmon resonance measurements. Complexes between RD2 and Aβ42 monomers are formed at 1:1 and other stoichiometries, as revealed by analytical ultracentrifugation. At substoichiometric levels, RD2 slows down the secondary structure conversion of Aβ42 and significantly delays the fibril formation. Our research provides experimental evidence in supporting that RD2 eliminates toxic Aβ assemblies by stabilizing Aβ monomers in their native intrinsically disordered conformation. The study further supports the promising application of RD2 in counteracting Aβ aggregation related pathologies.
Collapse
Affiliation(s)
- Tao Zhang
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ian Gering
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Luitgard Nagel-Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
12
|
Schartmann E, Schemmert S, Niemietz N, Honold D, Ziehm T, Tusche M, Elfgen A, Gering I, Brener O, Shah NJ, Langen KJ, Kutzsche J, Willbold D, Willuweit A. In Vitro Potency and Preclinical Pharmacokinetic Comparison of All-D-Enantiomeric Peptides Developed for the Treatment of Alzheimer's Disease. J Alzheimers Dis 2019; 64:859-873. [PMID: 29966196 PMCID: PMC6218115 DOI: 10.3233/jad-180165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diffusible amyloid-β (Aβ) oligomers are currently presumed to be the most cytotoxic Aβ assembly and held responsible to trigger the pathogenesis of Alzheimer’s disease (AD). Thus, Aβ oligomers are a prominent target in AD drug development. Previously, we reported on our solely D-enantiomeric peptide D3 and its derivatives as AD drug candidates. Here, we compare one of the most promising D3 derivatives, ANK6, with its tandem version (tANK6), and its head-to-tail cyclized isoform (cANK6r). In vitro tests investigating the D-peptides’ potencies to inhibit Aβ aggregation, eliminate Aβ oligomers, and reduce Aβ-induced cytotoxicity revealed that all three D-peptides efficiently target Aβ. Subsequent preclinical pharmacokinetic studies of the three all-D-peptides in wildtype mice showed promising blood-brain barrier permeability with cANK6r yielding the highest levels in brain. The peptides’ potencies to lower Aβ toxicity and their remarkable brain/plasma ratios make them promising AD drug candidates.
Collapse
Affiliation(s)
- Elena Schartmann
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Sarah Schemmert
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nicole Niemietz
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dominik Honold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tamar Ziehm
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Tusche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anne Elfgen
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ian Gering
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Oleksandr Brener
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nadim Joni Shah
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Nuclear Medicine, Universitätsklinikum der RWTH Aachen, Aachen, Germany
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Correspondence to: Antje Willuweit, Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Tel.: +49 2461 6196358; E-mail: and Dieter Willbold, Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Tel.: +49 2461 612100; E-mail:
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Correspondence to: Antje Willuweit, Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Tel.: +49 2461 6196358; E-mail: and Dieter Willbold, Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Tel.: +49 2461 612100; E-mail:
| |
Collapse
|
13
|
Zhang T, Loschwitz J, Strodel B, Nagel-Steger L, Willbold D. Interference with Amyloid-β Nucleation by Transient Ligand Interaction. Molecules 2019; 24:E2129. [PMID: 31195746 PMCID: PMC6600523 DOI: 10.3390/molecules24112129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
Amyloid-β peptide (Aβ) is an intrinsically disordered protein (IDP) associated with Alzheimer's disease. The structural flexibility and aggregation propensity of Aβ pose major challenges for elucidating the interaction between Aβ monomers and ligands. All-D-peptides consisting solely of D-enantiomeric amino acid residues are interesting drug candidates that combine high binding specificity with high metabolic stability. Here we characterized the interaction between the 12-residue all-D-peptide D3 and Aβ42 monomers, and how the interaction influences Aβ42 aggregation. We demonstrate for the first time that D3 binds to Aβ42 monomers with submicromolar affinities. These two highly unstructured molecules are able to form complexes with 1:1 and other stoichiometries. Further, D3 at substoichiometric concentrations effectively slows down the β-sheet formation and Aβ42 fibrillation by modulating the nucleation process. The study provides new insights into the molecular mechanism of how D3 affects Aβ assemblies and contributes to our knowledge on the interaction between two IDPs.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Jennifer Loschwitz
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Birgit Strodel
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Luitgard Nagel-Steger
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
Liu W, Dong X, Sun Y. d-Enantiomeric RTHLVFFARK-NH 2: A Potent Multifunctional Decapeptide Inhibiting Cu 2+-Mediated Amyloid β-Protein Aggregation and Remodeling Cu 2+-Mediated Amyloid β Aggregates. ACS Chem Neurosci 2019; 10:1390-1401. [PMID: 30650306 DOI: 10.1021/acschemneuro.8b00440] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aggregation of amyloid β-protein (Aβ) into β-sheet-rich plaques is a general feature of Alzheimer's disease (AD). Homeostasis dysregulation of Cu2+ mediates Aβ to form high cytotoxic aggregates, which causes cell damage by generation of reactive oxygen species (ROS). To improve the inhibitory potency and explore the multifaceted functions of our previously designed decapeptide, RTHLVFFARK-NH2 (RK10), we have herein reformulated the decapeptide into its d-enantiomer, rk10, and the effects of chirality on Aβ aggregation, Cu2+-mediated Aβ aggregations, and aggregate-remodeling effects were investigated. The results revealed the following: (1) The d-enantiomer presented enhanced inhibitory potency on Aβ fibrillogenesis in comparison to RK10; rk10 and RK10 increased the cell viability from 60% to 91% and 71%, respectively, at an equimolar concentration to Aβ. (2) The enantiomers were chemically equivalent to Cu2+ chelation, ROS suppression and oxidative damage rescue. (3) The d-enantiomer exhibited higher performance to inhibit Cu2+-mediated Aβ aggregation, and more significantly attenuated the cytotoxicity caused by Aβ42-Cu2+ complex than RK10. Cell viability was rescued from 51% to 89% and 74% by coincubating with rk10 and RK10 at 50 μM, respectively. Intracellular ROS levels generated by Aβ42 and Aβ42-Cu2+ species were also remarkably decreased by treating with rk10. (4) The enantiomers could remodel mature Aβ42-Cu2+ aggregates by Cu2+ chelation, and rk10 showed higher performance than RK10, as evidenced by the enhanced cell viability from 57% to 86% by RK10 and to 96% by rk10. The d-enantiomer also showed higher ability than RK10 on protecting the disrupted species from reaggregation. Taken together, D-chiral derivatization of the decapeptide resulted in a potent multifunctional agent in inhibiting Cu2+-mediated Aβ aggregation and remodeling mature Aβ-Cu2+ species. To the best of our knowledge, this is the first investigation on the chirality effect of a multifunctional peptide inhibitor on Cu2+-mediated Aβ aggregation and on the remodeling effect of mature Aβ-Cu2+ aggregates. The work provides new insights into the critical role of chirality in the multifaceted functions of peptide inhibitors against amyloid formation and its toxicity.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China
| |
Collapse
|
15
|
Ziehm T, Buell AK, Willbold D. Role of Hydrophobicity and Charge of Amyloid-Beta Oligomer Eliminating d-Peptides in the Interaction with Amyloid-Beta Monomers. ACS Chem Neurosci 2018; 9:2679-2688. [PMID: 29893543 DOI: 10.1021/acschemneuro.8b00132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Inhibition of the self-assembly process of amyloid-beta and even more the removal of already existing toxic amyloid-beta assemblies represent promising therapeutic strategies against Alzheimer's disease. To approach this aim, we selected a d-enantiomeric peptide by phage-display based on the interaction with amyloid-beta monomers. This lead compound was successfully optimized by peptide microarrays with respect to its affinity and specificity to the target resulting in d-peptides with both increased hydrophobicity and net charge. Here, we present a detailed biophysical characterization of the interactions between these optimized d-peptides and amyloid-beta monomers in comparison to the original lead compound in order to obtain a more thorough understanding of the physicochemical determinants of the interactions. Kinetics and apparent stoichiometry of complex formation were studied using surface plasmon resonance. Potential modes of binding to amyloid-beta were identified, and the influences of ionic strength on complex stability, as well as on the inhibitory effect on amyloid-beta aggregation were investigated. The results reveal a very different mode of interaction of the optimized d-peptides based on a combination of electrostatic and hydrophobic interactions as compared to the mostly electrostatically driven interaction of the lead compound. These conclusions were supported by the thermodynamic profiles of the interaction between optimized d-peptides and Aβ monomers, which indicate an increase in binding entropy with respect to the lead compound.
Collapse
Affiliation(s)
- Tamar Ziehm
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alexander K. Buell
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Österlund N, Kulkarni YS, Misiaszek AD, Wallin C, Krüger DM, Liao Q, Mashayekhy Rad F, Jarvet J, Strodel B, Wärmländer SKTS, Ilag LL, Kamerlin SCL, Gräslund A. Amyloid-β Peptide Interactions with Amphiphilic Surfactants: Electrostatic and Hydrophobic Effects. ACS Chem Neurosci 2018; 9:1680-1692. [PMID: 29683649 DOI: 10.1021/acschemneuro.8b00065] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The amphiphilic nature of the amyloid-β (Aβ) peptide associated with Alzheimer's disease facilitates various interactions with biomolecules such as lipids and proteins, with effects on both structure and toxicity of the peptide. Here, we investigate these peptide-amphiphile interactions by experimental and computational studies of Aβ(1-40) in the presence of surfactants with varying physicochemical properties. Our findings indicate that electrostatic peptide-surfactant interactions are required for coclustering and structure induction in the peptide and that the strength of the interaction depends on the surfactant net charge. Both aggregation-prone peptide-rich coclusters and stable surfactant-rich coclusters can form. Only Aβ(1-40) monomers, but not oligomers, are inserted into surfactant micelles in this surfactant-rich state. Surfactant headgroup charge is suggested to be important as electrostatic peptide-surfactant interactions on the micellar surface seems to be an initiating step toward insertion. Thus, no peptide insertion or change in peptide secondary structure is observed using a nonionic surfactant. The hydrophobic peptide-surfactant interactions instead stabilize the Aβ monomer, possibly by preventing self-interaction between the peptide core and C-terminus, thereby effectively inhibiting the peptide aggregation process. These findings give increased understanding regarding the molecular driving forces for Aβ aggregation and the peptide interaction with amphiphilic biomolecules.
Collapse
Affiliation(s)
- Nicklas Österlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91 Stockholm, Sweden
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratories, Stockholm University, 106 91 Stockholm, Sweden
| | - Yashraj S. Kulkarni
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| | - Agata D. Misiaszek
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| | - Cecilia Wallin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91 Stockholm, Sweden
| | - Dennis M. Krüger
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| | - Qinghua Liao
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| | - Farshid Mashayekhy Rad
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratories, Stockholm University, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91 Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | - Leopold L. Ilag
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratories, Stockholm University, 106 91 Stockholm, Sweden
| | - Shina C. L. Kamerlin
- Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
17
|
Head-to-tail cyclization of a heptapeptide eliminates its cytotoxicity and significantly increases its inhibition effect on amyloid β-protein fibrillation and cytotoxicity. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-017-1687-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Schartmann E, Schemmert S, Ziehm T, Leithold LHE, Jiang N, Tusche M, Joni Shah N, Langen KJ, Kutzsche J, Willbold D, Willuweit A. Comparison of blood-brain barrier penetration efficiencies between linear and cyclic all-d-enantiomeric peptides developed for the treatment of Alzheimer's disease. Eur J Pharm Sci 2017; 114:93-102. [PMID: 29225107 DOI: 10.1016/j.ejps.2017.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/25/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD), until now, is an incurable progressive neurodegenerative disease. To target toxic amyloid β oligomers in AD patients' brains and to convert them into non-toxic aggregation-incompetent species, we designed peptides consisting solely of d-enantiomeric amino acid residues. The original lead compound was named D3 and several D3 derivatives were designed to enhance beneficial properties. Here, we compare four d-peptides concerning their efficiencies to pass the blood-brain barrier (BBB). We demonstrate that the d-peptides' concentrations in murine brain directly correlate with concentrations in cerebrospinal fluid. The cyclic d-enantiomeric peptide cRD2D3 is characterized by the highest efficiency to pass the BBB. For in total three cyclic peptides we show that administration of cyclic peptides resulted in up to tenfold higher peak concentrations in brain as compared to their linear equivalents which have partially been characterized before (Jiang et al., 2015; Leithold et al., 2016a). These results suggest that cyclic peptides pass the murine BBB more efficiently than their linear equivalents. cRD2D3's proteolytic stability, oral bioavailability, long duration of action and its favorable brain/plasma ratio reveal that it may become a suitable drug for long-term AD-treatment from a pharmacokinetic point of view.
Collapse
Affiliation(s)
- Elena Schartmann
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Sarah Schemmert
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tamar Ziehm
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Leonie H E Leithold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nan Jiang
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Markus Tusche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - N Joni Shah
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, 52074 Aachen, Germany; Department of Electrical and Computer Systems Engineering and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Department of Nuclear Medicine, Universitätsklinikum der RWTH Aachen, 52074 Aachen, Germany
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
19
|
van Groen T, Schemmert S, Brener O, Gremer L, Ziehm T, Tusche M, Nagel-Steger L, Kadish I, Schartmann E, Elfgen A, Jürgens D, Willuweit A, Kutzsche J, Willbold D. The Aβ oligomer eliminating D-enantiomeric peptide RD2 improves cognition without changing plaque pathology. Sci Rep 2017; 7:16275. [PMID: 29176708 PMCID: PMC5701182 DOI: 10.1038/s41598-017-16565-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/15/2017] [Indexed: 01/17/2023] Open
Abstract
While amyloid-β protein (Aβ) aggregation into insoluble plaques is one of the pathological hallmarks of Alzheimer’s disease (AD), soluble oligomeric Aβ has been hypothesized to be responsible for synapse damage, neurodegeneration, learning, and memory deficits in AD. Here, we investigate the in vitro and in vivo efficacy of the d-enantiomeric peptide RD2, a rationally designed derivative of the previously described lead compound D3, which has been developed to efficiently eliminate toxic Aβ42 oligomers as a promising treatment strategy for AD. Besides the detailed in vitro characterization of RD2, we also report the results of a treatment study of APP/PS1 mice with RD2. After 28 days of treatment we observed enhancement of cognition and learning behaviour. Analysis on brain plaque load did not reveal significant changes, but a significant reduction of insoluble Aβ42. Our findings demonstrate that RD2 was significantly more efficient in Aβ oligomer elimination in vitro compared to D3. Enhanced cognition without reduction of plaque pathology in parallel suggests that synaptic malfunction due to Aβ oligomers rather than plaque pathology is decisive for disease development and progression. Thus, Aβ oligomer elimination by RD2 treatment may be also beneficial for AD patients.
Collapse
Affiliation(s)
- Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Sarah Schemmert
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Oleksandr Brener
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Tamar Ziehm
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Markus Tusche
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Luitgard Nagel-Steger
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Inga Kadish
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elena Schartmann
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Anne Elfgen
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Dagmar Jürgens
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Janine Kutzsche
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
20
|
Large-Scale Oral Treatment Study with the Four Most Promising D3-Derivatives for the Treatment of Alzheimer's Disease. Molecules 2017; 22:molecules22101693. [PMID: 28994710 PMCID: PMC6151452 DOI: 10.3390/molecules22101693] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/04/2017] [Indexed: 01/26/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is associated with the aggregation of the amyloid β protein (Aβ). Aβ oligomers are currently thought to be the major neurotoxic agent responsible for disease development and progression. Thus, their elimination is highly desirable for therapy development. Our therapeutic approach aims at specific and direct elimination of toxic Aβ oligomers by stabilizing Aβ monomers in an aggregation-incompetent conformation. We have proven that our lead compound “D3”, an all d-enantiomeric-peptide, specifically eliminates Aβ oligomers in vitro. In vivo, D3 enhances cognition and reduces plaque load in several transgenic AD mouse models. Here, we performed a large-scale oral proof of concept efficacy study, in which we directly compared four of the most promising D3-derivatives in transgenic mice expressing human amyloid precursor protein with Swedish and London mutations (APPSL), transgenic mice, to identify the most effective compound. RD2 and D3D3, both derived from D3 by rational design, were discovered to be the most effective derivatives in improving cognition in the Morris water maze. The performance of RD2- and D3D3-treated mice within the Morris water maze was significantly better than placebo-treated mice and, importantly, nearly as good as those of non-transgenic littermates, suggesting a complete reversal of the cognitive deficit of APPSL mice.
Collapse
|
21
|
Klein AN, Ziehm T, van Groen T, Kadish I, Elfgen A, Tusche M, Thomaier M, Reiss K, Brener O, Gremer L, Kutzsche J, Willbold D. Optimization of d-Peptides for Aβ Monomer Binding Specificity Enhances Their Potential to Eliminate Toxic Aβ Oligomers. ACS Chem Neurosci 2017; 8:1889-1900. [PMID: 28581708 DOI: 10.1021/acschemneuro.7b00045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Amyloid-beta (Aβ) oligomers are thought to be causative for the development and progression of Alzheimer's disease (AD). Starting from the Aβ oligomer eliminating d-enantiomeric peptide D3, we developed and applied a two-step procedure based on peptide microarrays to identify D3 derivatives with increased binding affinity and specificity for monomeric Aβ(1-42) to further enhance the Aβ oligomer elimination efficacy. Out of more than 1000 D3 derivatives, we selected seven novel d-peptides, named ANK1 to ANK7, and characterized them in more detail in vitro. All ANK peptides bound to monomeric Aβ(1-42), eliminated Aβ(1-42) oligomers, inhibited Aβ(1-42) fibril formation, and reduced Aβ(1-42)-induced cytotoxicity more efficiently than D3. Additionally, ANK6 completely inhibited the prion-like propagation of preformed Aβ(1-42) seeds and showed a nonsignificant tendency for improving memory performance of tg-APPSwDI mice after i.p. application for 4 weeks. This supports the hypothesis that stabilization of Aβ monomers and thereby induced elimination of Aβ oligomers is a suitable therapeutic strategy.
Collapse
Affiliation(s)
- Antonia Nicole Klein
- Institute
of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425 Jülich, Germany
| | - Tamar Ziehm
- Institute
of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425 Jülich, Germany
| | - Thomas van Groen
- Department
of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Inga Kadish
- Department
of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Anne Elfgen
- Institute
of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425 Jülich, Germany
| | - Markus Tusche
- Institute
of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425 Jülich, Germany
| | - Maren Thomaier
- Institute
of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425 Jülich, Germany
| | - Kerstin Reiss
- Institute
of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425 Jülich, Germany
| | - Oleksandr Brener
- Institute
of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Lothar Gremer
- Institute
of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Janine Kutzsche
- Institute
of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425 Jülich, Germany
| | - Dieter Willbold
- Institute
of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Inhibition of amyloid oligomerization into different supramolecular architectures by small molecules: mechanistic insights and design rules. Future Med Chem 2017; 9:797-810. [DOI: 10.4155/fmc-2017-0026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein misfolding and aggregation have been associated with several human disorders, including Alzheimer’s, Parkinson’s and Huntington’s diseases, as well as senile systemic amyloidosis and Type II diabetes. However, there is no current disease-modifying therapy available for the treatment of these disorders. In spite of extensive academic, pharmaceutical, medicinal and clinical research, a complete mechanistic model for this family of diseases is still lacking. In this review, we primarily discuss the different types of small molecular entities which have been used for the inhibition of the aggregation process of different amyloidogenic proteins under diseased conditions. These include small peptides, polyphenols, inositols, quinones and their derivatives, and metal chelator molecules. In recent years, these groups of molecules have been extensively studied using in vitro, in vivo and computational models to understand their mechanism of action and common structural features underlying the process of inhibition. A salient feature found to be instrumental in the process of inhibition is the balance between the aromatic unit that functions as the amyloid recognition unit and the hydrophilic amyloid breaker unit. The establishment of structure–function relationship for amyloid-modifying therapies by the various functional entities should serve as an important step toward the development of efficient therapeutics.
Collapse
|
23
|
Goyal D, Shuaib S, Mann S, Goyal B. Rationally Designed Peptides and Peptidomimetics as Inhibitors of Amyloid-β (Aβ) Aggregation: Potential Therapeutics of Alzheimer's Disease. ACS COMBINATORIAL SCIENCE 2017; 19:55-80. [PMID: 28045249 DOI: 10.1021/acscombsci.6b00116] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no clinically accepted treatment to cure or halt its progression. The worldwide effort to develop peptide-based inhibitors of amyloid-β (Aβ) aggregation can be considered an unplanned combinatorial experiment. An understanding of what has been done and achieved may advance our understanding of AD pathology and the discovery of effective therapeutic agents. We review here the history of such peptide-based inhibitors, including those based on the Aβ sequence and those not derived from that sequence, containing both natural and unnatural amino acid building blocks. Peptide-based aggregation inhibitors hold significant promise for future AD therapy owing to their high selectivity, effectiveness, low toxicity, good tolerance, low accumulation in tissues, high chemical and biological diversity, possibility of rational design, and highly developed methods for analyzing their mode of action, proteolytic stability (modified peptides), and blood-brain barrier (BBB) permeability.
Collapse
Affiliation(s)
- Deepti Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Suniba Shuaib
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Sukhmani Mann
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry,
School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| |
Collapse
|