1
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
2
|
Lohse MB, Laurie MT, Levan S, Ziv N, Ennis CL, Nobile CJ, DeRisi J, Johnson AD. Broad susceptibility of Candida auris strains to 8-hydroxyquinolines and mechanisms of resistance. mBio 2023; 14:e0137623. [PMID: 37493629 PMCID: PMC10470496 DOI: 10.1128/mbio.01376-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
The fungal pathogen Candida auris represents a severe threat to hospitalized patients. Its resistance to multiple classes of antifungal drugs and ability to spread and resist decontamination in healthcare settings make it especially dangerous. We screened 1,990 clinically approved and late-stage investigational compounds for the potential to be repurposed as antifungal drugs targeting C. auris and narrowed our focus to five Food and Drug Administration (FDA)-approved compounds with inhibitory concentrations under 10 µM for C. auris and significantly lower toxicity to three human cell lines. These compounds, some of which had been previously identified in independent screens, include three dihalogenated 8-hydroxyquinolines: broxyquinoline, chloroxine, and clioquinol. A subsequent structure-activity study of 32 quinoline derivatives found that 8-hydroxyquinolines, especially those dihalogenated at the C5 and C7 positions, were the most effective inhibitors of C. auris. To pursue these compounds further, we exposed C. auris to clioquinol in an extended experimental evolution study and found that C. auris developed only twofold to fivefold resistance to the compound. DNA sequencing of resistant strains and subsequent verification by directed mutation in naive strains revealed that resistance was due to mutations in the transcriptional regulator CAP1 (causing upregulation of the drug transporter MDR1) and in the drug transporter CDR1. These mutations had only modest effects on resistance to traditional antifungal agents, and the CDR1 mutation rendered C. auris more susceptible to posaconazole. This observation raises the possibility that a combination treatment involving an 8-hydroxyquinoline and posaconazole might prevent C. auris from developing resistance to this established antifungal agent. IMPORTANCE The rapidly emerging fungal pathogen Candida auris represents a growing threat to hospitalized patients, in part due to frequent resistance to multiple classes of antifungal drugs. We identify a class of compounds, the dihalogenated 8-hydroxyquinolines, with broad fungistatic ability against a diverse collection of 13 strains of C. auris. Although this compound has been identified in previous screens, we extended the analysis by showing that C. auris developed only modest twofold to fivefold increases in resistance to this class of compounds despite long-term exposure; a noticeable difference from the 30- to 500-fold increases in resistance reported for similar studies with commonly used antifungal drugs. We also identify the mutations underlying the resistance. These results suggest that the dihalogenated 8-hydroxyquinolines are working inside the fungal cell and should be developed further to combat C. auris and other fungal pathogens. Lohse and colleagues characterize a class of compounds that inhibit the fungal pathogen C. auris. Unlike many other antifungal drugs, C. auris does not readily develop resistance to this class of compounds.
Collapse
Affiliation(s)
- Matthew B. Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Matthew T. Laurie
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Sophia Levan
- Department of Medicine, University of California, San Francisco, California, USA
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Craig L. Ennis
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, California, USA
| | - Joseph DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
3
|
Epremyan KK, Mamaev DV, Zvyagilskaya RA. Alzheimer's Disease: Significant Benefit from the Yeast-Based Models. Int J Mol Sci 2023; 24:9791. [PMID: 37372938 DOI: 10.3390/ijms24129791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related, multifaceted neurological disorder associated with accumulation of aggregated proteins (amyloid Aβ and hyperphosphorylated tau), loss of synapses and neurons, and alterations in microglia. AD was recognized by the World Health Organization as a global public health priority. The pursuit of a better understanding of AD forced researchers to pay attention to well-defined single-celled yeasts. Yeasts, despite obvious limitations in application to neuroscience, show high preservation of basic biological processes with all eukaryotic organisms and offer great advantages over other disease models due to the simplicity, high growth rates on low-cost substrates, relatively simple genetic manipulations, the large knowledge base and data collections, and availability of an unprecedented amount of genomic and proteomic toolboxes and high-throughput screening techniques, inaccessible to higher organisms. Research reviewed above clearly indicates that yeast models, together with other, more simple eukaryotic models including animal models, C. elegans and Drosophila, significantly contributed to understanding Aβ and tau biology. These models allowed high throughput screening of factors and drugs that interfere with Aβ oligomerization, aggregation and toxicity, and tau hyperphosphorylation. In the future, yeast models will remain relevant, with a focus on creating novel high throughput systems to facilitate the identification of the earliest AD biomarkers among different cellular networks in order to achieve the main goal-to develop new promising therapeutic strategies to treat or prevent the disease.
Collapse
Affiliation(s)
- Khoren K Epremyan
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Dmitry V Mamaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Renata A Zvyagilskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
4
|
Lohse MB, Laurie MT, Levan S, Ziv N, Ennis CL, Nobile CJ, DeRisi J, Johnson AD. Broad sensitivity of Candida auris strains to quinolones and mechanisms of resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528905. [PMID: 36824717 PMCID: PMC9949084 DOI: 10.1101/2023.02.16.528905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The fungal pathogen Candida auris represents a severe threat to hospitalized patients. Its resistance to multiple classes of antifungal drugs and ability to spread and resist decontamination in health-care settings make it especially dangerous. We screened 1,990 clinically approved and late-stage investigational compounds for the potential to be repurposed as antifungal drugs targeting C. auris and narrowed our focus to five FDA-approved compounds with inhibitory concentrations under 10 µM for C. auris and significantly lower toxicity to three human cell lines. These compounds, some of which had been previously identified in independent screens, include three dihalogenated 8-hydroxyquinolines: broxyquinoline, chloroxine, and clioquinol. A subsequent structure-activity study of 32 quinoline derivatives found that 8-hydroxyquinolines, especially those dihalogenated at the C5 and C7 positions, were the most effective inhibitors of C. auris . To pursue these compounds further, we exposed C. auris to clioquinol in an extended experimental evolution study and found that C. auris developed only 2- to 5-fold resistance to the compound. DNA sequencing of resistant strains and subsequent verification by directed mutation in naive strains revealed that resistance was due to mutations in the transcriptional regulator CAP1 (causing upregulation of the drug transporter MDR1 ) and in the drug transporter CDR1 . These mutations had only modest effects on resistance to traditional antifungal agents, and the CDR1 mutation rendered C. auris more sensitive to posaconazole. This observation raises the possibility that a combination treatment involving an 8-hydroxyquinoline and posaconazole might prevent C. auris from developing resistance to this established antifungal agent. Abstract Importance The rapidly emerging fungal pathogen Candida auris represents a growing threat to hospitalized patients, in part due to frequent resistance to multiple classes of antifungal drugs. We identify a class of compounds, the dihalogenated hydroxyquinolines, with broad fungistatic ability against a diverse collection of 13 strains of C. auris . Although this compound has been identified in previous screens, we extended the analysis by showing that C. auris developed only modest 2- to 5-fold increases in resistance to this class of compounds despite long-term exposure; a noticeable difference from the 30- to 500- fold increases in resistance reported for similar studies with commonly used antifungal drugs. We also identify the mutations underlying the resistance. These results suggest that the dihalogenated hydroxyquinolines are working inside the fungal cell and should be developed further to combat C. auris and other fungal pathogens. Tweet Lohse and colleagues characterize a class of compounds that inhibit the fungal pathogen C. auris . Unlike many other antifungal drugs, C. auris does not readily develop resistance to this class of compounds.
Collapse
|
5
|
Kropp PA, Bauer R, Zafra I, Graham C, Golden A. Caenorhabditis elegans for rare disease modeling and drug discovery: strategies and strengths. Dis Model Mech 2021; 14:dmm049010. [PMID: 34370008 PMCID: PMC8380043 DOI: 10.1242/dmm.049010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although nearly 10% of Americans suffer from a rare disease, clinical progress in individual rare diseases is severely compromised by lack of attention and research resources compared to common diseases. It is thus imperative to investigate these diseases at their most basic level to build a foundation and provide the opportunity for understanding their mechanisms and phenotypes, as well as potential treatments. One strategy for effectively and efficiently studying rare diseases is using genetically tractable organisms to model the disease and learn about the essential cellular processes affected. Beyond investigating dysfunctional cellular processes, modeling rare diseases in simple organisms presents the opportunity to screen for pharmacological or genetic factors capable of ameliorating disease phenotypes. Among the small model organisms that excel in rare disease modeling is the nematode Caenorhabditis elegans. With a staggering breadth of research tools, C. elegans provides an ideal system in which to study human disease. Molecular and cellular processes can be easily elucidated, assayed and altered in ways that can be directly translated to humans. When paired with other model organisms and collaborative efforts with clinicians, the power of these C. elegans studies cannot be overstated. This Review highlights studies that have used C. elegans in diverse ways to understand rare diseases and aid in the development of treatments. With continuing and advancing technologies, the capabilities of this small round worm will continue to yield meaningful and clinically relevant information for human health.
Collapse
Affiliation(s)
| | | | | | | | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Merged Tacrine-Based, Multitarget-Directed Acetylcholinesterase Inhibitors 2015-Present: Synthesis and Biological Activity. Int J Mol Sci 2020; 21:ijms21175965. [PMID: 32825138 PMCID: PMC7504404 DOI: 10.3390/ijms21175965] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Acetylcholinesterase is an important biochemical enzyme in that it controls acetylcholine-mediated neuronal transmission in the central nervous system, contains a unique structure with two binding sites connected by a gorge region, and it has historically been the main pharmacological target for treatment of Alzheimer's disease. Given the large projected increase in Alzheimer's disease cases in the coming decades and its complex, multifactorial nature, new drugs that target multiple aspects of the disease at once are needed. Tacrine, the first acetylcholinesterase inhibitor used clinically but withdrawn due to hepatotoxicity concerns, remains an important starting point in research for the development of multitarget-directed acetylcholinesterase inhibitors. This review highlights tacrine-based, multitarget-directed acetylcholinesterase inhibitors published in the literature since 2015 with a specific focus on merged compounds (i.e., compounds where tacrine and a second pharmacophore show significant overlap in structure). The synthesis of these compounds from readily available starting materials is discussed, along with acetylcholinesterase inhibition data, relative to tacrine, and structure activity relationships. Where applicable, molecular modeling, to elucidate key enzyme-inhibitor interactions, and secondary biological activity is highlighted. Of the numerous compounds identified, there is a subset with promising preliminary screening results, which should inspire further development and future research in this field.
Collapse
|
7
|
Dorababu A. Critical evaluation of current Alzheimer's drug discovery (2018-19) & futuristic Alzheimer drug model approach. Bioorg Chem 2019; 93:103299. [PMID: 31586701 DOI: 10.1016/j.bioorg.2019.103299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), a neurodegenerative disease responsible for death of millions of people worldwide is a progressive clinical disorder which causes neurons to degenerate and ultimately die. It is one of the common causes of dementia wherein a person's incapability to independently think, behave and decline in social skills can be quoted as major symptoms. However the early signs include the simple non-clinical symptoms such as forgetting recent events and conversations. Onset of these symptoms leads to worsened conditions wherein the AD patient suffers severe memory impairment and eventually becomes unable to work out everyday tasks. Even though there is no complete cure for AD, rigorous research has been going on to reduce the progress of AD. Currently, a very few clinical drugs are prevailing for AD treatment. So this is the need of hour to design, develop and discovery of novel anti-AD drugs. The main factors for the cause of AD according to scientific research reveals structural changes in brain proteins such as beta amyloid, tau proteins into plaques and tangles respectively. The abnormal proteins distort the neurons. Despite the high potencies of the synthesized molecules; they could not get on the clinical tests up to human usage. In this review article, the recent research carried out with respect to inhibition of AChE, BuChE, NO, BACE1, MAOs, Aβ, H3R, DAPK, CSF1R, 5-HT4R, PDE, σ1R and GSK-3β is compiled and organized. The summary is focused mainly on cholinesterases, Aβ, BACE1 and MAOs classes of potential inhibitors. The review also covers structure activity relationship of most potent compounds of each class of inhibitors alongside redesign and remodeling of the most significant inhibitors in order to expect cutting edge inhibitory properties towards AD. Alongside the molecular docking studies of the some final compounds are discussed.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Studies in Chemistry, SRMPP Govt. First Grade College, Huvinahadagali 583219, Karnataka, India.
| |
Collapse
|
8
|
Tantimongcolwat T, Prachayasittikul S, Prachayasittikul V. Unravelling the interaction mechanism between clioquinol and bovine serum albumin by multi-spectroscopic and molecular docking approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:25-34. [PMID: 30865872 DOI: 10.1016/j.saa.2019.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Clioquinol has recently been proposed for the treatment of Alzheimer's disease. It is able to diminish β-amyloid protein aggregation and to restore cognition of Alzheimer's mice. However, its therapeutic benefits for Alzheimer's disease in human remain controversy and need further confirmation. Herein, we have explored the interaction mechanism of clioquinol toward bovine serum albumin (BSA) by means of multi-spectroscopic and docking simulation approaches. Clioquinol interacts with BSA by a combined mechanism of static and dynamic processes. Application of the Hill's equation to fluorescence quenching experiment revealed that the binding constant of the BSA-clioquinol complex is extremely high at 108 M-1 level. Competitive displacement and docking analysis consistently suggested that there are the multiple binding modes of clioquinol toward BSA. Competitive binding study showed that clioquinol shares the binding sites with ibuprofen and digitoxin on albumin, referring to be site II and site III binding compounds. Besides, partial binding in site I was also observed. Docking simulation confirmed that clioquinol favors to bind in site I, site II, site III, fatty acid binding site 5, and the protein cleft between subdomain IB and IIIB of the BSA. Due to its small size and electric dipole property, clioquinol may easily fit in multiple pockets of the BSA. Our finding suggests the potential role of BSA as a clioquinol carrier in the vascular system. Nonetheless, clioquinol-induced BSA aggregation has been observed by the three-dimensional fluorescence technique. This phenomenon may not only impair the BSA, but may also affect other endogenous proteins, which eventually causes adverse effects to human. Therefore, the redesigned or modified molecular structure of clioquinol may reduce its toxicity and improve its bioavailability.
Collapse
Affiliation(s)
- Tanawut Tantimongcolwat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhonpathom 73170, Thailand.
| | - Supaluk Prachayasittikul
- Center for Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhonpathom 73170, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhonpathom 73170, Thailand
| |
Collapse
|
9
|
Rencus-Lazar S, DeRowe Y, Adsi H, Gazit E, Laor D. Yeast Models for the Study of Amyloid-Associated Disorders and Development of Future Therapy. Front Mol Biosci 2019; 6:15. [PMID: 30968029 PMCID: PMC6439353 DOI: 10.3389/fmolb.2019.00015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022] Open
Abstract
First described almost two decades ago, the pioneering yeast models of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases, have become well-established research tools, providing both basic mechanistic insights as well as a platform for the development of therapeutic agents. These maladies are associated with the formation of aggregative amyloid protein structures showing common characteristics, such as the assembly of soluble oligomeric species, binding of indicative dyes, and apoptotic cytotoxicity. The canonical yeast models have recently been expanded by the establishment of a model for type II diabetes, a non-neurological amyloid-associated disease. While these model systems require the exogenous expression of mammalian proteins in yeast, an additional amyloid-associated disease model, comprising solely mutations of endogenous yeast genes, has been recently described. Mutated in the adenine salvage pathway, this yeast model exhibits adenine accumulation, thereby recapitulating adenine inborn error of metabolism disorders. Moreover, in line with the recent extension of the amyloid hypothesis to include metabolite amyloids, in addition to protein-associated ones, the intracellular assembly of adenine amyloid-like structures has been demonstrated using this yeast model. In this review, we describe currently available yeast models of diverse amyloid-associated disorders, as well as their impact on our understanding of disease mechanisms and contribution to future potential drug development.
Collapse
Affiliation(s)
- Sigal Rencus-Lazar
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yasmin DeRowe
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanaa Adsi
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv, Israel.,Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dana Laor
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Griffin EF, Scopel SE, Stephen CA, Holzhauer AC, Vaji MA, Tuckey RA, Berkowitz LA, Caldwell KA, Caldwell GA. ApoE-associated modulation of neuroprotection from Aβ-mediated neurodegeneration in transgenic Caenorhabditis elegans. Dis Model Mech 2019; 12:dmm.037218. [PMID: 30683808 PMCID: PMC6398492 DOI: 10.1242/dmm.037218] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Allele-specific distinctions in the human apolipoprotein E (APOE) locus represent the best-characterized genetic predictor of Alzheimer's disease (AD) risk. Expression of isoform APOEε2 is associated with reduced risk, while APOEε3 is neutral and APOEε4 carriers exhibit increased susceptibility. Using Caenorhabditis elegans, we generated a novel suite of humanized transgenic nematodes to facilitate neuronal modeling of amyloid-beta peptide (Aβ) co-expression in the context of distinct human APOE alleles. We found that co-expression of human APOEε2 with Aβ attenuated Aβ-induced neurodegeneration, whereas expression of the APOEε4 allele had no effect on neurodegeneration, indicating a loss of neuroprotective capacity. Notably, the APOEε3 allele displayed an intermediate phenotype; it was not neuroprotective in young adults but attenuated neurodegeneration in older animals. There was no functional impact from the three APOE isoforms in the absence of Aβ co-expression. Pharmacological treatment that examined neuroprotective effects of APOE alleles on calcium homeostasis showed allele-specific responses to changes in ER-associated calcium dynamics in the Aβ background. Additionally, Aβ suppressed survival, an effect that was rescued by APOEε2 and APOEε3, but not APOEε4. Expression of the APOE alleles in neurons, independent of Aβ, exerted no impact on survival. Taken together, these results illustrate that C. elegans provides a powerful in vivo platform with which to explore how AD-associated neuronal pathways are modulated by distinct APOE gene products in the context of Aβ-associated neurotoxicity. The significance of both ApoE and Aβ to AD highlights the utility of this new pre-clinical model as a means to dissect their functional inter-relationship.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Edward F Griffin
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Samuel E Scopel
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Cayman A Stephen
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Adam C Holzhauer
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Madeline A Vaji
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Ryan A Tuckey
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Laura A Berkowitz
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA.,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA .,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Synthesis and evaluation of clioquinol-rolipram/roflumilast hybrids as multitarget-directed ligands for the treatment of Alzheimer's disease. Eur J Med Chem 2019; 163:512-526. [DOI: 10.1016/j.ejmech.2018.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023]
|
12
|
Bartolini M, Marco‐Contelles J. Tacrines as Therapeutic Agents for Alzheimer's Disease. IV. The Tacripyrines and Related Annulated Tacrines. CHEM REC 2018; 19:927-937. [DOI: 10.1002/tcr.201800155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Manuela Bartolini
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - José Marco‐Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC) 3, Juan de la Cierva 28006 Madrid Spain
| |
Collapse
|
13
|
Seynnaeve D, Vecchio MD, Fruhmann G, Verelst J, Cools M, Beckers J, Mulvihill DP, Winderickx J, Franssens V. Recent Insights on Alzheimer's Disease Originating from Yeast Models. Int J Mol Sci 2018; 19:E1947. [PMID: 29970827 PMCID: PMC6073265 DOI: 10.3390/ijms19071947] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 01/28/2023] Open
Abstract
In this review article, yeast model-based research advances regarding the role of Amyloid-β (Aβ), Tau and frameshift Ubiquitin UBB+1 in Alzheimer’s disease (AD) are discussed. Despite having limitations with regard to intercellular and cognitive AD aspects, these models have clearly shown their added value as complementary models for the study of the molecular aspects of these proteins, including their interplay with AD-related cellular processes such as mitochondrial dysfunction and altered proteostasis. Moreover, these yeast models have also shown their importance in translational research, e.g., in compound screenings and for AD diagnostics development. In addition to well-established Saccharomyces cerevisiae models, new upcoming Schizosaccharomyces pombe, Candida glabrata and Kluyveromyces lactis yeast models for Aβ and Tau are briefly described. Finally, traditional and more innovative research methodologies, e.g., for studying protein oligomerization/aggregation, are highlighted.
Collapse
Affiliation(s)
- David Seynnaeve
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Mara Del Vecchio
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Gernot Fruhmann
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Joke Verelst
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Melody Cools
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Jimmy Beckers
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK.
| | - Joris Winderickx
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| | - Vanessa Franssens
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Chioua M, Buzzi E, Moraleda I, Iriepa I, Maj M, Wnorowski A, Giovannini C, Tramarin A, Portali F, Ismaili L, López-Alvarado P, Bolognesi ML, Jóźwiak K, Menéndez JC, Marco-Contelles J, Bartolini M. Tacripyrimidines, the first tacrine-dihydropyrimidine hybrids, as multi-target-directed ligands for Alzheimer's disease. Eur J Med Chem 2018; 155:839-846. [PMID: 29958119 DOI: 10.1016/j.ejmech.2018.06.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 11/15/2022]
Abstract
Notwithstanding the combination of cholinesterase (ChE) inhibition and calcium channel blockade within a multitarget therapeutic approach is envisaged as potentially beneficial to confront Alzheimer's disease (AD), this strategy has been scarcely investigated. To explore this promising line, a series of 5-amino-4-aryl-3,4,6,7,8,9-hexahydropyrimido [4,5-b]quinoline-2(1H)-thiones (tacripyrimidines) (4a-l) were designed by juxtaposition of tacrine, a ChE inhibitor (ChEI), and 3,4-dihydropyrimidin-2(1H)-thiones, as efficient calcium channel blockers (CCBs). In agreement with their design, all tacripyrimidines, except the unsubstituted parent compound and its p-methoxy derivative, acted as moderate to potent CCBs with activities generally similar or higher than the reference CCB drug nimodipine and were modest-to-good ChEIs. Most interestingly, the 3'-methoxy derivative (4e) emerged as the first well balanced ChEI/CCB agent, acting as low micromolar hChEI (3.05 μM and 3.19 μM on hAChE and hBuChE, respectively) and moderate CCB (30.4% at 1 μM) with no significant hepatotoxicity toward HepG2 cells and good predicted oral absorption and blood brain barrier permeability.
Collapse
Affiliation(s)
- Mourad Chioua
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Eleonora Buzzi
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Ignacio Moraleda
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33,6, 28871, Alcalá de Henares, Madrid, Spain
| | - Isabel Iriepa
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33,6, 28871, Alcalá de Henares, Madrid, Spain
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, CRBA, Via Massarenti, 9 40138, Bologna, Italy
| | - Anna Tramarin
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Federica Portali
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Lhassane Ismaili
- Neurosciences Intégratives et Cliniques EA 481, University Bourgogne Franche-Comté, Laboratoire de Chimie Organique et Thérapeutique, UFR SMP, 19, rue Ambroise Paré, F-25000, Besançon, France
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain.
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| |
Collapse
|
15
|
Griffin EF, Caldwell KA, Caldwell GA. Genetic and Pharmacological Discovery for Alzheimer's Disease Using Caenorhabditis elegans. ACS Chem Neurosci 2017; 8:2596-2606. [PMID: 29022701 DOI: 10.1021/acschemneuro.7b00361] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The societal burden presented by Alzheimer's disease warrants both innovative and expedient means by which its underlying molecular causes can be both identified and mechanistically exploited to discern novel therapeutic targets and strategies. The conserved characteristics, defined neuroanatomy, and advanced technological application of Caenorhabditis elegans render this metazoan an unmatched tool for probing neurotoxic factors. In addition, its short lifespan and importance in the field of aging make it an ideal organism for modeling age-related neurodegenerative disease. As such, this nematode system has demonstrated its value in predicting functional modifiers of human neurodegenerative disorders. Here, we review how C. elegans has been utilized to model Alzheimer's disease. Specifically, we present how the causative neurotoxic peptides, amyloid-β and tau, contribute to disease-like neurodegeneration in C. elegans and how they translate to human disease. Furthermore, we describe how a variety of transgenic animal strains, each with distinct utility, have been used to identify both genetic and pharmacological modifiers of toxicity in C. elegans. As technological advances improve the prospects for intervention, the rapidity, unparalleled accuracy, and scale that C. elegans offers researchers for defining functional modifiers of neurodegeneration should speed the discovery of improved therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward F. Griffin
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Kim A. Caldwell
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Guy A. Caldwell
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Departments
of Neurology and Neurobiology, Center for Neurodegeneration and Experimental
Therapeutics, The University of Alabama School of Medicine at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|