1
|
Zhang YQ, Min HK, Hong E, Yu E, Gu SM, Yoon SS, Lee D, Lee J, Hong JT, Yun J. Abused drug-induced intracranial self-stimulation is correlated with the alteration of dopamine transporter availability in the medial prefrontal cortex and nucleus accumbens of mice. Biomed Pharmacother 2023; 169:115860. [PMID: 37948992 DOI: 10.1016/j.biopha.2023.115860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Intracranial self-stimulation (ICSS) of the medial forebrain bundle in mice is an experimental model use to assess the relative potential of reward-seeking behaviors. Here, we used the ICSS model to evaluate the abuse potential of 18 abused drugs: 3-Fluoroethamphetamine (3-FEA); methylphenidate; cocaine; dextroamphetamine; alpha-Pyrrolidinobutyrophenone (α-PBT); 4'-Fluoro-4-methylaminorex (4-FPO); methamphetamine; larocaine; phentermine; paramethoxymethamphetamine (PMMA); phendimetrazine; N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (AKB-48); Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (CB-13); 4-Ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-210); Naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018); N-(ortho-methoxybenzyl)-4-ethylamphetamine (4-EA-NBOMe); N-[(2-Methoxyphenyl)methyl]-N-methyl-1-(4-methylphenyl)propan-2-amine (4-MMA-NBOMe); and 1-[1-(4-methoxyphenyl)cyclohexyl]piperidine (4-MeO-PCP). We determined dopamine transporter (DAT) availability in the medial prefrontal cortex (mPFC), striatum, and nucleus accumbens (NAc) after drug treatment. DAT availability in the mPFC and NAc significantly correlated with the ICSS threshold after drug treatment. Extracellular dopamine and calcium levels in PC-12 cells were measured following drug treatment. After drug treatment, Spearman rank and Pearson correlation analyses showed a significant difference between the extracellular dopamine level and the ICSS threshold. After drug treatment, Spearman rank correlation analysis showed a significant correlation between Ca2+ signaling and the ICSS threshold. A positive correlation exists between the ICSS threshold and DAT availability in the mPFC and NAc provoked by abused drugs. The relative potential of drug-induced reward-seeking behavior may be related to DAT availability-mediated extracellular dopamine levels in the mPFC and NAc.
Collapse
Affiliation(s)
- Yong-Qing Zhang
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Hyun Kyu Min
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Eunchong Hong
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Eunhye Yu
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Sun Mi Gu
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Seong Shoon Yoon
- College of Korean Medicine, Daegu Haany University, 136 Sincheondong-ro, Suseong-gu, Daegu 42158, Republic of Korea
| | - Dohyun Lee
- Laboratory Animal Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jaejun Lee
- Laboratory Animal Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea.
| |
Collapse
|
2
|
Pyurveev SS, Sizov VV, Lebedev AA, Bychkov ER, Mukhin VN, Droblenkov AV, Shabanov PD. Registration of Changes in the Level of Extracellular Dopamine in the Nucleus Accumbens by Fast-Scan Cyclic Voltammetry during Stimulation of the Zone of the Ventral Tegmentаl Area, Which Also Caused a Self-Stimulation. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Hollon NG, Williams EW, Howard CD, Li H, Traut TI, Jin X. Nigrostriatal dopamine signals sequence-specific action-outcome prediction errors. Curr Biol 2021; 31:5350-5363.e5. [PMID: 34637751 DOI: 10.1016/j.cub.2021.09.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023]
Abstract
Dopamine has been suggested to encode cue-reward prediction errors during Pavlovian conditioning, signaling discrepancies between actual versus expected reward predicted by the cues.1-5 While this theory has been widely applied to reinforcement learning concerning instrumental actions, whether dopamine represents action-outcome prediction errors and how it controls sequential behavior remain largely unknown. The vast majority of previous studies examining dopamine responses primarily have used discrete reward-predictive stimuli,1-15 whether Pavlovian conditioned stimuli for which no action is required to earn reward or explicit discriminative stimuli that essentially instruct an animal how and when to respond for reward. Here, by training mice to perform optogenetic intracranial self-stimulation, we examined how self-initiated goal-directed behavior influences nigrostriatal dopamine transmission during single and sequential instrumental actions, in behavioral contexts with minimal overt changes in the animal's external environment. We found that dopamine release evoked by direct optogenetic stimulation was dramatically reduced when delivered as the consequence of the animal's own action, relative to non-contingent passive stimulation. This dopamine suppression generalized to food rewards was specific to the reinforced action, was temporally restricted to counteract the expected outcome, and exhibited sequence-selectivity consistent with hierarchical control of sequential behavior. These findings demonstrate that nigrostriatal dopamine signals sequence-specific prediction errors in action-outcome associations, with fundamental implications for reinforcement learning and instrumental behavior in health and disease.
Collapse
Affiliation(s)
- Nick G Hollon
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Elora W Williams
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher D Howard
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hao Li
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tavish I Traut
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Center for Motor Control and Disease, Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China; NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200062, China.
| |
Collapse
|
4
|
Acupuncture Modulates Intracranial Self-Stimulation of the Medial Forebrain Bundle in Rats. Int J Mol Sci 2021; 22:ijms22147519. [PMID: 34299139 PMCID: PMC8304740 DOI: 10.3390/ijms22147519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
Acupuncture affects the central nervous system via the regulation of neurotransmitter transmission. We previously showed that Shemen (HT7) acupoint stimulation decreased cocaine-induced dopamine release in the nucleus accumbens. Here, we used the intracranial self-stimulation (ICSS) paradigm to evaluate whether HT stimulation regulates the brain reward function of rats. We found that HT stimulation triggered a rightward shift of the frequency–rate curve and elevated the ICSS thresholds. However, HT7 stimulation did not affect the threshold-lowering effects produced by cocaine. These results indicate that HT7 points only effectively regulates the ICSS thresholds of the medial forebrain bundle in drug-naïve rats.
Collapse
|
5
|
Sabatini BL, Tian L. Imaging Neurotransmitter and Neuromodulator Dynamics In Vivo with Genetically Encoded Indicators. Neuron 2020; 108:17-32. [PMID: 33058762 DOI: 10.1016/j.neuron.2020.09.036] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
The actions of neuromodulation are thought to mediate the ability of the mammalian brain to dynamically adjust its functional state in response to changes in the environment. Altered neurotransmitter (NT) and neuromodulator (NM) signaling is central to the pathogenesis or treatment of many human neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, depression, and addiction. To reveal the precise mechanisms by which these neurochemicals regulate healthy and diseased neural circuitry, one needs to measure their spatiotemporal dynamics in the living brain with great precision. Here, we discuss recent development, optimization, and applications of optical approaches to measure the spatial and temporal profiles of NT and NM release in the brain using genetically encoded sensors for in vivo studies.
Collapse
Affiliation(s)
- Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| | - Lin Tian
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
6
|
Siegenthaler JR, Gushiken BC, Hill DF, Cowen SL, Heien ML. Moving Fast-Scan Cyclic Voltammetry toward FDA Compliance with Capacitive Decoupling Patient Protection. ACS Sens 2020; 5:1890-1899. [PMID: 32580544 DOI: 10.1021/acssensors.9b02249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Carbon-fiber microelectrodes allow for high spatial and temporal measurements of electroactive neurotransmitter measurements in vivo using fast-scan cyclic voltammetry (FSCV). However, common instrumentation for such measurements systems lack patient safety precautions. To add safety precautions as well as to overcome chemical and electrical noise, a two-electrode FSCV headstage was modified to introduce an active bandpass filter on the electrode side of the measurement amplifier. This modification reduced the measured noise and ac-coupled the voltammetric measurement and moved it from a classical direct current response measurement. ac-coupling not only reduces the measured noise, but also moves FSCV toward compliance with IEC-60601-1, enabling future human trials. Here, we develop a novel ac-coupled voltammetric measurement method of electroactive neurotransmitters. Our method allows for the modeling of a system to then calculate a waveform to compensate for added impedance and capacitance for the system. We describe how first by measuring the frequency response of the system and modeling the analogue response as a digital filter we can then calculate a predicted waveform. The predicted waveform, when applied to the bandpass filter, is modulated to create a desired voltage sweep at the electrode interface. Further, we describe how this modified FSCV waveform is stable, allowing for the measurement of electroactive neurotransmitters. We later describe a 32.7% sensitivity enhancement for dopamine with this new measurement as well as maintaining a calibration curve for dopamine, 3,4-dihydroxyphenylacetic acid, ascorbic acid, and serotonin in vitro. We then validate dopamine in vivo with stimulated release. Our developed measurement method overcame the added capacitance that would traditionally make a voltammetric measurement impossible, and it has wider applications in electrode sensor development, allowing for measurement with capacitive systems, which previously would not have been possible.
Collapse
Affiliation(s)
- James R. Siegenthaler
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, United States
| | - Breanna C. Gushiken
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, United States
| | - Daniel F. Hill
- Department of Physiology, University of Arizona, Tucson, Arizona, United States
| | - Stephen L. Cowen
- Department of Psychology, University of Arizona, Tucson, Arizona, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona, United States
| | - Michael L. Heien
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
7
|
Seaton BT, Hill DF, Cowen SL, Heien ML. Mitigating the Effects of Electrode Biofouling-Induced Impedance for Improved Long-Term Electrochemical Measurements In Vivo. Anal Chem 2020; 92:6334-6340. [PMID: 32298105 PMCID: PMC8281608 DOI: 10.1021/acs.analchem.9b05194] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biofouling is a prevalent issue in studies that involve prolonged implantation of electrochemical probes in the brain. In long-term fast-scan cyclic voltammetry (FSCV) studies, biofouling manifests as a shift in the peak oxidative potential of the background signal that worsens over days to weeks, diminishing sensitivity and selectivity to neurotransmitters such as dopamine. Using open circuit potential (OCP) measurements, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX), and electrochemical impedance spectroscopy (EIS), we examined the biofouling-induced events that occur due to electrode implantation. We determined that the FSCV background signal shift results from cathodic polarization of the Ag/AgCl-wire reference electrode and increased electrochemical impedance of both the Ag/AgCl-wire reference electrode and carbon-fiber working electrode. These events are likely caused collectively by immune response-induced electrode encapsulation. A headstage utilizing a three-electrode configuration, designed to compensate for the impedance component of biofouling, reduced the FSCV background signal shift in vivo and preserved dopamine sensitivity at artificially increased impedance levels in vitro. In conjunction with a stable reference electrode, this three-electrode configuration will be critical in achieving reliable neurotransmitter detection for the duration of long-term FSCV studies.
Collapse
|
8
|
Regan SL, Cryan MT, Williams MT, Vorhees CV, Ross AE. Enhanced Transient Striatal Dopamine Release and Reuptake in Lphn3 Knockout Rats. ACS Chem Neurosci 2020; 11:1171-1177. [PMID: 32203648 DOI: 10.1021/acschemneuro.0c00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Latrophilin-3 (LPHN3) is an adhesion G protein coupled receptor involved in regulating neuroplasticity. Variants of LPHN3 are associated with increased risk of attention-deficit hyperactivity disorder. Data from mouse, zebrafish, Drosophila, and rat show that disruption of LPHN3 results in hyperactivity, and in the Sprague-Dawley Lphn3 knockout rat, exhibit deficits in learning and memory and changes in dopamine (DA) markers in the neostriatum. To determine the effects of Lphn3 deletion on DA neurotransmission, we compared the concentration, duration, and frequency of DA transients in KO and wild-type rats using fast-scan cyclic voltammetry in brain slices. Lphn3 KO rats showed higher release of DA, and the duration and interevent time were markedly decreased compared with wild-type rats. The data demonstrate that LPHN3 plays a heretofore unrecognized role in DA signaling and may represent a new target for small molecule regulation of DA neurotransmission with translational implications.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229, United States
| | - Michael T. Cryan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45229, United States
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229, United States
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio 45229, United States
| | - Ashley E. Ross
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio 45229, United States
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45229, United States
| |
Collapse
|
9
|
Abstract
Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFMEs) is a versatile electrochemical technique to probe neurochemical dynamics in vivo. Progress in FSCV methodology continues to address analytical challenges arising from biological needs to measure low concentrations of neurotransmitters at specific sites. This review summarizes recent advances in FSCV method development in three areas: (1) waveform optimization, (2) electrode development, and (3) data analysis. First, FSCV waveform parameters such as holding potential, switching potential, and scan rate have been optimized to monitor new neurochemicals. The new waveform shapes introduce better selectivity toward specific molecules such as serotonin, histamine, hydrogen peroxide, octopamine, adenosine, guanosine, and neuropeptides. Second, CFMEs have been modified with nanomaterials such as carbon nanotubes or replaced with conducting polymers to enhance sensitivity, selectivity, and antifouling properties. Different geometries can be obtained by 3D-printing, manufacturing arrays, or fabricating carbon nanopipettes. Third, data analysis is important to sort through the thousands of CVs obtained. Recent developments in data analysis include preprocessing by digital filtering, principal components analysis for distinguishing analytes, and developing automated algorithms to detect peaks. Future challenges include multisite measurements, machine learning, and integration with other techniques. Advances in FSCV will accelerate research in neurochemistry to answer new biological questions about dynamics of signaling in the brain.
Collapse
Affiliation(s)
- Pumidech Puthongkham
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
10
|
Shin M, Wang Y, Borgus JR, Venton BJ. Electrochemistry at the Synapse. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:297-321. [PMID: 30707593 PMCID: PMC6989097 DOI: 10.1146/annurev-anchem-061318-115434] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrochemical measurements of neurotransmitters provide insight into the dynamics of neurotransmission. In this review, we describe the development of electrochemical measurements of neurotransmitters and how they started with extrasynaptic measurements but now are pushing toward synaptic measurements. Traditionally, biosensors or fast-scan cyclic voltammetry have monitored extrasynaptic levels of neurotransmitters, such as dopamine, serotonin, adenosine, glutamate, and acetylcholine. Amperometry and electrochemical cytometry techniques have revealed mechanisms of exocytosis, suggesting partial release. Advances in nanoelectrodes now allow spatially resolved, electrochemical measurements in a synapse, which is only 20-100 nm wide. Synaptic measurements of dopamine and acetylcholine have been made. In this article, electrochemical measurements are also compared to optical imaging and mass spectrometry measurements, and while these other techniques provide enhanced spatial or chemical information, electrochemistry is best at monitoring real-time neurotransmission. Future challenges include combining electrochemistry with these other techniques in order to facilitate multisite and multianalyte monitoring.
Collapse
Affiliation(s)
| | | | - Jason R Borgus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| |
Collapse
|
11
|
Lim GN, Ross AE. Purine Functional Group Type and Placement Modulate the Interaction with Carbon-Fiber Microelectrodes. ACS Sens 2019; 4:479-487. [PMID: 30657307 DOI: 10.1021/acssensors.8b01504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purine detection in the brain with fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFME) has become increasingly popular over the past decade; despite the growing interest, an in-depth analysis of how purines interact with the CFME at fast-scan rates has not been investigated. Here, we show how the functional group type and placement in the purine ring modulate sensitivity, electron transfer kinetics, and adsorption on the carbon-fiber surface. Similar investigations of catecholamine interaction at CFME with FSCV have informed the development of novel catecholamine-based sensors and is needed for purine-based sensors. We tested purine bases with either amino, carbonyl, or both functional groups substituted at different positions on the ring and an unsubstituted purine. Unsubstituted purine showed very little to no interaction with the electrode surface, indicating that functional groups are important for interaction at the CFME. Purine nucleosides and nucleotides, like adenosine, guanosine, and adenosine triphosphate, are most often probed using FSCV due to their rich extracellular signaling modalities in the brain. Because of this, the extent to which the ribose and triphosphate groups affect the purine-CFME interaction was also evaluated. Amino functional groups facilitated the interaction of purine analogues with CFME more than carbonyl groups, permitting strong adsorption and high surface coverage. Ribose and triphosphate groups decreased the oxidative current and slowed the interaction at the electrode which is likely due to steric effects and electrostatic repulsion. This work provides insight into the factors that affect purine-CFME interaction and conditions to consider when developing purine-targeted sensors for FSCV.
Collapse
Affiliation(s)
- Gary N. Lim
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ashley E. Ross
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
12
|
Rivera-Serrano N, Pagan M, Colón-Rodríguez J, Fuster C, Vélez R, Almodovar-Faria J, Jiménez-Rivera C, Cunci L. Static and Dynamic Measurement of Dopamine Adsorption in Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy. Anal Chem 2018; 90:2293-2301. [PMID: 29260558 PMCID: PMC5957755 DOI: 10.1021/acs.analchem.7b04692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, electrochemical impedance spectroscopy was used for the first time to study the adsorption of dopamine in carbon fiber microelectrodes. In order to show a proof-of-concept, static and dynamic measurements were taken at potentials ranging from -0.4 to 0.8 V versus Ag|AgCl to demonstrate the versatility of this technique to study dopamine without the need of its oxidation. We used electrochemical impedance spectroscopy and single frequency electrochemical impedance to measure different concentrations of dopamine as low as 1 nM. Moreover, the capacitance of the microelectrodes surface was found to decrease due to dopamine adsorption, which is dependent on its concentration. The effect of dissolved oxygen and electrochemical oxidation of the surface in the detection of dopamine was also studied. Nonoxidized and oxidized carbon fiber microelectrodes were prepared and characterized by optical microscopy, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Optimum working parameters of the electrodes, such as frequency and voltage, were obtained for better measurement. Electrochemical impedance of dopamine was determined at different concentration, voltages, and frequencies. Finally, dynamic experiments were conducted using a flow cell and single frequency impedance in order to study continuous and real-time measurements of dopamine.
Collapse
Affiliation(s)
- Nilka Rivera-Serrano
- Department of Chemistry, Universidad del Turabo, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Miraida Pagan
- Department of Chemistry, Universidad del Turabo, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Joanisse Colón-Rodríguez
- Department of Chemistry, Universidad del Turabo, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Christian Fuster
- Department of Chemistry, Universidad del Turabo, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Román Vélez
- Department of Chemistry, Universidad del Turabo, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Jose Almodovar-Faria
- Department of Electrical Engineering, Universidad del Turabo, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Carlos Jiménez-Rivera
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 00936, United States
| | - Lisandro Cunci
- Department of Chemistry, Universidad del Turabo, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| |
Collapse
|
13
|
Affiliation(s)
- James G. Roberts
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695, United States
| | - Leslie A. Sombers
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695, United States
| |
Collapse
|
14
|
Deep brain stimulation of the medial forebrain bundle elevates striatal dopamine concentration without affecting spontaneous or reward-induced phasic release. Neuroscience 2017; 364:82-92. [PMID: 28918253 DOI: 10.1016/j.neuroscience.2017.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022]
Abstract
Deep brain stimulation (DBS) of the medial forebrain bundle (MFB) induces rapid improvement of depressive symptoms in patients suffering from treatment-refractory major depressive disorder (MDD). It has been hypothesized that activation of the dopamine (DA) system contributes to this effect. To investigate whether DBS in the MFB affects DA release in the striatum, we combined DBS with fast-scan cyclic voltammetry (FSCV) in freely moving rats. Animals were implanted with a stimulating electrode at the border of the MFB and the ventral tegmental area, and a FSCV microelectrode in the ventromedial striatum to monitor extracellular DA during the acute onset of DBS and subsequent continued stimulation. DBS onset induced a significant increase in extracellular DA concentration in the ventromedial striatum that was sustained for at least 40s. However, continued DBS did not affect amplitude or frequency of so-called spontaneous phasic DA transients, nor phasic DA release in response to the delivery of unexpected food pellets. These findings suggest that effects of DBS in the MFB are mediated by an acute change in extracellular DA concentration, but more research is needed to further explore the potentially sustained duration of this effect. Together, our results provide both support and refinement of the hypothesis that MFB DBS activates the DA system: DBS induces an increase in overall ambient concentration of DA, but spontaneous or reward-associated more rapid, phasic DA dynamics are not enhanced. This knowledge improves our understanding of how DBS affects brain function and may help improve future therapies for depressive symptoms.
Collapse
|
15
|
Johnson JA, Hobbs CN, Wightman RM. Removal of Differential Capacitive Interferences in Fast-Scan Cyclic Voltammetry. Anal Chem 2017; 89:6166-6174. [PMID: 28488873 PMCID: PMC5685151 DOI: 10.1021/acs.analchem.7b01005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to its high spatiotemporal resolution, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes enables the localized in vivo monitoring of subsecond fluctuations in electroactive neurotransmitter concentrations. In practice, resolution of the analytical signal relies on digital background subtraction for removal of the large current due to charging of the electrical double layer as well as surface faradaic reactions. However, fluctuations in this background current often occur with changes in the electrode state or ionic environment, leading to nonspecific contributions to the FSCV data that confound data analysis. Here, we both explore the origin of such shifts seen with local changes in cations and develop a model to account for their shape. Further, we describe a convolution-based method for removal of the differential capacitive contributions to the FSCV current. The method relies on the use of a small-amplitude pulse made prior to the FSCV sweep that probes the impedance of the system. To predict the nonfaradaic current response to the voltammetric sweep, the step current response is differentiated to provide an estimate of the system's impulse response function and is used to convolute the applied waveform. The generated prediction is then subtracted from the observed current to the voltammetric sweep, removing artifacts associated with electrode impedance changes. The technique is demonstrated to remove select contributions from capacitive characteristics changes of the electrode both in vitro (i.e., in flow-injection analysis) and in vivo (i.e., during a spreading depression event in an anesthetized rat).
Collapse
Affiliation(s)
- Justin A Johnson
- Department of Chemistry and ‡Neuroscience Center and Neurobiology Curriculum, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Caddy N Hobbs
- Department of Chemistry and ‡Neuroscience Center and Neurobiology Curriculum, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - R Mark Wightman
- Department of Chemistry and ‡Neuroscience Center and Neurobiology Curriculum, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
16
|
Abstract
Recent progress in the electrochemical field enabled development of miniaturized sensing devices that can be used in biological settings to obtain fundamental and practical biochemically relevant information on physiology, metabolism, and disease states in living systems. Electrochemical sensors and biosensors have demonstrated potential for rapid, real-time measurements of biologically relevant molecules. This chapter provides an overview of the most recent advances in the development of miniaturized sensors for biological investigations in living systems, with focus on the detection of neurotransmitters and oxidative stress markers. The design of electrochemical (bio)sensors, including their detection mechanism and functionality in biological systems, is described as well as their advantages and limitations. Application of these sensors to studies in live cells, embryonic development, and rodent models is discussed.
Collapse
|
17
|
Rodeberg NT, Sandberg SG, Johnson JA, Phillips PEM, Wightman RM. Hitchhiker's Guide to Voltammetry: Acute and Chronic Electrodes for in Vivo Fast-Scan Cyclic Voltammetry. ACS Chem Neurosci 2017; 8:221-234. [PMID: 28127962 PMCID: PMC5783156 DOI: 10.1021/acschemneuro.6b00393] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fast-scan cyclic voltammetry (FSCV) has been used for over 20 years to study rapid neurotransmission in awake and behaving animals. These experiments were first carried out with carbon-fiber microelectrodes (CFMs) encased in borosilicate glass, which can be inserted into the brain through micromanipulators and guide cannulas. More recently, chronically implantable CFMs constructed with small diameter fused-silica have been introduced. These electrodes can be affixed in the brain with minimal tissue response, which permits longitudinal measurements of neurotransmission in single recording locations during behavior. Both electrode designs have been used to make novel discoveries in the fields of neurobiology, behavioral neuroscience, and psychopharmacology. The purpose of this Review is to address important considerations for the use of FSCV to study neurotransmitters in awake and behaving animals, with a focus on measurements of striatal dopamine. Common issues concerning experimental design, data collection, and calibration are addressed. When necessary, differences between the two methodologies (acute vs chronic recordings) are discussed. The topics raised in this Review are particularly important as the field moves beyond dopamine toward new neurochemicals and brain regions.
Collapse
Affiliation(s)
- Nathan T. Rodeberg
- Department of Chemistry and ‡Neuroscience
Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Psychiatry
and Behavioral Sciences and ∥Department of Pharmacology, University of Washington, Seattle, Washington 98195-6560, United States
| | - Stefan G. Sandberg
- Department of Chemistry and ‡Neuroscience
Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Psychiatry
and Behavioral Sciences and ∥Department of Pharmacology, University of Washington, Seattle, Washington 98195-6560, United States
| | - Justin A. Johnson
- Department of Chemistry and ‡Neuroscience
Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Psychiatry
and Behavioral Sciences and ∥Department of Pharmacology, University of Washington, Seattle, Washington 98195-6560, United States
| | - Paul E. M. Phillips
- Department of Chemistry and ‡Neuroscience
Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Psychiatry
and Behavioral Sciences and ∥Department of Pharmacology, University of Washington, Seattle, Washington 98195-6560, United States
| | - R. Mark Wightman
- Department of Chemistry and ‡Neuroscience
Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Psychiatry
and Behavioral Sciences and ∥Department of Pharmacology, University of Washington, Seattle, Washington 98195-6560, United States
| |
Collapse
|
18
|
Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal Chem 2017; 89:314-341. [PMID: 28105819 PMCID: PMC5260807 DOI: 10.1021/acs.analchem.6b04278] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - B. Jill Venton
- Department of Chemistry, PO Box 400319, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
19
|
Fox ME, Wightman RM. Contrasting Regulation of Catecholamine Neurotransmission in the Behaving Brain: Pharmacological Insights from an Electrochemical Perspective. Pharmacol Rev 2017; 69:12-32. [PMID: 28267676 PMCID: PMC7558309 DOI: 10.1124/pr.116.012948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Catecholamine neurotransmission plays a key role in regulating a variety of behavioral and physiologic processes, and its dysregulation is implicated in both neurodegenerative and neuropsychiatric disorders. Over the last four decades, in vivo electrochemistry has enabled the discovery of contrasting catecholamine regulation in the brain. These rapid and spatially resolved measurements have been conducted in brain slices, and in anesthetized and freely behaving animals. In this review, we describe the methods enabling in vivo measurements of dopamine and norepinephrine, and subsequent findings regarding their release and regulation in intact animals. We thereafter discuss key studies in awake animals, demonstrating that these catecholamines are not only differentially regulated, but are released in opposition of each other during appetitive and aversive stimuli.
Collapse
Affiliation(s)
- Megan E Fox
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| | - R Mark Wightman
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|