1
|
DuPlissis A, Medewar A, Hegarty E, Laing A, Shen A, Gomez S, Mondal S, Ben-Yakar A. Machine learning-based analysis of microfluidic device immobilized C. elegans for automated developmental toxicity testing. Sci Rep 2025; 15:15. [PMID: 39747450 PMCID: PMC11696900 DOI: 10.1038/s41598-024-84842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Developmental toxicity (DevTox) tests evaluate the adverse effects of chemical exposures on an organism's development. Although current testing primarily relies on large mammalian models, the emergence of new approach methodologies (NAMs) is encouraging industries and regulatory agencies to evaluate novel assays. C. elegans have emerged as NAMs for rapid toxicity testing because of its biological relevance and suitability to high throughput studies. However, current low-resolution and labor-intensive methodologies prohibit its application for sub-lethal DevTox studies at high throughputs. With the recent advent of the large-scale microfluidic device, vivoChip, we can now rapidly collect 3D high-resolution images of ~ 1000 C. elegans from 24 different populations. While data collection is rapid, analyzing thousands of images remains time-consuming. To address this challenge, we developed a machine-learning (ML)-based image analysis platform using a 2.5D U-Net architecture (vivoBodySeg) that accurately segments C. elegans in images obtained from vivoChip devices, achieving a Dice score of 97.80%. vivoBodySeg processes 36 GB data per device, phenotyping multiple body parameters within 35 min on a desktop PC. This analysis is ~ 140 × faster than the manual analysis. This ML approach delivers highly reproducible DevTox parameters (4-8% CV) to assess the toxicity of chemicals with high statistical power.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Adela Ben-Yakar
- vivoVerse, LLC, Austin, TX, 78731, USA.
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Wang C, Vidal B, Sural S, Loer C, Aguilar GR, Merritt DM, Toker IA, Vogt MC, Cros CC, Hobert O. A neurotransmitter atlas of C. elegans males and hermaphrodites. eLife 2024; 13:RP95402. [PMID: 39422452 PMCID: PMC11488851 DOI: 10.7554/elife.95402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Mapping neurotransmitter identities to neurons is key to understanding information flow in a nervous system. It also provides valuable entry points for studying the development and plasticity of neuronal identity features. In the Caenorhabditis elegans nervous system, neurotransmitter identities have been largely assigned by expression pattern analysis of neurotransmitter pathway genes that encode neurotransmitter biosynthetic enzymes or transporters. However, many of these assignments have relied on multicopy reporter transgenes that may lack relevant cis-regulatory information and therefore may not provide an accurate picture of neurotransmitter usage. We analyzed the expression patterns of 16 CRISPR/Cas9-engineered knock-in reporter strains for all main types of neurotransmitters in C. elegans (glutamate, acetylcholine, GABA, serotonin, dopamine, tyramine, and octopamine) in both the hermaphrodite and the male. Our analysis reveals novel sites of expression of these neurotransmitter systems within both neurons and glia, as well as non-neural cells, most notably in gonadal cells. The resulting expression atlas defines neurons that may be exclusively neuropeptidergic, substantially expands the repertoire of neurons capable of co-transmitting multiple neurotransmitters, and identifies novel sites of monoaminergic neurotransmitter uptake. Furthermore, we also observed unusual co-expression patterns of monoaminergic synthesis pathway genes, suggesting the existence of novel monoaminergic transmitters. Our analysis results in what constitutes the most extensive whole-animal-wide map of neurotransmitter usage to date, paving the way for a better understanding of neuronal communication and neuronal identity specification in C. elegans.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Curtis Loer
- Department of Biology, University of San DiegoSan DiegoUnited States
| | - G Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Daniel M Merritt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Itai Antoine Toker
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Merly C Vogt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Cyril C Cros
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| |
Collapse
|
3
|
DuPlissis A, Medewar A, Hegarty E, Laing A, Shen A, Gomez S, Mondal S, Ben-Yakar A. vivoBodySeg: Machine learning-based analysis of C. elegans immobilized in vivoChip for automated developmental toxicity testing. RESEARCH SQUARE 2024:rs.3.rs-4796642. [PMID: 39281859 PMCID: PMC11398583 DOI: 10.21203/rs.3.rs-4796642/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Developmental toxicity (DevTox) tests evaluate the adverse effects of chemical exposures on an organism's development. While large animal tests are currently heavily relied on, the development of new approach methodologies (NAMs) is encouraging industries and regulatory agencies to evaluate these novel assays. Several practical advantages have made C. elegansa useful model for rapid toxicity testing and studying developmental biology. Although the potential to study DevTox is promising, current low-resolution and labor-intensive methodologies prohibit the use of C. elegans for sub-lethal DevTox studies at high throughputs. With the recent availability of a large-scale microfluidic device, vivoChip, we can now rapidly collect 3D high-resolution images of ~ 1,000 C. elegans from 24 different populations. In this paper, we demonstrate DevTox studies using a 2.5D U-Net architecture (vivoBodySeg) that can precisely segment C. elegans in images obtained from vivoChip devices, achieving an average Dice score of 97.80. The fully automated platform can analyze 36 GB data from each device to phenotype multiple body parameters within 35 min on a desktop PC at speeds ~ 140x faster than the manual analysis. Highly reproducible DevTox parameters (4-8% CV) and additional autofluorescence-based phenotypes allow us to assess the toxicity of chemicals with high statistical power.
Collapse
|
4
|
Wang C, Vidal B, Sural S, Loer C, Aguilar GR, Merritt DM, Toker IA, Vogt MC, Cros C, Hobert O. A neurotransmitter atlas of C. elegans males and hermaphrodites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573258. [PMID: 38895397 PMCID: PMC11185579 DOI: 10.1101/2023.12.24.573258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mapping neurotransmitter identities to neurons is key to understanding information flow in a nervous system. It also provides valuable entry points for studying the development and plasticity of neuronal identity features. In the C. elegans nervous system, neurotransmitter identities have been largely assigned by expression pattern analysis of neurotransmitter pathway genes that encode neurotransmitter biosynthetic enzymes or transporters. However, many of these assignments have relied on multicopy reporter transgenes that may lack relevant cis-regulatory information and therefore may not provide an accurate picture of neurotransmitter usage. We analyzed the expression patterns of 16 CRISPR/Cas9-engineered knock-in reporter strains for all main types of neurotransmitters in C. elegans (glutamate, acetylcholine, GABA, serotonin, dopamine, tyramine, and octopamine) in both the hermaphrodite and the male. Our analysis reveals novel sites of expression of these neurotransmitter systems within both neurons and glia, as well as non-neural cells. The resulting expression atlas defines neurons that may be exclusively neuropeptidergic, substantially expands the repertoire of neurons capable of co-transmitting multiple neurotransmitters, and identifies novel neurons that uptake monoaminergic neurotransmitters. Furthermore, we also observed unusual co-expression patterns of monoaminergic synthesis pathway genes, suggesting the existence of novel monoaminergic transmitters. Our analysis results in what constitutes the most extensive whole-animal-wide map of neurotransmitter usage to date, paving the way for a better understanding of neuronal communication and neuronal identity specification in C. elegans.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Curtis Loer
- Department of Biology, University of San Diego, San Diego, California, USA
| | - G. Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Daniel M. Merritt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Itai Antoine Toker
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Merly C. Vogt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Cyril Cros
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| |
Collapse
|
5
|
Koirala S, Samanta S, Kar P. Identification of inhibitors for neurodegenerative diseases targeting dual leucine zipper kinase through virtual screening and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:457-482. [PMID: 38855951 DOI: 10.1080/1062936x.2024.2363195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative diseases lead to a gradual decline in cognitive and motor functions due to the progressive loss of neurons in the central nervous system. The role of dual leucine zipper kinase (DLK) in regulating stress responses and neuronal death pathways highlights its significance as a target against neurodegenerative diseases. The non-availability of FDA-approved drugs emphasizes a need to identify novel DLK-inhibitors. We screened NPAtlas (Natural products) and MedChemExpress (FDA-approved) libraries to identify potent ATP-competitive DLK inhibitors. ADMET analyses identified four compounds (two natural products and two FDA-approved) with favourable features. Subsequently, we performed molecular dynamics simulations to examine the binding-stability and ligand-induced conformational dynamics. Molecular mechanics Poisson Boltzmann surface area (MM-PBSA) calculations demonstrated CID139591660, dithranol, and danthron having greater affinity, while CID156581477 showed lower affinity than control sunitinib. PCA and network analysis results indicated structural and network alteration post-ligand binding. Furthermore, we identified an analogue of CID156581477 using the deep learning-based web server DeLA Drug which demonstrated a higher affinity than its parent compound and the control and identified several crucial interacting residues. Overall, our study provides significant theoretical guidance for designing potent novel DLK inhibitors and compounds that could emerge as promising drug candidates against DLK following laboratory validation.
Collapse
Affiliation(s)
- S Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - S Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - P Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
6
|
Walby GD, Gu Q, Yang H, Martin SF. Structure-Affinity relationships of novel σ 2R/TMEM97 ligands. Bioorg Chem 2024; 145:107191. [PMID: 38432153 DOI: 10.1016/j.bioorg.2024.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
The sigma 2 receptor (σ2R), which was recently identified as the transmembrane protein 97 (TMEM97), is increasingly attracting interest as a possible therapeutic target for indications in neuroscience. Toward identifying novel modulators of σ2R/TMEM97, we prepared a collection of benzoxazocine, benzomorphan, and methanobenzazepine ligands related to the known bioactive norbenzomorphans DKR-1677, FEM-1689, and EES-1686 and determined their Ki values for σ2R/TMEM97 and the sigma 1 receptor (σ1R). The σ2R/TMEM97 binding affinities and selectivities relative to σ1R of these new benzoxazocine, benzomorphan, and methanobenzazepine analogs are lower, often significantly lower, than their respective norbenzomorphan counterparts, suggesting the spatial orientation of pharmacophoric substituents is critical for binding to the two proteins. The benzoxazocine, benzomorphan, and methanobenzazepine congeners of DKR-1677 and FEM-1689 tend to be weakly selective for σ2R/TMEM97 versus σ1R, whereas EES-1686 derivatives exhibit the greatest selectivity, suggesting the size and/or nature of the substituent on the nitrogen atom of the scaffold may be important for selectivity. Computational docking studies were performed for the 1S,5R-and 1R,5S-enantiomers of DKR-1677, FEM-1689, and EES-1686 and their benzoxazocine, benzomorphan, and methanobenzazepine counterparts. These computations predict that the protonated amino group of each ligand forms a highly conserved salt bridge and a H-bonding interaction with Asp29 as well as a cation-π interaction with Tyr150 of σ2R/TMEM97. These electrostatic interactions are major driving forces for binding to σ2R/TMEM97 and are similar, though not identical, for each ligand. Other interactions within the well-defined binding pocket also tend to be comparable, but there are some major differences in how the hydrophobic aryl groups of various ligands interact with the protein surface external to the binding pocket. Overall, these studies show that the orientations of aryl and N-substituents on the norbenzomorphan and related scaffolds are important determinants of binding affinity of σ2R/TMEM97 ligands, and small changes can have significant effects upon binding profiles.
Collapse
Affiliation(s)
- Grant D Walby
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States
| | - Qi Gu
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States
| | - Hongfen Yang
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States
| | - Stephen F Martin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
7
|
Colom-Cadena M, Toombs J, Simzer E, Holt K, McGeachan R, Tulloch J, Jackson RJ, Catterson JH, Spires-Jones MP, Rose J, Waybright L, Caggiano AO, King D, Gobbo F, Davies C, Hooley M, Dunnett S, Tempelaar R, Meftah S, Tzioras M, Hamby ME, Izzo NJ, Catalano SM, Durrant CS, Smith C, Dando O, Spires-Jones TL. Transmembrane protein 97 is a potential synaptic amyloid beta receptor in human Alzheimer's disease. Acta Neuropathol 2024; 147:32. [PMID: 38319380 PMCID: PMC10847197 DOI: 10.1007/s00401-023-02679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 02/07/2024]
Abstract
Synapse loss correlates with cognitive decline in Alzheimer's disease, and soluble oligomeric amyloid beta (Aβ) is implicated in synaptic dysfunction and loss. An important knowledge gap is the lack of understanding of how Aβ leads to synapse degeneration. In particular, there has been difficulty in determining whether there is a synaptic receptor that binds Aβ and mediates toxicity. While many candidates have been observed in model systems, their relevance to human AD brain remains unknown. This is in part due to methodological limitations preventing visualization of Aβ binding at individual synapses. To overcome this limitation, we combined two high resolution microscopy techniques: array tomography and Förster resonance energy transfer (FRET) to image over 1 million individual synaptic terminals in temporal cortex from AD (n = 11) and control cases (n = 9). Within presynapses and post-synaptic densities, oligomeric Aβ generates a FRET signal with transmembrane protein 97. Further, Aβ generates a FRET signal with cellular prion protein, and post-synaptic density 95 within post synapses. Transmembrane protein 97 is also present in a higher proportion of post synapses in Alzheimer's brain compared to controls. We inhibited Aβ/transmembrane protein 97 interaction in a mouse model of amyloidopathy by treating with the allosteric modulator CT1812. CT1812 drug concentration correlated negatively with synaptic FRET signal between transmembrane protein 97 and Aβ. In human-induced pluripotent stem cell derived neurons, transmembrane protein 97 is present in synapses and colocalizes with Aβ when neurons are challenged with human Alzheimer's brain homogenate. Transcriptional changes are induced by Aβ including changes in genes involved in neurodegeneration and neuroinflammation. CT1812 treatment of these neurons caused changes in gene sets involved in synaptic function. These data support a role for transmembrane protein 97 in the synaptic binding of Aβ in human Alzheimer's disease brain where it may mediate synaptotoxicity.
Collapse
Affiliation(s)
- Martí Colom-Cadena
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jamie Toombs
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Elizabeth Simzer
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Kristjan Holt
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert McGeachan
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jane Tulloch
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Rosemary J Jackson
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
- MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - James H Catterson
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Maxwell P Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jamie Rose
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | | | | | - Declan King
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Caitlin Davies
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Monique Hooley
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Sophie Dunnett
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert Tempelaar
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Makis Tzioras
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
- Scottish Brain Sciences, Edinburgh, EH12 9DQ, UK
| | - Mary E Hamby
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, USA
| | | | | | - Claire S Durrant
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, University of Edinburgh, Edinburgh, EH16 4HB, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
8
|
Yoon S, Kilicarslan You D, Jeong U, Lee M, Kim E, Jeon TJ, Kim SM. Microfluidics in High-Throughput Drug Screening: Organ-on-a-Chip and C. elegans-Based Innovations. BIOSENSORS 2024; 14:55. [PMID: 38275308 PMCID: PMC10813408 DOI: 10.3390/bios14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The development of therapeutic interventions for diseases necessitates a crucial step known as drug screening, wherein potential substances with medicinal properties are rigorously evaluated. This process has undergone a transformative evolution, driven by the imperative need for more efficient, rapid, and high-throughput screening platforms. Among these, microfluidic systems have emerged as the epitome of efficiency, enabling the screening of drug candidates with unprecedented speed and minimal sample consumption. This review paper explores the cutting-edge landscape of microfluidic-based drug screening platforms, with a specific emphasis on two pioneering approaches: organ-on-a-chip and C. elegans-based chips. Organ-on-a-chip technology harnesses human-derived cells to recreate the physiological functions of human organs, offering an invaluable tool for assessing drug efficacy and toxicity. In parallel, C. elegans-based chips, boasting up to 60% genetic homology with humans and a remarkable affinity for microfluidic systems, have proven to be robust models for drug screening. Our comprehensive review endeavors to provide readers with a profound understanding of the fundamental principles, advantages, and challenges associated with these innovative drug screening platforms. We delve into the latest breakthroughs and practical applications in this burgeoning field, illuminating the pivotal role these platforms play in expediting drug discovery and development. Furthermore, we engage in a forward-looking discussion to delineate the future directions and untapped potential inherent in these transformative technologies. Through this review, we aim to contribute to the collective knowledge base in the realm of drug screening, providing valuable insights to researchers, clinicians, and stakeholders alike. We invite readers to embark on a journey into the realm of microfluidic-based drug screening platforms, fostering a deeper appreciation for their significance and promising avenues yet to be explored.
Collapse
Affiliation(s)
- Sunhee Yoon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; (S.Y.); (D.K.Y.); (M.L.); (E.K.)
| | - Dilara Kilicarslan You
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; (S.Y.); (D.K.Y.); (M.L.); (E.K.)
| | - Uiechan Jeong
- Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Mina Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; (S.Y.); (D.K.Y.); (M.L.); (E.K.)
| | - Eunhye Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; (S.Y.); (D.K.Y.); (M.L.); (E.K.)
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; (S.Y.); (D.K.Y.); (M.L.); (E.K.)
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center (BSRC), Inha University, Incheon 22212, Republic of Korea
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; (S.Y.); (D.K.Y.); (M.L.); (E.K.)
- Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center (BSRC), Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
9
|
Rahimpouresfahani F, Tabatabaei N, Rezai P. High-throughput light sheet imaging of adult and larval C. elegans Parkinson's disease model using a low-cost optofluidic device and a fluorescent microscope. RSC Adv 2024; 14:626-639. [PMID: 38173569 PMCID: PMC10759043 DOI: 10.1039/d3ra06323b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Recent advancements at the interface of microfluidics technology and light sheet fluorescence microscopy have opened the door for high-throughput and high-content investigation of C. elegans disease models. In this paper, we report on the development of a simple, miniaturized, and low-cost optofluidic platform that can be added to a conventional inverted fluorescent microscope for continuous light sheet imaging of transgenic worm populations with high lateral and axial resolutions of 1.1 µm and 2.4 µm, respectively. The optofluidic device is made entirely of PDMS with integrated optics for light sheet generation. Laser excitation is delivered to the device via a low-cost free space laser, and cross-sections of worm populations are imaged as they pass continuously through a channel. Results show the platform can image NW1229 whole worms with pan-neural fluorescent expression at a throughput of >20 worms per minute at L3 and young adult (YA) stages. As a benchmark test, we show that the low-cost device can quantify the reduced neuronal expressions of L3 and YA NW1229 worms when exposed to 500 µM 6-OHDA neurodegenerative agent. Following the benchmark validation, we utilized the platform in a novel application for imaging human alpha-synuclein reporter in populations of Parkinson's transgenic model (ERS100). Results show the ability of the low-cost platform to reliably detect and quantify the anomalous neural phenotypic changes in ERS100 populations at L3 and YA stages with high spatial resolution. The findings of this study show the potential of our low-cost optofluidic add-on platform to equip conventional fluorescent microscopes with light sheet capability for quantitative phenotypic studies of transgenic C. elegans at high resolution and throughput.
Collapse
Affiliation(s)
- Faraz Rahimpouresfahani
- Department of Mechanical Engineering, York University 4700 Keele St Toronto M3J 1P3 Ontario Canada +1-416-7362100
| | - Nima Tabatabaei
- Department of Mechanical Engineering, York University 4700 Keele St Toronto M3J 1P3 Ontario Canada +1-416-7362100
| | - Pouya Rezai
- Department of Mechanical Engineering, York University 4700 Keele St Toronto M3J 1P3 Ontario Canada +1-416-7362100
| |
Collapse
|
10
|
Yousuf MS, Sahn JJ, Yang H, David ET, Shiers S, Mancilla Moreno M, Iketem J, Royer DM, Garcia CD, Zhang J, Hong VM, Mian SM, Ahmad A, Kolber BJ, Liebl DJ, Martin SF, Price TJ. Highly specific σ 2R/TMEM97 ligand FEM-1689 alleviates neuropathic pain and inhibits the integrated stress response. Proc Natl Acad Sci U S A 2023; 120:e2306090120. [PMID: 38117854 PMCID: PMC10756276 DOI: 10.1073/pnas.2306090120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023] Open
Abstract
The sigma 2 receptor (σ2R) was described pharmacologically more than three decades ago, but its molecular identity remained obscure until recently when it was identified as transmembrane protein 97 (TMEM97). We and others have shown that σ2R/TMEM97 ligands alleviate mechanical hypersensitivity in mouse neuropathic pain models with a time course wherein maximal antinociceptive effect is approximately 24 h following dosing. We sought to understand this unique antineuropathic pain effect by addressing two key questions: do these σ2R/TMEM97 compounds act selectively via the receptor, and what is their downstream mechanism on nociceptive neurons? Using male and female conventional knockout mice for Tmem97, we find that a σ2R/TMEM97 binding compound, FEM-1689, requires the presence of the gene to produce antinociception in the spared nerve injury model in mice. Using primary mouse dorsal root ganglion neurons, we demonstrate that FEM-1689 inhibits the integrated stress response (ISR) and promotes neurite outgrowth via a σ2R/TMEM97-specific action. We extend the clinical translational value of these findings by showing that FEM-1689 reduces ISR and p-eIF2α levels in human sensory neurons and that it alleviates the pathogenic engagement of ISR by methylglyoxal. We also demonstrate that σ2R/TMEM97 is expressed in human nociceptors and satellite glial cells. These results validate σ2R/TMEM97 as a promising target for further development for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
- NuvoNuro Inc., Austin, TX78712
| | - James J. Sahn
- NuvoNuro Inc., Austin, TX78712
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Hongfen Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Eric T. David
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Stephanie Shiers
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Marisol Mancilla Moreno
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Jonathan Iketem
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Danielle M. Royer
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Chelsea D. Garcia
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Jennifer Zhang
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Veronica M. Hong
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Subhaan M. Mian
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Ayesha Ahmad
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Benedict J. Kolber
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Daniel J. Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL33136
| | - Stephen F. Martin
- NuvoNuro Inc., Austin, TX78712
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Theodore J. Price
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
- NuvoNuro Inc., Austin, TX78712
| |
Collapse
|
11
|
Yousuf MS, Sahn JJ, Yang H, David ET, Shiers S, Moreno MM, Iketem J, Royer DM, Garcia CD, Zhang J, Hong VM, Mian SM, Ahmad A, Kolber BJ, Liebl DJ, Martin SF, Price TJ. Highly specific σ 2R/TMEM97 ligand alleviates neuropathic pain and inhibits the integrated stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536439. [PMID: 37090527 PMCID: PMC10120691 DOI: 10.1101/2023.04.11.536439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The Sigma 2 receptor (σ2R) was described pharmacologically more than three decades ago, but its molecular identity remained obscure until recently when it was identified as transmembrane protein 97 (TMEM97). We and others have shown that σ2R/TMEM97 ligands alleviate mechanical hypersensitivity in mouse neuropathic pain models with a time course wherein maximal anti-nociceptive effect is approximately 24 hours following dosing. We sought to understand this unique anti-neuropathic pain effect by addressing two key questions: do these σ2R/TMEM97 compounds act selectively via the receptor, and what is their downstream mechanism on nociceptive neurons? Using male and female conventional knockout (KO) mice for Tmem97, we find that a new σ2R/TMEM97 binding compound, FEM-1689, requires the presence of the gene to produce anti-nociception in the spared nerve injury model in mice. Using primary mouse dorsal root ganglion (DRG) neurons, we demonstrate that FEM-1689 inhibits the integrated stress response (ISR) and promotes neurite outgrowth via a σ2R/TMEM97-specific action. We extend the clinical translational value of these findings by showing that FEM-1689 reduces ISR and p-eIF2α levels in human sensory neurons and that it alleviates the pathogenic engagement of ISR by methylglyoxal. We also demonstrate that σ2R/TMEM97 is expressed in human nociceptors and satellite glial cells. These results validate σ2R/TMEM97 as a promising target for further development for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
- NuvoNuro, Austin, TX 78712
| | - James J. Sahn
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
- NuvoNuro, Austin, TX 78712
| | - Hongfen Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | - Eric T. David
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Stephanie Shiers
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Marisol Mancilla Moreno
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Jonathan Iketem
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Danielle M. Royer
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Chelsea D. Garcia
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Jennifer Zhang
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Veronica M. Hong
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Subhaan M. Mian
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Ayesha Ahmad
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | - Benedict J. Kolber
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
| | | | - Stephen F. Martin
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
- NuvoNuro, Austin, TX 78712
| | - Theodore J. Price
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080
- NuvoNuro, Austin, TX 78712
| |
Collapse
|
12
|
Lu Y, Gu Q, Martin SF. Structure-affinity relationships of stereoisomers of norbenzomorphan-derived σ 2R/TMEM97 modulators. Eur J Med Chem 2023; 257:115488. [PMID: 37247506 DOI: 10.1016/j.ejmech.2023.115488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023]
Abstract
The sigma 2 receptor (σ2R), which is identical to transmembrane protein 97 (TMEM97), is attracting increasing interest as a possible therapeutic target for various indications in neuroscience. In continuation of a program to identify novel compounds that bind with high affinity and selectivity to σ2R/TMEM97, we performed structure-affinity-relationship (SAfiR) studies of several sets of σ2R/TMEM97 ligands having a B-norbenzomorphan ring core. Binding data for σ2R/TMEM97 and σ1R of several enantiomeric pairs of piperazine-substituted norbenzomorphans show the (1S,5R)-enantiomers have affinities (Ki = 9-75 nM) for σ2R/TMEM97 that are 2-3-fold higher than their enantiomorphic (1R,5S)-analogs; however, there is no clear trend for selectivity for σ2R/TMEM97 vs σ1R. A series of N-alkyl piperazino (1S,5R)-norbenzomorphans was then evaluated, and with the exception of compounds having N-alkyl groups substituted with oxygen or amino groups at C (2) of an ethylene chain, Ki values for σ2R/TMEM97 are less than 25 nM, and several compounds have good selectivities (ca 7-16-fold) for σ2R/TMEM97 vs σ1R. Mono-substituted carbobenzyloxy analogs have Ki values for σ2R/TMEM97 comparable to the unsubstituted parent (Ki = ca 7-27 nM), but replacing the N-acyloxy group with N-acyl or N-arylsulfonyl groups provides analogs having lower affinity and selectivity. Some congeners with bioisosteric replacements of the piperazine group on the (1S,5R)-norbenzomorphan core have high affinity (Ki = <30 nM) for σ2R/TMEM97, but selectivities are modest. Computational docking studies for racemic pairs of piperazino norbenzomorphans show that individual (1S,5R)- and (1R,5S)-enantiomers adopt distinct poses upon binding to σ2R/TMEM97, whereas ligands belongingto the same enantiomeric series adopt closely similar binding poses. The protonated amino group in each of the enantiomorphic ligands engages in highly conserved salt bridges with Asp29 and cation-π interactions with Tyr150 that are the primary determinants of binding affinity. There is no correlation between any of the computational parameter outputs and Ki values, but this is unsurprising given the small energetic differences involved. Modeling also suggest sthat some compounds can extend deeper into σ2R/TMEM97 binding pocket forming salt bridges with Glu73.
Collapse
Affiliation(s)
- Yan Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Qi Gu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Stephen F Martin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States.
| |
Collapse
|
13
|
Lizama BN, Kahle J, Catalano SM, Caggiano AO, Grundman M, Hamby ME. Sigma-2 Receptors—From Basic Biology to Therapeutic Target: A Focus on Age-Related Degenerative Diseases. Int J Mol Sci 2023; 24:ijms24076251. [PMID: 37047224 PMCID: PMC10093856 DOI: 10.3390/ijms24076251] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
There is a large unmet medical need to develop disease-modifying treatment options for individuals with age-related degenerative diseases of the central nervous system. The sigma-2 receptor (S2R), encoded by TMEM97, is expressed in brain and retinal cells, and regulates cell functions via its co-receptor progesterone receptor membrane component 1 (PGRMC1), and through other protein–protein interactions. Studies describing functions of S2R involve the manipulation of expression or pharmacological modulation using exogenous small-molecule ligands. These studies demonstrate that S2R modulates key pathways involved in age-related diseases including autophagy, trafficking, oxidative stress, and amyloid-β and α-synuclein toxicity. Furthermore, S2R modulation can ameliorate functional deficits in cell-based and animal models of disease. This review summarizes the current evidence-based understanding of S2R biology and function, and its potential as a therapeutic target for age-related degenerative diseases of the central nervous system, including Alzheimer’s disease, α-synucleinopathies, and dry age-related macular degeneration.
Collapse
Affiliation(s)
| | | | | | | | - Michael Grundman
- Global R&D Partners, LLC., San Diego, CA 92130, USA
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - Mary E. Hamby
- Cognition Therapeutics, Inc., Pittsburgh, PA 15203, USA
- Correspondence:
| |
Collapse
|
14
|
Jin J, Arbez N, Sahn JJ, Lu Y, Linkens KT, Hodges TR, Tang A, Wiseman R, Martin SF, Ross CA. Neuroprotective Effects of σ 2R/TMEM97 Receptor Modulators in the Neuronal Model of Huntington's Disease. ACS Chem Neurosci 2022; 13:2852-2862. [PMID: 36108101 PMCID: PMC9547941 DOI: 10.1021/acschemneuro.2c00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disease caused by an expanded CAG repeat in the Huntingtin (HTT) gene that encodes for an expanded polyglutamine (polyQ) repeat in exon-1 of the human mutant huntingtin (mHTT) protein. The presence of this polyQ repeat results in neuronal degeneration, for which there is no cure or treatment that modifies disease progression. In previous studies, we have shown that small molecules that bind selectively to σ2R/TMEM97 can have significant neuroprotective effects in models of Alzheimer's disease, traumatic brain injury, and several other neurodegenerative diseases. In the present work, we extend these investigations and show that certain σ2R/TMEM97-selective ligands decrease mHTT-induced neuronal toxicity. We first synthesized a set of compounds designed to bind to σ2R/TMEM97 and determined their binding profiles (Ki values) for σ2R/TMEM97 and other proteins in the central nervous system. Modulators with high affinity and selectivity for σ2R/TMEM97 were then tested in our HD cell model. Primary cortical neurons were cultured in vitro for 7 days and then co-transfected with either a normal HTT construct (Htt N-586-22Q/GFP) or the mHTT construct Htt-N586-82Q/GFP. Transfected neurons were treated with either σ2R/TMEM97 or σ1R modulators for 48 h. After treatment, neurons were fixed and stained with Hoechst, and condensed nuclei were quantified to assess cell death in the transfected neurons. Significantly, σ2R/TMEM97 modulators reduce the neuronal toxicity induced by mHTT, and their neuroprotective effects are not blocked by NE-100, a selective σ1R antagonist known to block neuroprotection by σ1R ligands. These results indicate for the first time that σ2R/TMEM97 modulators can protect neurons from mHTT-induced neuronal toxicity, suggesting that targeting σ2R/TMEM97 may lead to a novel therapeutic approach to treat patients with HD.
Collapse
Affiliation(s)
- Jing Jin
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore Maryland, 21287, United States
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore Maryland, 21287, United States
- Cellular Sciences Department, IdRS, Croissy-sur-Seine, France
| | - James J. Sahn
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Yan Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Kathryn T. Linkens
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Timothy R. Hodges
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Anthony Tang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore Maryland, 21287, United States
| | - Robyn Wiseman
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore Maryland, 21287, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, United States
| | - Stephen F. Martin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore Maryland, 21287, United States
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, United States
| |
Collapse
|
15
|
Martin SF. Bridging Known and Unknown Unknowns: From Natural Products and Their Mimics to Unmet Needs in Neuroscience. Acc Chem Res 2022; 55:2397-2408. [PMID: 35960884 DOI: 10.1021/acs.accounts.1c00773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Scientific excursions into the unknown are often characterized by unanticipated twists and turns that may lead in directions that never could have been predicted. Decisions made during the course of these explorations determine what we discover. This Account chronicles one such journey that began with a challenge encountered during the synthesis of a natural product and then unfolded over more than 30 years to focus on unmet needs in neuroscience. Specifically, while developing a concise approach to tetrahydroalstonine, a heteroyohimboid alkaloid having α-adrenergic activity, we faced the predicament of assembling a key intermediate. Solving this problem resulted in the serendipitous discovery of the vinylogous Mannich reaction and a productive program wherein we used this powerful construction as a key step in the syntheses of numerous alkaloids. However, we also realized that lessons learned from the synthesis of tetrahydroalstonine could be generalized to invent a new strategy for preparing diverse collections of substituted nitrogen heterocycles that could be screened against biological targets. The approach featured the combination of several reactants in a multicomponent assembly process to give a functionalized intermediate that could be elaborated by various ring-forming reactions to give heterocyclic scaffolds that could be further diversified. Screening these compound sets against a broad range of biological targets revealed some intriguing hits, but none of them led to a productive collaboration in translational research. Notwithstanding this setback, we screened curated members of our collections against proteins in the central nervous system and discovered some substituted B-norbenzomorphans that were selective for the enigmatic sigma-2 receptor (σ2R), an understudied protein that had been primarily associated with cancer. With scant knowledge of its role in neuroscience, we posited that small molecules that bind to σ2R might be neuroprotective, thus launching a new venture. In parallel investigations we prepared analogues of the initial hits, explored their effects in animal models of neurodegenerative and neurological conditions, and identified σ2R as transmembrane protein 97 (TMEM97). After first establishing the neuroprotective effects of several σ2R/TMEM97 ligands in a transgenic Caenorhabditis elegans model of neurodegeneration, we showed that one of these has procognitive effects and reduces levels of proinflammatory cytokines in a transgenic mouse model of Alzheimer's disease. We then identified a closely related σ2R/TMEM97 ligand that mitigates hippocampal-dependent memory deficits, prevents axon degeneration, and protects neurons and oligodendrocytes after traumatic brain injury. In a recent study, this compound was shown to protect retinal ganglion cells from retinal ischemia/reperfusion injury. In other collaborative investigations, we have shown that related, but structurally distinct, σ2R/TMEM97 ligands alleviate neuropathic pain, while a σ2R/TMEM97 ligand representing yet another chemotype reduces impairments associated with alcohol withdrawal. More recently, we have shown that σ2R/TMEM97 ligands enhance survival of cortical neurons in a neuronal model of Huntington's disease. Translational and mechanistic studies in these and other areas are in progress. Solving a problem we faced in natural product synthesis thus served as an unexpected gateway to discoveries that could lead to entirely new approaches to treat neurodegenerative and neurological conditions by targeting σ2R/TMEM97, a protein that has never been associated with these afflictions.
Collapse
Affiliation(s)
- Stephen F Martin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Mondal S, Dubey J, Awasthi A, Sure GR, Vasudevan A, Koushika SP. Tracking Mitochondrial Density and Positioning along a Growing Neuronal Process in Individual C. elegans Neuron Using a Long-Term Growth and Imaging Microfluidic Device. eNeuro 2021; 8:ENEURO.0360-20.2021. [PMID: 34035072 PMCID: PMC8260276 DOI: 10.1523/eneuro.0360-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 04/18/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The long cellular architecture of neurons requires regulation in part through transport and anchoring events to distribute intracellular organelles. During development, cellular and subcellular events such as organelle additions and their recruitment at specific sites on the growing axons occur over different time scales and often show interanimal variability thus making it difficult to identify specific phenomena in population averages. To measure the variability in subcellular events such as organelle positions, we developed a microfluidic device to feed and immobilize Caenorhabditis elegans for high-resolution imaging over several days. The microfluidic device enabled long-term imaging of individual animals and allowed us to investigate organelle density using mitochondria as a testbed in a growing neuronal process in vivo Subcellular imaging of an individual neuron in multiple animals, over 36 h in our microfluidic device, shows the addition of new mitochondria along the neuronal process and an increase in the accumulation of synaptic vesicles (SVs) at synapses. Long-term imaging of individual C. elegans touch receptor neurons (TRNs) shows that the addition of new mitochondria takes place along the entire neuronal process length at a rate of ∼0.6 mitochondria/h. The threshold for the addition of a new mitochondrion occurs when the average separation between the two preexisting mitochondria exceeds 24 μm. Our assay provides a new opportunity to move beyond simple observations obtained from in vitro assays to allow the discovery of genes that regulate positioning of mitochondria in neurons.
Collapse
Affiliation(s)
- Sudip Mondal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | - Jyoti Dubey
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, Karnataka 560065, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anjali Awasthi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | - Guruprasad Reddy Sure
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
- Sastra University, Thirumalaisamudram, Tamil Nadu 613401, India
| | - Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
17
|
Automated Functional Screening for Modulators of Optogenetically Activated Neural Responses in Living Organisms. Methods Mol Biol 2021. [PMID: 32865748 DOI: 10.1007/978-1-0716-0830-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
All-optical methods of probing in vivo brain function are advantageous for their compatibility with automated microscopy and fast spatial targeting of neural circuit excitation and response. Recent advances in optogenetic technologies allow simultaneous light activation of specific neurons and optical readout of neural activity via fluorescent calcium reporters, providing an attractive opportunity for high-throughput screening assays that directly assess dynamic neural function in vivo. Here we describe a method to automatically record optogenetically activated neural responses in living, hydrogel-embedded organisms over many hours in a multiwell plate format. This method is suitable for screening the neural effects of hundreds of chemical compounds and assessing the time course of bioactivity over 12 h or more. As examples, we show the suppression of neural responses over time with various concentrations of two voltage-gated calcium channel blockers and a full-plate screen of 320 chemicals with positive and negative controls in a single experiment.
Collapse
|
18
|
Shen H, Li J, Xie X, Yang H, Zhang M, Wang B, Kent KC, Plutzky J, Guo LW. BRD2 regulation of sigma-2 receptor upon cholesterol deprivation. Life Sci Alliance 2021; 4:e201900540. [PMID: 33234676 PMCID: PMC7723276 DOI: 10.26508/lsa.201900540] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
The sigma-2 receptor (S2R) has long been pharmacologically targeted for antipsychotic treatment and tumor imaging. Only recently was it known for its coding gene and for its role implicated in cholesterol homeostasis. Here, we have investigated the transcriptional control of S2R by the Bromo/ExtraTerminal epigenetic reader family (BETs, including BRD2, 3, and 4) upon cholesterol perturbation. Cholesterol deprivation was induced in ARPE19 cells using a blocker of lysosomal cholesterol export. This condition up-regulated S2R mRNA and protein, and also SREBP2 but not SREBP1, both transcription factors key to cholesterol/fatty acid metabolism. Silencing BRD2 but not BRD3 or BRD4 (though widely deemed a master regulator) averted S2R up-regulation that was induced by cholesterol deprivation. Silencing SREBP2 but not SREBP1 diminished S2R expression. Furthermore, endogenous BRD2 co-immunoprecipitated with the transcription-active N-terminal half of SREBP2, and chromatin immunoprecipitation-qPCR signified co-occupancy of BRD2, H3K27ac (histone acetylation), and SREBP2Nterm at the S2R gene promoter. In summary, this study reveals a previously unrecognized BRD2/SREBP2 cooperative regulation of S2R transcription, thus shedding new light on signaling in response to cholesterol deprivation.
Collapse
Affiliation(s)
- Hongtao Shen
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xiujie Xie
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Huan Yang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jorge Plutzky
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
19
|
Sae-Lee W, Scott LL, Brose L, Encarnacion AJ, Shi T, Kore P, Oyibo LO, Ye C, Rozmiarek SK, Pierce JT. APP-Induced Patterned Neurodegeneration Is Exacerbated by APOE4 in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2020; 10:2851-2861. [PMID: 32580938 PMCID: PMC7407474 DOI: 10.1534/g3.120.401486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/19/2020] [Indexed: 11/18/2022]
Abstract
Genetic and epidemiological studies have found that variations in the amyloid precursor protein (APP) and the apoliopoprotein E (APOE) genes represent major modifiers of the progressive neurodegeneration in Alzheimer's disease (AD). An extra copy of or gain-of-function mutations in APP correlate with early onset AD. Compared to the other variants (APOE2 and APOE3), the ε4 allele of APOE (APOE4) hastens and exacerbates early and late onset forms of AD. Convenient in vivo models to study how APP and APOE4 interact at the cellular and molecular level to influence neurodegeneration are lacking. Here, we show that the nematode C. elegans can model important aspects of AD including age-related, patterned neurodegeneration that is exacerbated by APOE4 Specifically, we found that APOE4, but not APOE3, acts with APP to hasten and expand the pattern of cholinergic neurodegeneration caused by APP Molecular mechanisms underlying how APP and APOE4 synergize to kill some neurons while leaving others unaffected may be uncovered using this convenient worm model of neurodegeneration.
Collapse
Affiliation(s)
- Wisath Sae-Lee
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Luisa L Scott
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Lotti Brose
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Aliyah J Encarnacion
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Ted Shi
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Pragati Kore
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Lashaun O Oyibo
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Congxi Ye
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Susan K Rozmiarek
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| | - Jonathan T Pierce
- Center for Learning and Memory; Waggoner Center for Alcohol and Addiction Research; Cell and Molecular Biology; Department of Neuroscience, The University of Texas at Austin, TX, 78712
| |
Collapse
|
20
|
Midkiff D, San-Miguel A. Microfluidic Technologies for High Throughput Screening Through Sorting and On-Chip Culture of C. elegans. Molecules 2019; 24:molecules24234292. [PMID: 31775328 PMCID: PMC6930626 DOI: 10.3390/molecules24234292] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
The nematode Caenorhabditis elegans is a powerful model organism that has been widely used to study molecular biology, cell development, neurobiology, and aging. Despite their use for the past several decades, the conventional techniques for growth, imaging, and behavioral analysis of C. elegans can be cumbersome, and acquiring large data sets in a high-throughput manner can be challenging. Developments in microfluidic “lab-on-a-chip” technologies have improved studies of C. elegans by increasing experimental control and throughput. Microfluidic features such as on-chip control layers, immobilization channels, and chamber arrays have been incorporated to develop increasingly complex platforms that make experimental techniques more powerful. Genetic and chemical screens are performed on C. elegans to determine gene function and phenotypic outcomes of perturbations, to test the effect that chemicals have on health and behavior, and to find drug candidates. In this review, we will discuss microfluidic technologies that have been used to increase the throughput of genetic and chemical screens in C. elegans. We will discuss screens for neurobiology, aging, development, behavior, and many other biological processes. We will also discuss robotic technologies that assist in microfluidic screens, as well as alternate platforms that perform functions similar to microfluidics.
Collapse
|
21
|
Iyamu ID, Lv W, Malik N, Mishra RK, Schiltz GE. Development of Tetrahydroindazole-Based Potent and Selective Sigma-2 Receptor Ligands. ChemMedChem 2019; 14:1248-1256. [PMID: 31071238 PMCID: PMC6613831 DOI: 10.1002/cmdc.201900203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2019] [Indexed: 11/08/2022]
Abstract
The sigma-2 receptor has been shown to play important roles in a number of important diseases, including central nervous system (CNS) disorders and cancer. However, mechanisms by which sigma-2 contributes to these diseases remain unclear. The development of new sigma-2 ligands that can be used to probe the function of this protein and potentially as drug discovery leads is therefore of great importance. Herein we report the development of a series of tetrahydroindazole compounds that are highly potent and selective for sigma-2. Structure-activity relationship data were used to generate a pharmacophore model that summarizes the common features present in the potent ligands. Assays for solubility and microsomal stability showed that several members of this compound series possess promising characteristics for further development of useful chemical probes or drug discovery leads.
Collapse
Affiliation(s)
- Iredia D Iyamu
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Lv
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, 60208, USA
| | - Neha Malik
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, 60208, USA
| | - Rama K Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, 60208, USA
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, 60208, USA
- Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
22
|
Youssef K, Tandon A, Rezai P. Studying Parkinson’s disease using Caenorhabditis elegans models in microfluidic devices. Integr Biol (Camb) 2019; 11:186-207. [DOI: 10.1093/intbio/zyz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder associated with the loss of dopaminergic neurons (DNs) in the substantia nigra and the widespread accumulation of α-synuclein (α-syn) protein, leading to motor impairments and eventual cognitive dysfunction. In-vitro cell cultures and in-vivo animal models have provided the opportunity to investigate the PD pathological hallmarks and identify different therapeutic compounds. However, PD pathogenesis and causes are still not well understood, and effective inhibitory drugs for PD are yet to be discovered. Biologically simple but pathologically relevant disease models and advanced screening technologies are needed to reveal the mechanisms underpinning protein aggregation and PD progression. For instance, Caenorhabditis elegans (C. elegans) offers many advantages for fundamental PD neurobehavioral studies including a simple, well-mapped, and accessible neuronal system, genetic homology to humans, body transparency and amenability to genetic manipulation. Several transgenic worm strains that exhibit multiple PD-related phenotypes have been developed to perform neuronal and behavioral assays and drug screening. However, in conventional worm-based assays, the commonly used techniques are equipment-intensive, slow and low in throughput. Over the past two decades, microfluidics technology has contributed significantly to automation and control of C. elegans assays. In this review, we focus on C. elegans PD models and the recent advancements in microfluidic platforms used for manipulation, handling and neurobehavioral screening of these models. Moreover, we highlight the potential of C. elegans to elucidate the in-vivo mechanisms of neuron-to-neuron protein transfer that may underlie spreading Lewy pathology in PD, and its suitability for in-vitro studies. Given the advantages of C. elegans and microfluidics technology, their integration has the potential to facilitate the investigation of disease pathology and discovery of potential chemical leads for PD.
Collapse
Affiliation(s)
- Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
23
|
Iyamu ID, Lv W, Malik N, Mishra RK, Schiltz GE. Discovery of a novel class of potent and selective tetrahydroindazole-based sigma-1 receptor ligands. Bioorg Med Chem 2019; 27:1824-1835. [PMID: 30904383 PMCID: PMC6548570 DOI: 10.1016/j.bmc.2019.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 11/20/2022]
Abstract
The sigma-1 and sigma-2 receptors have been shown to play important roles in CNS diseases, cancer, and other disorders. These findings suggest that targeting these proteins with small-molecule modulators may be of important therapeutic value. Here we report the development of a new class of tetrahydroindazoles that are highly potent and selective ligands for sigma-1. Molecular modeling was used to rationalize the observed structure-activity relationships and identify key interactions responsible for increased potency of the optimized compounds. Assays for solubility and microsomal stability showed this series possesses favorable characteristics and is amenable to further therapeutic development. The compounds described herein will be useful in the development of new chemical probes for sigma-1 and to aid in future work therapeutically targeting this protein.
Collapse
Affiliation(s)
- Iredia D Iyamu
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, United States
| | - Wei Lv
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, United States
| | - Neha Malik
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, United States
| | - Rama K Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, United States; Department of Pharmacology, Northwestern University, Chicago, IL 60611, United States
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, United States; Department of Pharmacology, Northwestern University, Chicago, IL 60611, United States; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
24
|
Ben-Yakar A. High-Content and High-Throughput In Vivo Drug Screening Platforms Using Microfluidics. Assay Drug Dev Technol 2019; 17:8-13. [DOI: 10.1089/adt.2018.908] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Adela Ben-Yakar
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas
- Adela Ben-Yakar from the Department of Mechanical Engineering, The University of Texas at Austin was awarded The President's Innovation award at the annual Society of Biomolecular Imaging and Informatics (SBI2) meeting held in Boston, September 2018
| |
Collapse
|
25
|
Scott LL, Iyer S, Philpo AE, Avalos MN, Wu NS, Shi T, Prakash BA, Nguyen TT, Mihic SJ, Aldrich RW, Pierce JT. A Novel Peptide Restricts Ethanol Modulation of the BK Channel In Vitro and In Vivo. J Pharmacol Exp Ther 2018; 367:282-290. [PMID: 30158242 PMCID: PMC6178125 DOI: 10.1124/jpet.118.251918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Alcohol is a widely used and abused substance. A major unresolved issue in the alcohol research field is determining which of the many alcohol target proteins identified to date is responsible for shaping each specific alcohol-related behavior. The large-conductance, calcium- and voltage-activated potassium channel (BK channel) is a conserved target of ethanol. Genetic manipulation of the highly conserved BKα channel influences alcohol-related behaviors across phylogenetically diverse species that include worm, fly, mouse, and man. A pharmacological tool that prevents alcohol's action at a single target, like the BK channel, would complement genetic approaches in the quest to define the behavioral consequences of alcohol at each target. To identify agents that specifically modulate the action of ethanol at the BK channel, we executed a high-throughput phagemid-display screen in combination with a Caenorhabditis elegans behavioral genetics assay. This screen selected a novel nonapeptide, LS10, which moderated acute ethanol intoxication in a BK channel-humanized C. elegans strain without altering basal behavior. LS10's action in vivo was dependent upon BK channel functional activity. Single-channel electrophysiological recordings in vitro showed that preincubation with a submicromolar concentration of LS10 restricted ethanol-induced changes in human BKα channel gating. In contrast, no substantial changes in basal human BKα channel function were observed after LS10 application. The results obtained with the LS10 peptide provide proof-of-concept evidence that a combined phagemid-display/behavioral genetics screening approach can provide novel tools for understanding the action of alcohol at the BK channel and how this, in turn, exerts influence over central nervous system function.
Collapse
Affiliation(s)
- Luisa L Scott
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Sangeetha Iyer
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Ashley E Philpo
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Melva N Avalos
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Natalie S Wu
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Ted Shi
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Brooke A Prakash
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Thanh-Tu Nguyen
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - S John Mihic
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Richard W Aldrich
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Jonathan T Pierce
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| |
Collapse
|