1
|
Kim J, Yang S, Choi IS. Neutralization of Cannabidiol Neurotoxicity in Neuron-Astrocyte Sandwich Coculture. Adv Biol (Weinh) 2023; 7:e2300090. [PMID: 37080943 DOI: 10.1002/adbi.202300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Indexed: 04/22/2023]
Abstract
Cannabidiol (CBD), a main nonpsychoactive phytocannabinoid in the Cannabis genus, has been in the limelight for its potential health benefits in various neurological diseases. However, the safety issue of CBD in the nervous system has not been settled fully, while CBD has been reported to have mild side effects including dizziness and somnolence. In this work, a platform of neuron-astrocyte sandwich coculture to investigate the neurotoxicity of CBD, as well as the neuronal responses to CBD, in a more in vivo relevant mode is constructed. CBD (15 and 30 µm) causes the viability decrease, along with morphological damage, in the neuron-alone culture, whereas its neurotoxic effects are significantly attenuated by the supports of astrocytes in the neuron-astrocyte coculture. In addition, it is found that CBD-induced increase of intracellular Ca2+ concentration and depolarization of mitochondrial membrane potential, via activation of transient receptor potential vanilloid 1, are noticeably ameliorated by coculturing neurons with astrocytes. This work provides crucial information in the development of CBD as therapeutics for neurological disorders, as well as in a fundamental understanding of how CBD works in the nervous system.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Seoin Yang
- Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon, 34141, South Korea
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
2
|
Sun J, Huang Z, Du Y, Lv P, Fan X, Dai P, Chen X. Metabolic Glycan Labeling in Primary Neurons Enabled by Unnatural Sugars with No S-Glyco-Modification. ACS Chem Biol 2023; 18:1416-1424. [PMID: 37253229 DOI: 10.1021/acschembio.3c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It is of great interest to probe glycosylation in primary neuron cultures. However, per-O-acetylated clickable unnatural sugars, which have been routinely utilized in metabolic glycan labeling (MGL) for analyzing glycans, showed cytotoxicity to cultured primary neurons and thus led to the speculation that MGL was not compatible with primary neuron cell cultures. Here, we uncovered that neuron cytotoxicity of per-O-acetylated unnatural sugars was related to their reactions with protein cysteines via non-enzymatic S-glyco-modification. The modified proteins were enriched in biological functions related to microtubule cytoskeleton organization, positive regulation of axon extension, neuron projection development, and axonogenesis. We thus established MGL in cultured primary neurons without cytotoxicity using S-glyco-modification-free unnatural sugars including ManNAz, 1,3-Pr2ManNAz, and 1,6-Pr2ManNAz, which allowed for visualization of cell-surface sialylated glycans, probing the dynamics of sialylation, and large-scale identification of sialylated N-linked glycoproteins and the modification sites in primary neurons. Particularly, a total of 505 sialylated N-glycosylation sites distributed on 345 glycoproteins were identified by 1,6-Pr2ManNAz.
Collapse
Affiliation(s)
- Jiayu Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhimin Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yifei Du
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Pinou Lv
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xinqi Fan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Peng Dai
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Kim J, Choi JY, Seo J, Choi IS. Neuroprotective Effect of Cannabidiol Against Hydrogen Peroxide in Hippocampal Neuron Culture. Cannabis Cannabinoid Res 2021; 6:40-47. [PMID: 33614951 PMCID: PMC7891195 DOI: 10.1089/can.2019.0102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Reports on the neurotoxic and neuroprotective effects of cannabidiol (CBD) have not been in complete accord, showing different and somewhat contradictory results depending upon the brain cell types and experimental conditions employed. This work systematically examines the neuroprotective capability of CBD against oxidative stress (i.e., hydrogen peroxide [H2O2]) as well as its toxicity profile in the in vitro culture platform of primary hippocampal neurons. Materials and Methods: The low cell-density (100 neurons per mm2) culture was used for analyzing the viability and morphology of neurons at a single-cell level with a confocal laser-scanning microscope (CLSM). Primary neurons were obtained from the hippocampal tissues of embryonic day-18 (E18) Sprague-Dawley rat pups and treated with CBD (0.1-100 μM) and/or H2O2 (0.1-50 μM) at 1 DIV (days in vitro). Results: The lethal concentration 50 (LC50) value (the concentration causing 50% cell death) of CBD was calculated to be 9.85 μM after 24 h of incubation, and that of H2O2 was 2.46 μM under the same conditions. The neuroprotection ratio of CBD against H2O2 ([H2O2]=10 μM) was 2.40 with 5 μM of CBD, increasing the cell viability to 57% from 24%. The CLSM analysis suggested that the cell-death mechanisms were different for CBD and H2O2, and CBD did not completely rescue the morphological alterations of primary hippocampal neurons caused by H2O2, such as neurite degeneration, at least in the in vitro neuron culture. Conclusion: Although CBD showed both neurotoxic and neuroprotective effects on hippocampal neurons in the in vitro setting, the use of low-concentrated (i.e., 5 μM) CBD, not causing toxic effects on the neurons, significantly rescued the neurons from the oxidative stress (H2O2), confirming its neuroprotection capability.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Ji Yu Choi
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | | |
Collapse
|
4
|
Kim BJ, Choi JY, Choi H, Han S, Seo J, Kim J, Joo S, Kim HM, Oh C, Hong S, Kim P, Choi IS. Astrocyte-Encapsulated Hydrogel Microfibers Enhance Neuronal Circuit Generation. Adv Healthc Mater 2020; 9:e1901072. [PMID: 31957248 DOI: 10.1002/adhm.201901072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Astrocytes, the most representative glial cells in the brain, play a multitude of crucial functions for proper neuronal development and synaptic-network formation, including neuroprotection as well as physical and chemical support. However, little attention has been paid, in the neuroregenerative medicine and related fields, to the cytoprotective incorporation of astrocytes into neuron-culture scaffolds and full-fledged functional utilization of encapsulated astrocytes for controlled neuronal development. In this article, a 3D neurosupportive culture system for enhanced induction of neuronal circuit generation is reported, where astrocytes are confined in hydrogel microfibers and protected from the outside. The astrocyte-encapsulated microfibers significantly accelerate the neurite outgrowth and guide its directionality, and enhance the synaptic formation, without any physical contact with the neurons. This astrocyte-laden system provides a pivotal culture scaffold for advanced development of cell-based therapeutics for neural injuries, such as spinal cord injury.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Ji Yu Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Hyunwoo Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Sol Han
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Jeongyeon Seo
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Jungnam Kim
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Sunghoon Joo
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Hyo Min Kim
- Department of Bio and Brain EngineeringKAIST Daejeon 34141 Korea
| | - Chungik Oh
- Department of Materials Science and EngineeringKAIST Daejeon 34141 Korea
| | - Seungbum Hong
- Department of Materials Science and EngineeringKAIST Daejeon 34141 Korea
| | - Pilnam Kim
- Department of Bio and Brain EngineeringKAIST Daejeon 34141 Korea
| | - Insung S. Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| |
Collapse
|
5
|
Choi JY, Seo J, Park M, Kim MH, Kang K, Choi IS. Multiplexed Metabolic Labeling of Glycoconjugates in Polarized Primary Cerebral Cortical Neurons. Chem Asian J 2018; 13:3480-3484. [PMID: 30204301 DOI: 10.1002/asia.201800996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/07/2018] [Indexed: 12/11/2022]
Abstract
The spatial distribution of cell-surface glycoconjugates in the brain changes continuously, reflecting neurophysiology especially in the developing phase, but their functions and fates mostly remain unexplored. Their spatiotemporal distribution is particularly important in polarized neuronal cells, such as cerebral cortical neurons composed of a soma and neurites. In this work, we dually labeled sialic acid (Sia5Ac) and N-acetylgalactosamine/glucosamine (GalNAc/GlcNAc) by a neurocompatible strategy of metabolic glycan labeling, metabolism-by-tissues (MbT), and obtained the multiplexed information on their spatiotemporal distribution on polarized cortical neurons. The analyses showed the preferentially distinct distribution of each saccharide set at the late developmental stage after randomized, heterogeneous distribution at the early stage, suggesting that Sia5Ac and GalNAc/GlcNAc are translocated anisotropically during neuronal development.
Collapse
Affiliation(s)
- Ji Yu Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Jeongyeon Seo
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Matthew Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Mi-Hee Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
6
|
Chemical and biological methods for probing the structure and functions of polysialic acids. Emerg Top Life Sci 2018; 2:363-376. [DOI: 10.1042/etls20180008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 08/01/2018] [Indexed: 01/27/2023]
Abstract
Owing to its poly-anionic charge and large hydrodynamic volume, polysialic acid (polySia) attached to neural cell adhesion molecule regulates axon–axon and axon–substratum interactions and signalling, particularly, in the development of the central nervous system (CNS). Expression of polySia is spatiotemporally regulated by the action of two polysialyl transferases, namely ST8SiaII and ST8SiaIV. PolySia expression peaks during late embryonic and early post-natal period and maintained at a steady state in adulthood in neurogenic niche of the brain. Aberrant polySia expression is associated with neurological disorders and brain tumours. Investigations on the structure and functions, over the past four decades, have shed light on the physiology of polySia. This review focuses on the biological, biochemical, and chemical tools available for polySia engineering. Genetic knockouts, endo-neuraminidases that cleave polySia, antibodies, exogenous expression, and neuroblastoma cells have provided deep insights into the ability of polySia to guide migration of neuronal precursors in neonatal brain development, neuronal clustering, axonal pathway guidance, and axonal targeting. Advent of metabolic sialic acid engineering using ManNAc analogues has enabled reversible and dose-dependent modulation polySia in vitro and ex vivo. In vivo, ManNAc analogues readily engineer the sialoglycans in peripheral tissues, but show no effect in the brain. A recently developed carbohydrate-neuroactive hybrid strategy enables a non-invasive access to the brain in living animals across the blood–brain barrier. A combination of recent advances in CNS drugs and imaging with ManNAc analogues for polySia modulation would pave novel avenues for understanding intricacies of brain development and tackling the challenges of neurological disorders.
Collapse
|