1
|
Siebold K, Chikunova E, Lorz N, Jordan C, Gossert AD, Gilmour R. Fluoro-Fucosylation Enables the Interrogation of the Le a-LecB Interaction by BioNMR Spectroscopy. Angew Chem Int Ed Engl 2025; 64:e202423782. [PMID: 39902623 DOI: 10.1002/anie.202423782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Fucosylation patterns in cell-surface glycans are essential mediators of recognition and signalling. Aberrations in these signatures serve as vital diagnostic markers of disease progression, and so understanding fucose-protein interactions at the molecular level is crucial. Molecular editing of l-fucose (Fuc) at C2 with fluorine provides a platform to reconcile the ubiquity of fucosylation with the paucity of strategies to interrogate site-specific interactions. Through judicious introduction of a pseudo-equatorial fluorine [C(sp3)-F] adjacent to the anomeric position, β-selective fucosylation can be achieved with a range of diverse acceptors (>50 : 1): the selectivity of this process can be inverted through changes in the donor scaffold. Reaction development was driven by the desire to construct a fluorinated analogue of Lewis antigen a (F-Lea), in which fluorine replaces a key OH group at C2. Lea is a ligand for Lectin B (LecB) in the pathogen Pseudomonas aeruginosa and thus delineating the importance of key interactions in this complex has ramifications for drug discovery. Independent syntheses of Lea and F-Lea, and systematic bioNMR analyses with both glycans has unequivocally established the essential role of O2 of fucose in the Lea-LecB complex.
Collapse
Affiliation(s)
- Kathrin Siebold
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Elena Chikunova
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Nils Lorz
- Department of Biology, ETH Zürich, Hönggerbergring 64, 8093, Zürich, Switzerland
| | - Christina Jordan
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
- Department of Biology, ETH Zürich, Hönggerbergring 64, 8093, Zürich, Switzerland
| | - Alvar D Gossert
- Department of Biology, ETH Zürich, Hönggerbergring 64, 8093, Zürich, Switzerland
| | - Ryan Gilmour
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
2
|
Zhong X, D’Antona AM, Rouse JC. Mechanistic and Therapeutic Implications of Protein and Lipid Sialylation in Human Diseases. Int J Mol Sci 2024; 25:11962. [PMID: 39596031 PMCID: PMC11594235 DOI: 10.3390/ijms252211962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases. The molecular machineries responsible for the biosynthesis of the sialylated glycans, along with their biological interacting partners, are important therapeutic strategies and targets for drug development. The purpose of this article is to comprehensively review the recent literature and provide new scientific insights into the mechanisms and therapeutic implications of sialylation in glycoproteins and glycolipids across various human diseases. Recent advances in the clinical developments of sialic acid-related therapies are also summarized and discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Jason C. Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA;
| |
Collapse
|
3
|
Jordan C, Hayashi T, Löbbert A, Fan J, Teschers CS, Siebold K, Aufiero M, Pape F, Campbell E, Axer A, Bussmann K, Bergander K, Köhnke J, Gossert AD, Gilmour R. Probing the Origin of Affinity in the GM1-Cholera Toxin Complex through Site-Selective Editing with Fluorine. ACS CENTRAL SCIENCE 2024; 10:1481-1489. [PMID: 39220706 PMCID: PMC11363330 DOI: 10.1021/acscentsci.4c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Carbohydrates regulate an inimitable spectrum of biological functions, yet successfully leveraging this therapeutic avenue continues to be frustrated by low affinities with glycan-specific proteins. A conspicuous exception is the interaction of monosialotetrahexosylganglioside (GM1) with the carbohydrate-recognition domain of cholera toxin from Vibrio cholerae: this is one of the strongest protein-carbohydrate interactions known. To establish the importance of a long-discussed key hydrogen bond between C2 of the terminal galactose of GM1 and the B subunit pentamer of cholera toxin (CTB5), the total synthesis of a selectively fluorinated GM1 epitope was conducted in 19 steps. This process of molecular editing (Oδ-H → Fδ-) strategically deletes the hydrogen bond donor while retaining the localized partial charge of the substituent. Comparison of the binding affinity of F-GM1/CTB5 with native GM1, the GM1 carbohydrate epitope, and meta-mononitrophenyl-α-galactoside (MNPG) revealed a trend that fully supports the importance of this key interaction. These NMR data suggest that F-GM1 binds in a closely similar conformation as native GM1. Crystallographic analyses of the complex also confirm that the OH → F bioisosteric exchange at C2 of the terminal galactose induces a ring conformation that eliminates key hydrogen bonds: these interactions are compensated for by inter- and intramolecular fluorine-specific interactions.
Collapse
Affiliation(s)
- Christina Jordan
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Taiki Hayashi
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | | | - Jingran Fan
- Institut
für Lebensmittelchemie, Leibniz Universität
Hannover, 30167 Hannover, Germany
| | | | - Kathrin Siebold
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Marialuisa Aufiero
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Felix Pape
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Emma Campbell
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Alexander Axer
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Kathrin Bussmann
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Klaus Bergander
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| | - Jesko Köhnke
- Institut
für Lebensmittelchemie, Leibniz Universität
Hannover, 30167 Hannover, Germany
| | | | - Ryan Gilmour
- Institute
for Organic Chemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
4
|
Jordan C, Siebold K, Priegue P, Seeberger PH, Gilmour R. A Fluorinated Sialic Acid Vaccine Lead Against Meningitis B and C. J Am Chem Soc 2024; 146:15366-15375. [PMID: 38768956 PMCID: PMC11157539 DOI: 10.1021/jacs.4c03179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Inspired by the specificity of α-(2,9)-sialyl epitopes in bacterial capsular polysaccharides (CPS), a doubly fluorinated disaccharide has been validated as a vaccine lead against Neisseria meningitidis serogroups C and/or B. Emulating the importance of fluorine in drug discovery, this molecular editing approach serves a multitude of purposes, which range from controlling α-selective chemical sialylation to mitigating competing elimination. Conjugation of the disialoside with two carrier proteins (CRM197 and PorA) enabled a semisynthetic vaccine to be generated; this was then investigated in six groups of six mice. The individual levels of antibodies formed were compared and classified as highly glycan-specific and protective. All glycoconjugates induced a stable and long-term IgG response and binding to the native CPS epitope was achieved. The generated antibodies were protective against MenC and/or MenB; this was validated in vitro by SBA and OPKA assays. By merging the fluorinated glycan epitope of MenC with an outer cell membrane protein of MenB, a bivalent vaccine against both serogroups was created. It is envisaged that validation of this synthetic, fluorinated disialoside bioisostere as a potent antigen will open new therapeutic avenues.
Collapse
Affiliation(s)
- Christina Jordan
- Institute
for Organic Chemistry, University of Münster, Corrensstraße 36, Münster 48149, Germany
| | - Kathrin Siebold
- Institute
for Organic Chemistry, University of Münster, Corrensstraße 36, Münster 48149, Germany
| | - Patricia Priegue
- Department
of Biomolecular Systems, Max Planck Institute
for Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry, Arnimallee 22, Berlin 14195, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
for Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry, Arnimallee 22, Berlin 14195, Germany
| | - Ryan Gilmour
- Institute
for Organic Chemistry, University of Münster, Corrensstraße 36, Münster 48149, Germany
| |
Collapse
|
5
|
Chen J, Tian M, Shu X. Only anti-GM4 antibody positivity in a Chinese girl with overlapping MFS/GBS: a case report. Neurol Sci 2024; 45:2331-2335. [PMID: 38270731 PMCID: PMC11021322 DOI: 10.1007/s10072-024-07300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Guillain-Barré syndrome (GBS), as the most common cause of acute flaccid paralysis worldwide, is considered a part of a clinical spectrum in which discrete, complete, or incomplete forms of GBS and overlapping syndromes lie on the basis of their clinical features. The term overlapping Miller Fisher syndrome (MFS)/GBS is used when patients with MFS also suffer from progressive motor weakness of the limbs. Anti-ganglioside GQ1b has been specifically associated with MFS and ophthalmoplegia. CASE DESCRIPTION Here, we report a Chinese girl who was diagnosed with overlapping MFS/GBS showing acute flaccid paralysis of all four limbs, sensory symptoms, cranial nerve dysfunction, autonomic involvement, ophthalmoplegia, and ataxia. She had high serum and cerebrospinal fluid titres of monospecific anti-GM4 IgG antibody instead of anti-GQ1b antibody in the acute phase. CONCLUSION Anti-GM4 antibodies usually coexist with other antiganglioside antibodies, leading to missed diagnoses. The findings of the present study show that antibodies to ganglioside GM4 may in overlapping MFS/GBS as the lone immunological factors.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No. 143, Dalian Road, Zunyi, 563003, China
| | - Maoqiang Tian
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No. 143, Dalian Road, Zunyi, 563003, China
| | - XiaoMei Shu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, No. 143, Dalian Road, Zunyi, 563003, China.
| |
Collapse
|
6
|
Campbell E, Jordan C, Gilmour R. Fluorinated carbohydrates for 18F-positron emission tomography (PET). Chem Soc Rev 2023; 52:3599-3626. [PMID: 37171037 PMCID: PMC10243284 DOI: 10.1039/d3cs00037k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 05/13/2023]
Abstract
Carbohydrate diversity is foundational in the molecular literacy that regulates cellular function and communication. Consequently, delineating and leveraging this structure-function interplay continues to be a core research objective in the development of candidates for biomedical diagnostics. A totemic example is the ubiquity of 2-deoxy-2-[18F]-fluoro-D-glucose (2-[18F]-FDG) as a radiotracer for positron emission tomography (PET), in which metabolic trapping is harnessed. Building on this clinical success, more complex sugars with unique selectivities are gaining momentum in molecular recognition and personalised medicine: this reflects the opportunities that carbohydrate-specific targeting affords in a broader sense. In this Tutorial Review, key milestones in the development of 2-[18F]-FDG and related glycan-based radiotracers for PET are described, with their diagnostic functions, to assist in navigating this rapidly expanding field of interdisciplinary research.
Collapse
Affiliation(s)
- Emma Campbell
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Christina Jordan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| |
Collapse
|
7
|
Teschers CS, Gilmour R. Fluorine-Directed Automated Mannoside Assembly. Angew Chem Int Ed Engl 2023; 62:e202213304. [PMID: 36331042 PMCID: PMC10108063 DOI: 10.1002/anie.202213304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Automated glycan assembly (AGA) on solid support has become invaluable in reconciling the biological importance of complex carbohydrates with the persistent challenges associated with reproducible synthesis. Whilst AGA platforms have transformed the construction of many natural sugars, validation in the construction of well-defined (site-selectively modified) glycomimetics is in its infancy. Motivated by the importance of fluorination in drug discovery, the biomedical prominence of 2-fluoro sugars and the remarkable selectivities observed in fluorine-directed glycosylation, fluorine-directed automated glycan assembly (FDAGA) is disclosed. This strategy leverages the fluorine atom for stereocontrolled glycosylation on solid support, thereby eliminating the reliance on O-based directing groups. The logical design of C2-fluorinated mannose building blocks, and their application in the fully (α-)stereocontrolled automated assembly of linear and branched fluorinated oligomannosides, is disclosed. This operationally simple strategy can be integrated into existing AGA and post-AGA protocols to augment the scope of programmed carbohydrate synthesis.
Collapse
Affiliation(s)
- Charlotte S. Teschers
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstr. 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstr. 3648149MünsterGermany
| |
Collapse
|
8
|
Vasques J, de Jesus Gonçalves R, da Silva-Junior A, Martins R, Gubert F, Mendez-Otero R. Gangliosides in nervous system development, regeneration, and pathologies. Neural Regen Res 2023. [PMID: 35799513 PMCID: PMC9241395 DOI: 10.4103/1673-5374.343890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Podbielska M, Ariga T, Pokryszko-Dragan A. Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. Int J Mol Sci 2022; 23:ijms23105330. [PMID: 35628142 PMCID: PMC9140914 DOI: 10.3390/ijms23105330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs) play a significant role in the nervous system, as major components of the myelin sheath, contributors to lipid raft formation that organize intracellular processes, as well as active mediators of transport, signaling and the survival of neurons and glial cells. Alterations in SL metabolism and content are observed in the course of central nervous system diseases, including multiple sclerosis (MS). In this review, we summarize the current evidence from studies on SLs (particularly gangliosides), which may shed new light upon processes underlying the MS background. The relevant aspects of these studies include alterations of the SL profile in MS, the role of antibodies against SLs and complexes of SL-ligand-invariant NKT cells in the autoimmune response as the core pathomechanism in MS. The contribution of lipid-raft-associated SLs and SL-laden extracellular vesicles to the disease etiology is also discussed. These findings may have diagnostic implications, with SLs and anti-SL antibodies as potential markers of MS activity and progression. Intriguing prospects of novel therapeutic options in MS are associated with SL potential for myelin repair and neuroprotective effects, which have not been yet addressed by the available treatment strategies. Overall, all these concepts are promising and encourage the further development of SL-based studies in the field of MS.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-370-99-12
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | | |
Collapse
|
10
|
Mondal R, Agbaria M, Nairoukh Z. Fluorinated Rings: Conformation and Application. Chemistry 2021; 27:7193-7213. [PMID: 33512034 DOI: 10.1002/chem.202005425] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/16/2022]
Abstract
The introduction of fluorine atoms into molecules and materials across many fields of academic and industrial research is now commonplace, owing to their unique properties. A particularly interesting feature is the impact of fluorine substitution on the relative orientation of a C-F bond when incorporated into organic molecules. In this Review, we will be discussing the conformational behavior of fluorinated aliphatic carbo- and heterocyclic systems. The conformational preference of each system is associated with various interactions introduced by fluorine substitution such as charge-dipole, dipole-dipole, and hyperconjugative interactions. The contribution of each interaction on the stabilization of the fluorinated alicyclic system, which manifests itself in low conformations, will be discussed in detail. The novelty of this feature will be demonstrated by presenting the most recent applications.
Collapse
Affiliation(s)
- Rajarshi Mondal
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Mohamed Agbaria
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Zackaria Nairoukh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
11
|
Nowack L, Teschers CS, Albrecht S, Gilmour R. Oligodendroglial glycolipids in (Re)myelination: implications for multiple sclerosis research. Nat Prod Rep 2021; 38:890-904. [PMID: 33575689 DOI: 10.1039/d0np00093k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Covering: up to 2020 This short review surveys aspects of glycolipid-based natural products and their biological relevance in multiple sclerosis (MS). The role of isolated gangliosides in disease models is discussed together with an overview of ganglioside-inspired small molecule drugs and imaging probes. The discussion is extended to neurodegeneration in a more general context and addresses the need for more efficient synthetic methods to generate (glyco)structures that are of therapeutic relevance.
Collapse
Affiliation(s)
- Luise Nowack
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany. and Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany.
| | - Charlotte S Teschers
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany.
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
12
|
Hevey R. The Role of Fluorine in Glycomimetic Drug Design. Chemistry 2020; 27:2240-2253. [DOI: 10.1002/chem.202003135] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences University of Basel, Pharmazentrum Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
13
|
Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci 2020; 14:572965. [PMID: 33117120 PMCID: PMC7574889 DOI: 10.3389/fnins.2020.572965] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Gangliosides are glycosphingolipids highly abundant in the nervous system, and carry most of the sialic acid residues in the brain. Gangliosides are enriched in cell membrane microdomains ("lipid rafts") and play important roles in the modulation of membrane proteins and ion channels, in cell signaling and in the communication among cells. The importance of gangliosides in the brain is highlighted by the fact that loss of function mutations in ganglioside biosynthetic enzymes result in severe neurodegenerative disorders, often characterized by very early or childhood onset. In addition, changes in the ganglioside profile (i.e., in the relative abundance of specific gangliosides) were reported in healthy aging and in common neurological conditions, including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), stroke, multiple sclerosis and epilepsy. At least in HD, PD and in some forms of epilepsy, experimental evidence strongly suggests a potential role of gangliosides in disease pathogenesis and potential treatment. In this review, we will summarize ganglioside functions that are crucial to maintain brain health, we will review changes in ganglioside levels that occur in major neurological conditions and we will discuss their contribution to cellular dysfunctions and disease pathogenesis. Finally, we will review evidence of the beneficial roles exerted by gangliosides, GM1 in particular, in disease models and in clinical trials.
Collapse
Affiliation(s)
- Simonetta Sipione
- Department of Pharmacology, Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
14
|
Kieser TJ, Santschi N, Nowack L, Axer A, Kehr G, Albrecht S, Gilmour R. Total Chemical Syntheses of the GM 3 and F-GM 3 Ganglioside Epitopes and Comparative Pre-Clinical Evaluation for Non-Invasive Imaging of Oligodendrocyte Differentiation. ACS Chem Neurosci 2020; 11:2129-2136. [PMID: 32559361 DOI: 10.1021/acschemneuro.0c00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gangliosides are intimately involved in a plenum of (neuro)inflammatory processes, yet progress in establishing structure-function interplay is frequently hindered by the availability of well-defined glycostructures. Motivated by the ubiquity of the ganglioside GM3 in chemical neurology, and in particular by its conspicuous presence in myelin, the GM3 epitope was examined with a view to preclinical validation as a tracer. The suitability of this scaffold for the noninvasive imaging of oligodendrocyte differentiation in Multiple sclerosis is disclosed. The stereocontrolled synthesis of a site-selectively fluorinated analogue (F-GM3) is also disclosed to enable a comparative analysis in oligodendrocyte (OL) differentiation. Whereas the native epitope caused a decrease in the viability in a dose-dependent manner, the addition of distinct F-GM3 concentrations over 48 h had no impact on the OL viability. This is likely a consequence of the enhanced hydrolytic stability imparted by the fluorination and highlights the potential of fluorinated glycostructures in the field of molecular imaging. Given the predominant expression of GM3 in oligodendrocytes and the capacity of GM3 to interact with myelin-associated proteins, this preclinical evaluation has revealed F-GM3 to be an intriguing candidate for neurological imaging.
Collapse
Affiliation(s)
- Tobias J. Kieser
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| | - Nico Santschi
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| | - Luise Nowack
- Institute for Neuropathology, University Hospital Münster, Pottkamp 2, Münster 48149, Germany
| | - Alexander Axer
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| | - Gerald Kehr
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| | - Stefanie Albrecht
- Institute for Neuropathology, University Hospital Münster, Pottkamp 2, Münster 48149, Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, Münster 48149, Germany
| |
Collapse
|
15
|
Hayashi T, Axer A, Kehr G, Bergander K, Gilmour R. Halogen-directed chemical sialylation: pseudo-stereodivergent access to marine ganglioside epitopes. Chem Sci 2020; 11:6527-6531. [PMID: 34094118 PMCID: PMC8152791 DOI: 10.1039/d0sc01219j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sialic acids are conspicuous structural components of the complex gangliosides that regulate cellular processes. Their importance in molecular recognition manifests itself in drug design (e.g. Tamiflu®) and continues to stimulate the development of effective chemical sialylation strategies to complement chemoenzymatic technologies. Stereodivergent approaches that enable the α- or β-anomer to be generated at will are particularly powerful to attenuate hydrogen bond networks and interrogate function. Herein, we demonstrate that site-selective halogenation (F and Br) at C3 of the N-glycolyl units common to marine Neu2,6Glu epitopes enables pseudo-stereodivergent sialylation. α-Selective sialylation results from fluorination, whereas traceless bromine-guided sialylation generates the β-adduct. This concept is validated in the synthesis of HLG-1 and Hp-s1 analogues. Sialic acids are conspicuous structural components of the complex gangliosides that regulate cellular processes.![]()
Collapse
Affiliation(s)
- Taiki Hayashi
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| | - Alexander Axer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstrasse 40 Münster Germany
| |
Collapse
|
16
|
Lebedel L, Ardá A, Martin A, Désiré J, Mingot A, Aufiero M, Aiguabella Font N, Gilmour R, Jiménez‐Barbero J, Blériot Y, Thibaudeau S. Structural and Computational Analysis of 2‐Halogeno‐Glycosyl Cations in the Presence of a Superacid: An Expansive Platform. Angew Chem Int Ed Engl 2019; 58:13758-13762. [DOI: 10.1002/anie.201907001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Ludivine Lebedel
- IC2MP UMR CNRS 7285, Equipe “Synthèse Organique”Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Ana Ardá
- CIC bioGUNE Parque technologico de Bizkaia, Edif. 801A-1° Derio-Bizkaia 48160 Spain
- Ikerbasque, Basque Foundation for Science Maria Lopez de Haro 3 48013 Bilbao Spain
| | - Amélie Martin
- IC2MP UMR CNRS 7285, Equipe “Synthèse Organique”Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Jérôme Désiré
- IC2MP UMR CNRS 7285, Equipe “Synthèse Organique”Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Agnès Mingot
- IC2MP UMR CNRS 7285, Equipe “Synthèse Organique”Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Marialuisa Aufiero
- Organisch Chemisches InstitutWestfälische Wilhelms Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Nuria Aiguabella Font
- Organisch Chemisches InstitutWestfälische Wilhelms Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Ryan Gilmour
- Organisch Chemisches InstitutWestfälische Wilhelms Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Jesus Jiménez‐Barbero
- CIC bioGUNE Parque technologico de Bizkaia, Edif. 801A-1° Derio-Bizkaia 48160 Spain
- Ikerbasque, Basque Foundation for Science Maria Lopez de Haro 3 48013 Bilbao Spain
| | - Yves Blériot
- IC2MP UMR CNRS 7285, Equipe “Synthèse Organique”Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Sébastien Thibaudeau
- IC2MP UMR CNRS 7285, Equipe “Synthèse Organique”Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| |
Collapse
|
17
|
Lebedel L, Ardá A, Martin A, Désiré J, Mingot A, Aufiero M, Aiguabella Font N, Gilmour R, Jiménez‐Barbero J, Blériot Y, Thibaudeau S. Structural and Computational Analysis of 2‐Halogeno‐Glycosyl Cations in the Presence of a Superacid: An Expansive Platform. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ludivine Lebedel
- IC2MP UMR CNRS 7285, Equipe “Synthèse Organique”Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Ana Ardá
- CIC bioGUNE Parque technologico de Bizkaia, Edif. 801A-1° Derio-Bizkaia 48160 Spain
- Ikerbasque, Basque Foundation for Science Maria Lopez de Haro 3 48013 Bilbao Spain
| | - Amélie Martin
- IC2MP UMR CNRS 7285, Equipe “Synthèse Organique”Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Jérôme Désiré
- IC2MP UMR CNRS 7285, Equipe “Synthèse Organique”Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Agnès Mingot
- IC2MP UMR CNRS 7285, Equipe “Synthèse Organique”Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Marialuisa Aufiero
- Organisch Chemisches InstitutWestfälische Wilhelms Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Nuria Aiguabella Font
- Organisch Chemisches InstitutWestfälische Wilhelms Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Ryan Gilmour
- Organisch Chemisches InstitutWestfälische Wilhelms Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Jesus Jiménez‐Barbero
- CIC bioGUNE Parque technologico de Bizkaia, Edif. 801A-1° Derio-Bizkaia 48160 Spain
- Ikerbasque, Basque Foundation for Science Maria Lopez de Haro 3 48013 Bilbao Spain
| | - Yves Blériot
- IC2MP UMR CNRS 7285, Equipe “Synthèse Organique”Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Sébastien Thibaudeau
- IC2MP UMR CNRS 7285, Equipe “Synthèse Organique”Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| |
Collapse
|
18
|
Hevey R. Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design. Biomimetics (Basel) 2019; 4:E53. [PMID: 31357673 PMCID: PMC6784292 DOI: 10.3390/biomimetics4030053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The aberrant presentation of carbohydrates has been linked to a number of diseases, such as cancer metastasis and immune dysregulation. These altered glycan structures represent a target for novel therapies by modulating their associated interactions with neighboring cells and molecules. Although these interactions are highly specific, native carbohydrates are characterized by very low affinities and inherently poor pharmacokinetic properties. Glycomimetic compounds, which mimic the structure and function of native glycans, have been successful in producing molecules with improved pharmacokinetic (PK) and pharmacodynamic (PD) features. Several strategies have been developed for glycomimetic design such as ligand pre-organization or reducing polar surface area. A related approach to developing glycomimetics relies on the bioisosteric replacement of carbohydrate functional groups. These changes can offer improvements to both binding affinity (e.g., reduced desolvation costs, enhanced metal chelation) and pharmacokinetic parameters (e.g., improved oral bioavailability). Several examples of bioisosteric modifications to carbohydrates have been reported; this review aims to consolidate them and presents different possibilities for enhancing core interactions in glycomimetics.
Collapse
Affiliation(s)
- Rachel Hevey
- Molecular Pharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, 4056 Basel, Switzerland.
| |
Collapse
|
19
|
Hayashi T, Kehr G, Bergander K, Gilmour R. Stereospecific α‐Sialylation by Site‐Selective Fluorination. Angew Chem Int Ed Engl 2019; 58:3814-3818. [DOI: 10.1002/anie.201812963] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/21/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Taiki Hayashi
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Klaus Bergander
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Ryan Gilmour
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
20
|
Hayashi T, Kehr G, Bergander K, Gilmour R. Stereospecific α‐Sialylation by Site‐Selective Fluorination. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Taiki Hayashi
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Klaus Bergander
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| | - Ryan Gilmour
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
21
|
Lucchetti N, Gilmour R. Reengineering Chemical Glycosylation: Direct, Metal-Free Anomeric O-Arylation of Unactivated Carbohydrates. Chemistry 2018; 24:16266-16270. [DOI: 10.1002/chem.201804416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Nicola Lucchetti
- Organisch Chemisches Institut; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Germany
| | - Ryan Gilmour
- Organisch Chemisches Institut; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Germany
| |
Collapse
|
22
|
Sadurní A, Gilmour R. Stereocontrolled Synthesis of 2-Fluorinated C-Glycosides. European J Org Chem 2018; 2018:3684-3687. [PMID: 30147438 PMCID: PMC6099233 DOI: 10.1002/ejoc.201800618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 11/22/2022]
Abstract
A systematic study of the addition of C-based nucleophiles to fluorinated lactones based on 2-deoxy-2-fluoro-d-pyranoses is disclosed. This high yielding, α-selective process was found to be independent on the nature or configuration [(R)-C(sp3)-F, (S)-C(sp3)-F] of the substituent at C2. Representative, fluorinated analogues of Trehalose, Carminic acid, and the spirocyclic cores of Tofogliflozin and Papulacandin D are also reported. These glycomimics constitute a valuable series of 19F NMR active probes for application in structural biology.
Collapse
Affiliation(s)
- Anna Sadurní
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Ryan Gilmour
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstraße 4048149MünsterGermany
- Excellence Cluster EXC 1003Cells in MotionGermany
| |
Collapse
|